scispace - formally typeset
Search or ask a question

Showing papers in "Molecular and Cellular Biochemistry in 1992"


Journal ArticleDOI
TL;DR: The inhibition of lipid peroxidation by curcumin and eugenol was reversed by adding high concentrations of Fe2+.
Abstract: Polyunsaturated fatty acids (PUFA) are vulnerable to peroxidative attack. Protecting PUFA from peroxidation is essential to utilize their beneficial effects in health and in preventing disease. The antioxidants vitamin E, t-butylhydroxy toluene (BHT) and t-butylhydroxy anisole (BHA) inhibited ascorbate/Fe(2+)-induced lipid peroxidation in rat liver microsomes. In addition, a number of spice principles, for example, curcumin (5-50 microM) from turmeric, eugenol (25-150 microM) from cloves and capsaicin (25-150 microM) from red chillies inhibited lipid peroxidation in a dose-dependent manner. Zingerone from ginger inhibited lipid peroxidation at high concentrations (greater than 150 microM) whereas linalool (coriander), piperine (black pepper) and cuminaldehyde (cumin) had only marginal inhibitory effects even at high concentrations (600 microM). The inhibition of lipid peroxidation by curcumin and eugenol was reversed by adding high concentrations of Fe2+.

465 citations


Journal ArticleDOI
TL;DR: Serial time curves of the plasma contents of H-FABP reveal that for an early indication of acute myocardial infarction in man cytoplasmic heart fatty acid-binding protein is more suitable than heart type creatine kinase MB and/or alpha-hydroxybutyrate dehydrogenase.
Abstract: The release of cytoplasmic heart fatty acid-binding protein (H-FABP) into the plasma of cardiac patients up to 38 hr after the onset of the first clinical symptoms of acute myocardial infarction (AMI) was studied, using a sensitive direct and noncompetitive Enzyme Linked Immunosorbent Assay of the antigen capture type (sandwich ELISA), newly developed for the measurement of small amounts of human H-FABP in plasma samples. Plasma levels of H-FABP were compared with plasma activity levels of the myocardial cytoplasmic enzymes creatine kinase MB (CK-MB) and alpha-hydroxybutyrate dehydrogenase (α-HBDH). Upper normal levels of H-FABP (19μg/l), CK-MB (10 U/l) and α-HBDH (160 U/l) as determined in plasma from 72 blood donors served as threshold levels. H-FABP levels were significantly elevated above their threshold level within 3 hr after AMI. Peak levels of H-FABP, CK-MB and α-HBDH were reached 4.1 ± 0.9 hr, 8.4 ± 1.4 hr and 25.0 ± 9.5 hr (means ± S.D., n = 10) after acute myocardial infarction, respectively. Serial time curves of the plasma contents of H-FABP reveal that after myocardial infarction H-FABP is released in substantial amounts from human hearts. In 18 out of 22 patients with established AMI the plasma FABP level was at or above the threshold level in blood-samples taken within 3.5 hr after the first onset of symptoms of AMI, while for CK-MB this applied to 9 patients and for α-HBDH to 6 patients. These findings suggest that for an early indication of acute myocardial infarction in man cytoplasmic heart fatty acid-binding protein is more suitable than heart type creatine kinase MB and/or alpha-hydroxybutyrate dehydrogenase. (Mol Cell Biochem116: 155–162,1992)

255 citations


Journal ArticleDOI
TL;DR: Two rodent models of diet-induced magnesium-deficiency in which histologically defined cardiac lesions can be induced within two to three weeks are developed in which circulating cytokine levels are indicative of a generalized inflammatory state.
Abstract: We have developed two rodent models of diet-induced magnesium-deficiency in which histologically defined cardiac lesions can be induced within two to three weeks. During the development of these lesions, the magnesium-deficient animals exhibit circulating cytokine levels which are indicative of a generalized inflammatory state. Dramatic elevations of the macrophage-derived cytokines, IL-1, IL-6, and TNF-alpha together with significantly elevated levels of the endothelial cell-derived cytokine, endothelin, were detected in the plasma of these animals. We believe that the pathophysiological effects caused by the action of these cytokines may play a role in the promotion of cardiovascular pathology associated with magnesium deficiency.

222 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that the presence of a tumor must produce great changes in the metabolism of glutamine in host tissues in such a way that host nitrogen metabolism is accomodated to tumor enhanced requirements of glutamines.
Abstract: Tumor cells are characterized as rapidly dividing cells, and consequently they need a constant supply of both energy and nitrogen substrates. To resolve their energy requirements, they are able to use virtually any substrate: glucose [see 1 for a review; 2-4], lipids [5-7], ketone bodies [3], even amino acids [2-4, 8-10]. Nevertheless, the glucose and amino acid consumption by malignant tumor cells overcomes their own needs for their metabolic requirements; thus, tumor cells apparently waste glucose and amino acids without any profit [1, ll]. In this context, tumor has been described as a trap for glucose and nitrogen [12-13]. Tumors compete with the host for glucose [13-14]; this competence results in a progressive hypoglycemia [15] and host hepatic glycogen depletion [13]. In the same way, tumors compete for nitrogen compounds; this process produces in the host a negative nitrogen balance and a characteristic weight loss, and in the tumor a reciprocal nitrogen increase. The biochemical mechanisms underlying these phenomena still remain unclear. There is consensus that tumors increase protein degradation and reduce protein synthesis in the host tissues [16]. Alanine and glutamine are two efficient vehicles for the transport of nitrogen and carbon-skeletons between the different tissues in the living organism [17-18]. When a tumor develops, there is a net flux of amino acids from host tissues to the tumor [19]. Since ammonium ions are very toxic for most of the cells, glutamine is the physiological non-toxic ammonium vehicle between different mammalian tissues; therefore, glutamine is the main source of nitrogen for tumor cells [2, 20-21]. Thus, the presence of a tumor must produce great changes in the metabolism of glutamine in host tissues in such a way that host nitrogen metabolism is accomodated to tumor enhanced requirements of glutamine. To be used, glutamine must be transported into tumor mitochondria, where it is metabolized [21]. This implies two transport processes: the transport of glutamine across the plasma membrane and across the inner mitochondrial membrane. Once glutamine has been incorporated into tumor cells, this amino acid is quickly metabolized [12, 16, 19].

180 citations


Journal ArticleDOI
TL;DR: In essential hypertensives a curvilinear positive correlation was obtained between CL and both systolic and diastolic blood pressure and GSH and SOD and thus PMNLs of EH have increased emission of CL and depletion of antioxidants.
Abstract: Membrane abnormalities in essential hypertensives (EH) are well known. The respiratory burst enzyme, NADPH oxidase is located in the cell membrane of the neutrophil (PMNLs) and its activity is important in generation of oxygen derived free radical (OFR). Recently OFR have been implicated in vascular changes in variety of conditions. An attempt was made to delineate the status of OFR and antioxidants in EH. Ten, age and sex-matched, healthy controls (GpI) and 26 untreated EH (Gp IIA mild-8, Gp IIB Moderate-8, Gp IIC Severe-10) were studied. After clinical examination and basic laboratory evaluation of subjects, neutrophils isolated from their blood were studied. Chemiluminescence (CL) emitted by PMNLs after stimulation was measured (counts/min) in a luminometer and was taken as measure of OFR production and thereby of NADPH oxidase activity. The levels of antioxidants, super oxide dismutase (SOD) and reduced glutathione (GSH), were also estimated. Chemiluminescence was increased significantly (p < 0.01) in Gp IIC (243.04 ± 24.9 × 103 counts per minute) as compared to Gp IIA (2.80 ± 1.87), Gp IIB (34.54 ± 30.24) and Gp I (0.52 ± 0.15) and SOD was reduced significantly (p < 0.05) in all EH (Gp IIA 3.9 ± 0.3 units per mg protein, Gp IIB 3.5 ± 0.3 and Gp IIC 3.12 ± 0.3) as compared to controls (4.1 ± 0.2). Similarly GSH was reduced (p < 0.05) in EH (Gp IIA 11.2 ± 1.7 mg per gm protein, Gp IIB 8.5 ± 1.1 and Gp IIC 6.6 ± 0.3) as compared to Gp I (13.5 ± 2.5). In essential hypertensives a curvilinear positive correlation was obtained between CL and both systolic (r = 0.7077, p < 0.01) and diastolic (r = 0.7965, p < 0.01) blood pressure. A significant inverse correlation (p < 0.05) was obtained between systolic and diastolic blood pressure on one hand and GSH and SOD on the other. Thus PMNLs of EH have increased emission of CL and depletion of antioxidants. The results indicate that in essential hypertension increased membrane NADPH oxidase activity is present.

179 citations


Journal ArticleDOI
TL;DR: Dietary supplementation of Vit E protects the animals from the possible oxidative damages of endurance exercise, and was correlated with its multivarious activities like a) scavenger of free radicals; b) inhibition of lipoxygenases; and c) reduction of peroxides in association with lip Oxygenases.
Abstract: Exhaustive endurance exercise in adult female albino rats (C-Ex) increased the generation of free radicals (R ·) in the myocardium, probably through enhanced oxidative mechanisms. Free radical mediated lipid peroxidation measured in the form of tissue MDA content also increased in C-Ex animals, suggesting the exercise-induced oxidative stress in these animals. Dietary supplementation of Vit E, for a period of 60 days significantly increased Vit E incorporation into the serum and myocardium, more so in the myocardium. Vit E supplementation to exercising animals completely abolished the radical production. The protection of Vit E against oxidative stress appears to be not mediated through the improvement of antioxidant mechanisms by enzymes like SOD, catalase and Se-GSH Px. However the non Se-GSH Px, the enzyme involved in the reduction of endoperoxides increased significantly in control and Vit E fed animals in response to exercise. The protection of Vit E against exercise-induced oxidative stress was correlated with its multivarious activities like a) scavenger of free radicals; b) inhibition of lipoxygenases; and c) reduction of peroxides in association with lipoxygenases. These studies indicate that dietary supplementation of Vit E protects the animals from the possible oxidative damages of endurance exercise.

153 citations


Journal ArticleDOI
TL;DR: The evidence reviewed here supports the contention that the Ca2-binding capacity of both calsequestrin and calreticulin favor their contribution as the major Ca2+-binding proteins of muscle and nonmuscle cells, respectively.
Abstract: In this paper we review some of the large quantities of information currently available concerning the identification, structure and function of Ca(2+)-binding proteins of endoplasmic and sarcoplasmic reticulum membranes. The review places particular emphasis on identification and discussion of Ca2+ 'storage' proteins in these membranes. We believe that the evidence reviewed here supports the contention that the Ca(2+)-binding capacity of both calsequestrin and calreticulin favor their contribution as the major Ca(2+)-binding proteins of muscle and nonmuscle cells, respectively. Other Ca(2+)-binding proteins discovered in both endoplasmic reticulum and sarcoplasmic reticulum membranes probably contribute to the overall Ca2+ storage capacity of these membrane organelles, and they also play other important functional role such as posttranslational modification of newly synthesized proteins, a cytoskeletal (structural) function, or movement of Ca2+ within the lumen of the sarcoplasmic/endoplasmic reticulum towards the storage sites.

122 citations


Journal ArticleDOI
TL;DR: The previously postulated biological roles of oxidized-LDL in atherosclerosis are discussed in view of these findings.
Abstract: The effects of oxidized human plasma low density lipoproteins (Ox-LDL) on the proliferation of cultured aortic smooth muscle cells was studied, employing viable cell counting, [3H] thymidine incorporation into DNA, and the release of lactate dehydrogenase (LDH) into the medium. Oxidized LDL (prepared by incubation of LDL with copper sulfate) exerted a concentration-dependent stimulation (2 fold, compared to control) of aortic smooth muscle cell proliferation at low concentrations (0.1 micrograms-10 micrograms/ml medium). On the other hand, at high concentrations (25-200 micrograms/ml), Ox-LDL produced a pronounced decrease in viable cells, a decrease in the incorporation of [3H] thymidine into DNA, and an increase in the release of LDH in the medium. In this report, the previously postulated biological roles of oxidized-LDL in atherosclerosis are discussed in view of these findings.

103 citations


Journal ArticleDOI
TL;DR: Two studies suggest that ryanodine is a good probe for investigating the function of the release channel in skeletal muscle sarcoplasmic reticulum using a 30 S protein complex isolated and functionally reconstituted into planar lipid bilayers.
Abstract: Ryanodine is a neutral plant alkaloid which functions as a probe for an intracellular Ca2+ release channel (ryanodine receptor) in excitable tissues. Using [3H]ryanodine, a 30 S protein complex comprised of four polypeptides of Mr 565,000 has been isolated and functionally reconstituted into planar lipid bilayers. The effects of salt concentration and divalent cations on skeletal muscle sarcoplasmic reticulum [3H]ryanodine binding and Ca2+ release channel activity have been compared. These studies suggest that ryanodine is a good probe for investigating the function of the release channel.

90 citations


Journal ArticleDOI
TL;DR: RU 486 is a well known chemical for its antiprogestin, abortifacient or contraceptive action and is also a possible anticancer agent for the treatment of hormone-dependent breast cancer.
Abstract: Steroid hormones are known to have profound tissue specific physiological and pathophysiological effects in higher organisms. These hormones are involved in mammalian growth, development, differentiation, maturation and aging. Therefore, understanding the mechanisms by which steroid hormones exert various biological, biochemical and physiological effects are of great scientific interest and the subject of intense current research efforts. It is now widely believed that steroid hormones being hydrophobic enter target cells by simple diffusion and bind with high affinity and limited capacity to the specific receptor proteins localized in the cytoplasm (glucocorticoid and mineralocorticoid receptors) or nuclear (estrogen, progesterone) compartment. The binding of steroids to cytoplasmic or nuclear receptors results in conformational changes called activation or transformation which enable the steroid-receptor complex to bind tightly to specific transcriptional enhancer DNA sequences (also called hormone-responsive element) thus activating or suppressing transcription of genes under control of steroid hormones. Since steroid hormones have profound physiological and pathophysiological effects, it is highly desirable to have pure and potent steroid antagonists which may block the given steroid effects in both in vitro and in vivo situations. In spite of three decades of efforts to find potent antagonists for glucocorticoids and progesterone, the useful antagonist was not discovered until 1981, when a group of French scientists in Roussel UCLAF first introduced RU 486, (17 [3-hydroxy-lla (4-dimethylaminophenyl)-17a-l-propynyl-estra-4,9-dien-3-one), a compound with both antiprogestin and antiglucocorticoid activities [1, 2]. Accumulated data have demonstrated various clinical applications of RU 486. For example, RU 486 is used for the treatment of the hypercortisolemia of Cushing's syndrome [2], inoperable meningioma and glucocorticoid-induced hypertension [3]. RU 486 is a well known chemical for its antiprogestin, abortifacient or contraceptive action [2, 4-8]. RU 486 is also a possible anticancer agent for the treatment of hormone-dependent breast cancer [4]. In addition, RU 486 also has beneficial effects in aiding cervical dilation, lactation and the treatment of endometriosis. The importance of RU 486 extends beyond its clinical applications, since RU 486 has been reported as a pure

86 citations


Journal ArticleDOI
TL;DR: The fatty acid composition of cardiac membrane phospholipids is profoundly altered by these changes in dietary lipid intake and the shift in balance between these substrates or inhibitors of cyclo-oxygenase activity leads to relatively greater production of prostacyclin than thromboxane (TXA2).
Abstract: Sudden Cardiac Death resulting from sustained ventricular fibrillation or malignant cardiac arrhythmia has been linked to the type of dietary fat intake in several economically well developed countries where high levels of saturated fatty acids are common. Experimental studies with the small non-human primate marmoset monkey have clearly demonstrated the health benefit of substituting polyunsaturated fatty acids (PUFA's) for dietary saturated fatty acids. Heart rate and blood pressure are lowered, while the left ventricular ejection fraction and the electrical threshold for the induction of ventricular fibrillation are both increased after prolonged feeding of PUFA enriched diets. All these changes in heart function reduce the risk of developing malignant cardiac arrhythmias.

Journal ArticleDOI
TL;DR: In this article, the low affinity nerve growth factor receptor (p75) and tyrosine kinase receptors (trkA, trkC, and trkA) were reviewed and its relationship to thetrk gene products.
Abstract: Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) are members of a family of structurally related proteins termed neurotrophins that promote the growth and survival of neurons in the central and peripheral nervous systems. Each of these proteins bind to at least two membrane receptors. One is the low affinity nerve growth factor receptor (p75), which binds each member of the neurotrophin family. The other is one of a family of tyrosine kinase receptors —trkA binds only NGF, the relatedtrkB receptor binds BDNF and NT-3, andtrkC binds NT-3 alone. This article reviews kinetic and biochemical information on p75 and its relationship to thetrk gene products.

Journal ArticleDOI
TL;DR: It is postulate that the Ap-1 site plays a critical role in the transcriptional activity of the human Proα1(I) gene and an apparently dual mode of regulation through a single cis-regulatory element is discussed.
Abstract: The first intron of the human Proα1(I) collagen gene contains an orientation-dependent enhancer composed of both positive and negative cis-acting elements involved in the transcriptional regulation of this gene. Deletion of a 360 bp Sau 3A intronic fragment spanning nucleotide + 494 to + 854 (S360) resulted in dramatic down-regulation of pCOL-KT (Thompson et al., J Biol Chem 266: 2549–2556, 1991). Using a DNaseI protection assay, we demonstrate a single footprint located at + 590 to + 615 in the S360 fragment; nuclear extracts prepared from mesenchymal and nonmesenchymal cells exhibited similar binding characteristics. A double stranded oligonucleotide representing a consensus Ap-1 binding sequence competed with S360 for binding. In contrast to what occurred in response to S360 deletion which was always accompanied by reduced expression, the deletion of the Ap-1 binding site (+ 598 to + 604) caused either increased or decreased expression of the reporter gene depending on the target cell. Site-directed mutations in the Ap-1-like cis-element of Proα1(I) were also tested in transient expression assays. Consistent with the paradoxical results of Ap-1 deletion, we observed that the functional consequences of mutations in the Ap-1 site also varied in different cells. In A204 cells, one point mutation, which resulted in the loss of protein binding to S360, led to increased CAT activity while another point mutant, which retained binding of the Ap-1 like trans-acting factor(s), showed decreased CAT expression. The effects of these two mutations in the HFL-1 cells were exactly opposite of what was seen for A204 cells. Based on these observations, we postulate that the Ap-1 site plays a critical role in the transcriptional activity of the human Proα1(I) gene. The implications of an apparently dual mode of regulation through a single cis-regulatory element are discussed. (Mol Cell Biochem 118: 119–129, 1992)

Journal ArticleDOI
TL;DR: The degree of oxidative stress was inversely correlated with recovery of mechanical and haemodynamic function and the rationale for therapeutic interventions which increase the cellular antioxidant capacities and improve the efficacy of myocardial reperfusion is represented.
Abstract: Reperfusion, without doubt, is the most effective way to treat the ischaemic myocardium. Late reperfusion may however cause further damage. Myocardial production of oxygen free radicals above the neutralizing capacity of the myocytes is an important cause of this reperfusion damage. There is evidence that prolonged ischaemia reduces the naturally occurring defence mechanisms of the heart against oxygen free radicals, particularly mitochondrial manganese superoxide dismutase, and intracellular pool of reduced glutathione. Consequently, reperfusion results in a severe oxidative damage, as evidenced by tissue accumulation and release of oxidized glutathione. An oxygen free radical-mediated impairment of mechanical function also occurs during reperfusion of human heart. In fact we observed during surgical reperfusion of coronary artery disease (CAD) patients, a prolonged and sustained release of oxidized glutathione;the degree of oxidative stress was inversely correlated with recovery of mechanical and haemodynamic function. These findings represent the rationale for therapeutic interventions which increase the cellular antioxidant capacities and improve the efficacy of myocardial reperfusion.

Book ChapterDOI
TL;DR: It is demonstrated that fatty acid oxidation quickly recovers following a transient period of severe ischemia and therapy aimed at overcoming fatty acid inhibition of glucose oxidation during reperfusion of ischemic hearts appears to be beneficial to recovery of mechanical function.
Abstract: High levels of fatty acids decrease the extent of mechanical recovery of hearts reperfused following a transient period of severe ischemia. Glucose oxidation rates during reperfusion are low under these conditions, which can result in a decreased recovery of mechanical function. Stimulation of glucose oxidation with the carnitine palmitoyl transferase I inhibitor, Etomoxir, or by directly stimulating pyruvate dehydrogenase activity with dichloroacetate (DCA) results in an improvement in mechanical function during reperfusion of previously ischemic hearts. Addition of DCA (1 mM) to hearts perfused with 11 mM glucose and 1.2 mM palmitate results in an increase in contribution of glucose oxidation to overall ATP production from 6 to 23%, with a parallel decrease in that of fatty acid oxidation from 90 to 69%. In aerobic hearts, endogenous myocardial triglycerides are an important source of fatty acids for β-oxidation. Using hearts in which the myocardial triglycerides were pre-labeled, the contribution of both endogenous and exogenous fatty acid oxidation to myocardial ATP production was determined in hearts perfused with 11 mM glucose, 1.2 mM palmitate and 500 μU/ml insulin. In hearts reperfused following a 30 min period of global no flow ischemia, 91.9% of ATP production was derived from endogenous and exogenous fatty acid oxidation, compared to 87.7% in aerobic hearts. This demonstrates that fatty acid oxidation quickly recovers following a transient period of severe ischemia. Furthermore, therapy aimed at overcoming fatty acid inhibition of glucose oxidation during reperfusion of ischemic hearts appears to be beneficial to recovery of mechanical function. (Mol Cell Biochem 116: 111–116, 1992)

Journal ArticleDOI
TL;DR: Results indicate that cardiac tissue chemiluminescence would be a useful and sensitive tool for the detection of oxygen free radical-induced cardiac injury.
Abstract: Various methods have been used in the past to assess the implication of oxygen free radicals (OFR) in ischemia-reperfusion-induced cardiac injury. Luminol-enhanced tert-butyl-initiated chemiluminescence in cardiac tissue reflects oxidative stress and is a very sensitive method. It was used to elucidate the role of OFR in cardiac injury due to ischemia and reperfusion. Studies were conducted on perfused isolated rabbit hearts in three groups (n = 8 in each): I, control; II, submitted to global ischemia for 30 min; III, submitted to ischemia for 30 min followed by reperfusion for 60 min. The heart tissue was then assayed for chemiluminescence (CL); content of malondialdehyde (MDA), an indicator of OFR-induced cardiac injury; and activity of tissue levels of antioxidants [superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px)]. The control values for left and right ventricular CL and malondialdehyde were 81.1 ± 15.4 (S.E.) and 182.4 ± 50.3 (S.E.), mv-min-mg protein−1; and 0.024 ± 0.006 (S.E.) and 0.324 ± 0.005 (S.E.) nmoles-mg protein−1 respectively. Ischemia produced an increase in the cardiac CL (3.3 to 4.4 fold) and MDA content (2 to 2.6 fold). Reperfusion following ischemia also produced similar changes in CL and MDA content. The control values for activity of left ventricular SOD, catalase, and GSH-Px were 45.77 ± 1.73 (S.E.) U-mg protein−1 5.35 ± 0.51 (S.E.) K-10−3-sec−1-mg protein−1, and 77.50 ± 7.70 (S.E.) nmoles NADPH-min−1-mg protein−1 respectively. Activities of SOD and catalase decreased during ischemia but were similar to control values in ischemic-reperfused hearts. The GSH-Px activity of left ventricle was unaffected by ischemia, and ischemia-reperfusion. GSH-Px activity of the right ventricle increased with ischemia, and ischemic-reperfusion. These results indicate that cardiac tissue chemiluminescence would be a useful and sensitive tool for the detection of oxygen free radical-induced cardiac injury.

Journal ArticleDOI
TL;DR: Abdominal obesity should be considered as a factor that exacerbates an individual's susceptibility to cardiovascular disease, and variations in several genes relevant to lipid and lipoprotein metabolism may alter the relation of abdominal obesity to dyslipoproteinemias.
Abstract: Obesity has a multifactorial origin. However, although environmental variables undoubtedly play a role in the development of obesity, it is now clear that genetic variation is also involved in the determination of an individual's susceptibility to body fat accumulation. In addition, it is also widely accepted that obesity is not a single homogeneous phenotype. It is also heterogeneous regarding its causes and metabolic complications. The regional distribution of body fat appears to be an important correlate of the metabolic complications that have been related to obesity. Due to their higher accumulation of abdominal fat, men are generally more at risk for the metabolic complications of obesity than women whereas some obese women, with large gluteal-femoral adipose depots may have a cosmetic problem which may not necessarily require medical intervention. Several studies have been conducted to understand the mechanisms by which abdominal obesity is related to diabetes, hypertension and cardiovascular disease. It appears that the increased risk of abdominal obesity is the result of complex hormonal and metabolic interactions. Studies in genetic epidemiology have shown that both total body fatness and the regional distribution of body fat have a significant genetic component. Standardized intervention studies using an identical twin design have shown that individuals that have the same genetic background tend to show similar changes in body fat and in plasma lipoprotein levels when exposed to standardized caloric excess or energy restriction. Finally, although abdominal obesity is a significant risk factor for cardiovascular disease, not every abdominal obese subject will experience metabolic complications, suggesting that some obese individuals may be more susceptible than others. Variation in several genes relevant to lipid and lipoprotein metabolism may alter the relation of abdominal obesity to dyslipoproteinemias. Abdominal obesity should therefore be considered as a factor that exacerbates an individual's susceptibility to cardiovascular disease.

Journal ArticleDOI
TL;DR: The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation and a mechanism for the DNA strand scissions reaction of quERCetin and related flavonoids is proposed.
Abstract: The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.

Journal ArticleDOI
TL;DR: Myoglobin content is increased in species with high basal metabolic rate, high physical activity, prolonged diving capacity, fatigue resistance, and red muscle, whereas it is decreased in white muscle, iron-deficient animals, animals with sedentary lifestyles, and in animals and tissues with small fiber diameters such as avian or fish hearts.
Abstract: A novel, simple, rapid, sensitive and reproducible microassay is described for determination of myoglobin and hemoglobin content of myocardial and skeletal muscle biopsy specimens from various mammals, birds and fish. As little as 50 mg of tissue is needed and myoglobin concentrations lower than 1 mg% can be detected. Myoglobin and hemoglobin are separated at alkaline pH by ammonium sulfate extraction followed by ultrafiltration. Heme content is determined by absorption of the Soret band when the hemoprotein extract is visibly colored or more sensitively by its peroxidase activity when the extract has low color. The heme reacts with tertiary-butyl hydroperoxide and orthotolidine to generate a blue color. Hemoglobin content is correlated with myoglobin content and is related to aerobic capacity and blood flow to the tissue. Myoglobin content varied over 5 orders of magnitude up to 7 per cent of the weight of tissue, whereas hemoglobin content varied over 2 orders of magnitude up to 6 per cent of tissue weight. Myoglobin content is increased in species with high basal metabolic rate, high physical activity, prolonged diving capacity, fatigue resistance, and red muscle, whereas it is decreased in white muscle, iron-deficient animals, animals with sedentary lifestyles, and in animals and tissues with small fiber diameters such as avian or fish hearts.

Journal ArticleDOI
TL;DR: The results suggest that the protective effect of lidocaine on myocardial injury may be due to its reactive oxygen scavenging properties, and may also explain the ‘membrane stabilizing actions’ of lidOCaine by scavenging OH and 1O2 that are implicated in membrane lipid peroxidation.
Abstract: Lidocaine, a local anaesthetic, has been shown to reduce ventricular arrhythmias associated with myocardial infarction and ischemic myocardial injury and its protective effects has been attributed to its membrane stabilizing properties. Since oxygen radicals are known to be produced during ischemia induced tissue damage, we have investigated the possible antioxidant properties of lidocaine and found that lidocaine does not scavenge O2-. radicals at 1 to 20 mM concentrations. However, lidocaine was found to be a potent scavenger of hydroxyl radicals and singlet oxygen. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic techniques. Lidocaine inhibited DMPO-OH adduct formation in a dose dependent manner. The amount of lidocaine needed to cause 50% inhibition of that rate was found to be approximately 80 microM and at 300 microM concentration it virtually eliminated the DMPO-OH adduct formation. The production of OH.-dependent TBA reactive products of deoxyribose was also inhibited by lidocaine in a dose dependent manner. Lidocaine was also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose dependent manner. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers and was detected as TEMP-1O2 adduct by EPR spectroscopy. The amount of lidocaine required to cause 50% inhibition of TEMP-1O2 adduct formation was found to be 500 microM. These results suggest that the protective effect of lidocaine on myocardial injury may, in part, be due to its reactive oxygen scavenging properties.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: Three common mutations in the LPL gene have been identified which account for approximately 97% of mutant genes in this group and simple DNA-based tests for the detection have been developed for the screening for carriers of LPL deficiency.
Abstract: Lipoprotein lipase (LPL) hydrolysis the triglyceride core of circulating chylomicrons and very-low-density lipoprotein, and modulates the levels and lipid composition of low and high density lipoproteins. Worldwide, more than 20 mutations in the LPL gene have been identified in patients with familial LPL deficiency. Most of these mutations are clustered in the region encoded by exons 4, 5 and 6 which forms the proposed catalytic domain of LPL. In French Canadians who have the highest reported frequency for LPL deficiency, three common mutations in the LPL gene have been identified which account for approximately 97% of mutant genes in this group. Simple DNA-based tests for the detection of all these mutations have been developed for the screening for carriers of LPL deficiency. This will facilitate further studies of phenotypic expression in heterozygous carriers and assessment of the risk of atherosclerosis in these individuals.

Journal ArticleDOI
TL;DR: The capacity of desferrioxamine to impair the generation or to scavenge directly oxygen free radicals may be responsible for its beneficial effect on myocardial infarct size in rats.
Abstract: The ability of an iron chelator, desferrioxamine, to inhibit the infarct size in in vivo rat heart was assessed. Anaesthetised rats were subjected to coronary artery ligation (CAL) for 72 hr and infarct size was measured macroscopically using TTC staining. Systolic blood pressure and ECG were monitored. Desferrioxamine (10 mg/kg and 20 mg/kg i.v.) administered half an hour after CAL markedly reduced the infarct size. However, drug treatment did not alter the systolic blood pressure of animals. In addition, desferrioxamine in vitro and in vivo demonstrated an inhibition of rat PMN-evoked and luminol-enhanced chemiluminiscence. The capacity of desferrioxamine to impair the generation or to scavenge directly oxygen free radicals may be responsible for its beneficial effect on myocardial infarct size in rats.

Journal ArticleDOI
TL;DR: The results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and it is suggested that thefast Na+ current may be involved in spread of excitation.
Abstract: Smooth muscle cells normally do not possess fast Na+ channels, but inward current is carried through two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Using whole-cell voltage clamp of single smooth muscle cells isolated from the longitudinal layer of 18-day pregnant rat uterus, depolarizing pulses, applied from a holding potential of -90 mV, evoked two types of inward current, fast and slow [8]. The fast inward current decayed within 30 ms, depended on [Na]o, and was inhibited by TTX (K0.5 = 27 nM). The slow inward current decayed slowly, was dependent on [Ca]o, and was inhibited by nifedipine. These results suggest that the fast inward current is a fast Na+ channel current, and that the slow inward current is a Ca2+ slow channel current. A fast-inactivating Ca2+ channel current was not evident. Thus, the ion channels which generate inward currents in pregnant rat uterine cells are TTX-sensitive fast Na+ channels and dihydropyridine-sensitive slow Ca2+ channels. The number of fast Na+ channels increased during gestation. The averaged current density increased from 0 on day 5, to 0.19 on day 9, to 0.56 on day 14, to 0.90 on day 18, and to 0.86 pA/pF on day 21. This almost linear increase occurs because of an increase in the fraction of cells which possess fast Na+ channels, and it is suggested that the fast Na+ current may be involved in spread of excitation. The Ca2+ channel current density also was higher during the latter half of gestation. These results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and may facilitate parturition. Isoproterenol (beta-agonist) did not affect either ICa(s) or INa(f), whereas Mg2+ (K0.5 of 12 mM) and nifedipine (K0.5 of 3.3 nM) depressed ICa(s). Oxytocin had no effect on INa(f) and actually depressed ICa(s) to a small extent. Therefore, the tocolytic action of beta-agonists cannot be explained by an inhibition of ICa(s), whereas that of Mg2+ can be so explained. The stimulating action of oxytocin on uterine contractions is not due to stimulation of ICa(s). Figure 11 summarizes the possible mechanisms by which uterine contractility can be modulated. In contrast to vascular smooth muscle, neither ISO nor adenosine, which produce elevation of cyclic AMP, affected ICa and INa. Therefore, no arrow can be drawn between cA-PK/cG-PK and the Ca2+ slow channel.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
TL;DR: The activities of SOD and GSHPx in patients with PD were higher than those in normal healthy individuals, suggesting that the increased activities of these enzymes could be due to oxidative stress in the initial stages of this disease.
Abstract: The activities of superoxide dismutase (SOD; EC 1.15.1.1) and glutathione peroxidase (GSHPx; EC 1.11.1.9.), the enzymes that metabolize the superoxide anion and hydrogen peroxide, respectively, were measured in serum from healthy subjects and patients with Parkinson's disease (PD). The activities of SOD and GSHPx in patients with PD were higher than those in normal healthy individuals. These results suggest that the increased activities of these enzymes could be due to oxidative stress in the initial stages of this disease.

Journal ArticleDOI
TL;DR: The altered 3H-nitrendipine binding characteristics in diabetic heart membranes may not be due to the high levels of circulating catecholamines in this experimental model because no such changes were seen upon injecting a high dose of isoproterenol.
Abstract: In order to examine the status of Ca2+ channels in heart sarcolemma during the development of diabetes, rats were injected intravenously with 65 mg/kg streptozotocin and hearts were removed 1, 3 and 8 weeks later Crude membranes from the ventricular muscle were prepared and the specific binding of 3H-nitrendipine was studied by employing different concentrations of this Ca 2+-antagonist A significant decrease in both dissociation constant and maximal number of 3H-nitrendipine binding was observed in 3 and 8 weeks diabetic preparations No such alterations were evident in diabetic brain membranes Treatment of diabetic animals with insulin prevented the occurrence of these changes in the myocardium The altered 3H-nitrendipine binding characteristics in diabetic heart membranes may not be due to the high levels of circulating catecholamines in this experimental model because no such changes were seen upon injecting a high dose (40 mg/kg) of isoproterenol in rats for 24 hr The reduced number of 3H-nitrendipine binding sites may decrease Ca2+-influx through voltage sensitive Ca2+ channels and partly explain the depressed cardiac contractile force development in chronic diabetes whereas the increased affinity of Ca2+ channels may partly explain the increased sensitivity of diabetic heart to Ca 2+

Journal ArticleDOI
TL;DR: Altered ANF actions due to blunted response of guanylate cyclase to ANF could be a consequence of the ANF receptor phosphorylation by excessive activity of protein kinase C and might be involved in the pathogenesis of hypertension.
Abstract: The 130 kDa atrial natriuretic factor receptor (ANF-R1) purified from bovine adrenal zona glomerulosa is phosphorylated in vitro by serine/threonine protein kinases such as cAMP-, cGMP-dependent and protein kinase C. This phosphorylation is independent of the presence of ANF (99–126) and there is no detectable intrinsic kinase activity associated with the ANF-R1 receptor or with its activated form. In bovine adrenal zona glomerulosa cells, TPA (phorbol ester) induces a marked inhibition of the ANF-stimulated cGMP accumulation as well as of the membrane ANF-sensitive guanylate cyclase catalytic activity without any change in the binding capacity or affinity for 125I-ANF. However, we have demonstrated a significant 32P incorporation in the ANF-R1 receptor of the TPA-treated cells. The effect of TPA on the zona glomerulosa ANF-R1 receptors was abolished by calphostin C, a specific protein kinase C inhibitor. Altered ANF actions due to blunted response of guanylate cyclase to ANF could be a consequence of the ANF receptor phosphorylation by excessive activity of protein kinase C and might be involved in the pathogenesis of hypertension.

Journal ArticleDOI
TL;DR: Data suggest a role of different hsp70 isoforms in the mechanism of PhASS as well as adaptive protection of the heart in adaptation to intermittent restraint stress and to intermittent hypoxia.
Abstract: The phenomenon of adaptive stabilization of structures (PhASS) develops during adaptation of the organism to intermittent restraint stress. The PhASS manifests itself in a considerably increased resistance of the heart to a broad spectrum of harmful factors. In the present work, the content of hsp70 and their role in the development of PhASS during adaptation to intermittent restraint stress and to intermittent hypoxia were studied. In adaptation to restraint stress, five hsp70 isoforms with pI ranging from 5.7 to 6.3 were accumulated in the myocardium. The heart simultaneously became strikingly resistant to reperfusion paradox and heat shock. In adaptation to hypoxia, only two hsp70 isoforms with pI about 5.8 were accumulated. The resistance to reperfusion paradox was not increased and the resistance to heat shock was increased only moderately. These data suggest a role of different hsp70 isoforms in the mechanism of PhASS as well as adaptive protection of the heart.

Journal ArticleDOI
TL;DR: The role that in the process have the secondary structure of dsRNA as well as other variables whose influence has come to light in addition to that of the basicity of the enzyme protein are analyzed and discussed.
Abstract: Single-strand-preferring ribonucleases of the pancreatic type, structurally and/or catalytically similar to bovine RNase A but endowed with a higher protein basicity, are able to degrade double-stranded RNA (dsRNA) or DNA: RNA hybrids under standard assay conditions (0.15 M NaCl, 0.015 M sodium citrate, pH 7), where RNase A is inactive. This enzyme too, however, becomes quite active if assay conditions are slightly modified or its basicity is increased (polyspermine-RNase). In the attempt to review these facts, we have analyzed and discussed the role that in the process have the secondary structure of dsRNA as well as other variables whose influence has come to light in addition to that of the basicity of the enzyme protein, i.e., the ionic strength, the presence of carbohydrates on the RNase molecule, and the structure (monomeric or dimeric) of the enzyme. A possible mechanism by which dsRNAs are attacked by pancreatic-type RNases has been proposed.

Book ChapterDOI
TL;DR: The crucial role of fatty acids in membrane phospholipids for the maintenance of structural integrity and production of energy for cardiac contractile activity as well as the toxic effects of fatty acid and their long chain acyl-derivatives support the concept of ‘lipid paradox’ in the myocardium.
Abstract: The heart utilizes fatty acids as a substrate in preference to glucose for the production of energy. The rate of fatty acid uptake and oxidation by heart muscle is controlled by the availability of exogenous fatty acids, the rate of acyl translocation across the mitochondrial membrane and the rate of acetyl-CoA oxidation by the citric acid cycle. Carnitine acyl-CoA tranferase appears to have an important function in coupling the fatty acid activation and acyl transfer to the oxidative phosphorylation. Activated fatty acids are also utilized for the synthesis of triglycerides and membrane phospholipids in the myocardium. The inhibition of long chain acyl-carnitine transferase I reduces the oxidation of fatty acids and promotes the synthesis of lipids in the myocardium. Accumulation of fatty acids and their metabolites such as long chain acyl-CoA and long chain acyl-carnitine has been associated with cardiac dysfunction and cell damage in both ischemic and diabetic hearts. Alterations in the composition of membrane phospholipids are also consiered to change the activities of various membrane bound enzymes and subsequently heart function under different pathophysiological conditions. Chronic diabetes was found to be associated with increased plasma lipids, subcellular defects and cardiac dysfunction. Lowering the plasma lipids or reducing the oxidation of fatty acids by agents such as etomoxir, an inhibitor of palmitoylcarnitine transferase I was found to promote glucose utilization and remodel the subcellular membranous organelles in the heart. The crucial role of fatty acids in membrane phospholipids for the maintenance of structural integrity and production of energy for cardiac contractile activity as well as the toxic effects of fatty acids and their long chain acyl-derivatives support the concept of ‘lipid paradox’ in the myocardium. (Mol Cell Biochem 116:3–9, 1992)

Book ChapterDOI
TL;DR: In isolated rat hearts subjected to 60 min of no-flow ischemia myocardial oxygen consumption and oxidation of palmitate were lowered by 3 mM of NiCl2 and by 6 μM of ruthenium red, providing indirect evidence for the hypothesis that intracellular calcium transport may be involved in the mechanisms responsible for the high oxidative metabolic rate early after reperfusion.
Abstract: Inhibition of fatty acid oxidation is an early event in myocardial ischemia that most likely contributes to tissue injury by the accumulation of potentially toxic intermediates such as acylCoA and acylcarnitine. After reperfusion both myocardial oxygen consumption and fatty acid oxidation may rapidly recover to preischemic levels, even when contractile function remains depressed. The mechanisms underlying the apparent dissociation between contractile function and oxidative metabolism early during reperfusion are still controversial. In isolated rat hearts subjected to 60 min of no-flow ischemia myocardial oxygen consumption and oxidation of palmitate were lowered during reperfusion by 3 mM of NiCl2 and by 6 μM of ruthenium red. The results provide indirect evidence for the hypothesis that intracellular calcium transport may be involved in the mechanisms responsible for the high oxidative metabolic rate early after reperfusion. (Mol Cell Biochem 116: 103–109, 1992)