scispace - formally typeset
Search or ask a question

Showing papers in "Molecular and Cellular Biology in 1989"


Journal ArticleDOI
Robert M. Hudziak1, Gail D. Lewis1, M Winget1, Brian M. Fendly1, H. M. Shepard1, Axel Ullrich1 
TL;DR: It is shown that a monoclonal antibody directed against the extracellular domain of p185HER2 specifically inhibits the growth of breast tumor-derived cell lines overexpressing the HER2/c-erbB-2 gene product and prevents HER2-transformed NIH 3T3 cells from forming colonies in soft agar.
Abstract: The HER2/c-erbB-2 gene encodes the epidermal growth factor receptorlike human homolog of the rat neu oncogene. Amplification of this gene in primary breast carcinomas has been show to correlate with poor clinical prognosis for certain cancer patients. We show here that a monoclonal antibody directed against the extracellular domain of p185HER2 specifically inhibits the growth of breast tumor-derived cell lines overexpressing the HER2/c-erbB-2 gene product and prevents HER2/c-erbB-2-transformed NIH 3T3 cells from forming colonies in soft agar. Furthermore, resistance to the cytotoxic effect of tumor necrosis factor alpha, which has been shown to be a consequence of HER2/c-erbB-2 overexpression, is significantly reduced in the presence of this antibody.

831 citations


Journal ArticleDOI
TL;DR: Five of the gadd cDNA clones encode transcripts that are increased by other growth cessation signals: growth arrest by serum reduction, medium depletion, contact inhibition, or a 24-h exposure to hydroxyurea, suggesting that these genes may represent part of a novel regulatory pathway involved in the negative control of mammalian cell growth.
Abstract: More than 20 different cDNA clones encoding DNA-damage-inducible transcripts in rodent cells have recently been isolated by hybridization subtraction (A. J. Fornace, Jr., I. Alamo, Jr., and M. C. Hollander, Proc. Natl. Acad. Sci. USA 85:8800-8804, 1988). In most cells, one effect of DNA damage is the transient inhibition of DNA synthesis and cell growth. We now show that five of our clones encode transcripts that are increased by other growth cessation signals: growth arrest by serum reduction, medium depletion, contact inhibition, or a 24-h exposure to hydroxyurea. The genes coding for these transcripts have been designated gadd (growth arrest and DNA damage inducible). Two of the gadd cDNA clones were found to hybridize at high stringency to transcripts from human cells that were induced after growth cessation signals or treatment with DNA-damaging agents, which indicates that these responses have been conserved during mammalian evolution. In contrast to results with growth-arrested cells that still had the capacity to grow after removal of the growth arrest conditions, no induction occurred in HL60 cells when growth arrest was produced by terminal differentiation, indicating that only certain kinds of growth cessation signals induce these genes. All of our experiments suggest that the gadd genes are coordinately regulated: the kinetics of induction for all five transcripts were similar; in addition, overexpression of gadd genes was found in homozygous deletion c14CoS/c14CoS mice that are missing a small portion of chromosome 7, suggesting that a trans-acting factor encoded by a gene in this deleted portion is a negative effector of the gadd genes. The gadd genes may represent part of a novel regulatory pathway involved in the negative control of mammalian cell growth.

692 citations


Journal ArticleDOI
TL;DR: Biochemical analysis of hsp82 from vertebrate cells suggests that the protein binds to a variety of other cellular proteins, keeping them inactive until they have reached their proper intracellular location or have received the proper activation signal, speculate that the reason cells require higher concentrations of hSP82 or hsc82 for growth at higher temperatures is to maintain proper levels of complex formation with these other proteins.
Abstract: hsp82 is one of the most highly conserved and abundantly synthesized heat shock proteins of eucaryotic cells. The yeast Saccharomyces cerevisiae contains two closely related genes in the HSP82 gene family. HSC82 was expressed constitutively at a very high level and was moderately induced by high temperatures. HSP82 was expressed constitutively at a much lower level and was more strongly induced by heat. Site-directed disruption mutations were produced in both genes. Cells homozygous for both mutations did not grow at any temperature. Cells carrying other combinations of the HSP82 and HSC82 mutations grew well at 25 degrees C, but their ability to grow at higher temperatures varied with gene copy number. Thus, HSP82 and HSC82 constitute an essential gene family in yeast cells. Although the two proteins had different patterns of expression, they appeared to have equivalent functions; growth at higher temperatures required higher concentrations of either protein. Biochemical analysis of hsp82 from vertebrate cells suggests that the protein binds to a variety of other cellular proteins, keeping them inactive until they have reached their proper intracellular location or have received the proper activation signal. We speculate that the reason cells require higher concentrations of hsp82 or hsc82 for growth at higher temperatures is to maintain proper levels of complex formation with these other proteins.

660 citations


Journal ArticleDOI
TL;DR: In vitro experiments with two types of intramolecular duplex structures that inhibit translation in cis by preventing the formation of an initiation complex or by causing the complex to be abortive confirm prior in vivo evidence that the 40S subunit-factor complex, once bound to mRNA, has considerable ability to penetrate secondary structure.
Abstract: This paper describes in vitro experiments with two types of intramolecular duplex structures that inhibit translation in cis by preventing the formation of an initiation complex or by causing the complex to be abortive. One stem-loop structure (delta G = -30 kcal/mol) prevented mRNA from engaging 40S subunits when the hairpin occurred 12 nucleotides (nt) from the cap but had no deleterious effect when it was repositioned 52 nt from the cap. This result confirms prior in vivo evidence that the 40S subunit-factor complex, once bound to mRNA, has considerable ability to penetrate secondary structure. Consequently, translation is most sensitive to secondary structure at the entry site for ribosomes, i.e., the 5' end of the mRNA. The second stem-loop structure (hp7; delta G = -61 kcal/mol, located 72 nt from the cap) was too stable to be unwound by 40S ribosomes, hp7 did not prevent a 40S ribosomal subunit from binding but caused the 40S subunit to stall on the 5' side of the hairpin, exactly as the scanning model predicts. Control experiments revealed that 80S elongating ribosomes could disrupt duplex structures, such as hp7, that were too stable to be penetrated by the scanning 40S ribosome-factor complex. A third type of base-paired structure shown to inhibit translation in vivo involves a long-range interaction between the 5' and 3' noncoding sequences.

632 citations


Journal ArticleDOI
TL;DR: In this article, the authors define the regulatory mechanisms that mediate the selective activation of the mck enhancer in differentiating muscle cells and further delimited the boundaries of this enhancer and analyzed its interactions with nuclear factors from a variety of myogenic and nonmyogenic cell types.
Abstract: Exposure of skeletal myoblasts to growth factor-deficient medium results in transcriptional activation of muscle-specific genes, including the muscle creatine kinase gene (mck). Tissue specificity, developmental regulation, and high-level expression of mck are conferred primarily by a muscle-specific enhancer located between base pairs (bp) -1350 and -1048 relative to the transcription initiation site (E. A. Sternberg, G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson, Mol. Cell. Biol. 8:2896-2909, 1988). To begin to define the regulatory mechanisms that mediate the selective activation of the mck enhancer in differentiating muscle cells, we have further delimited the boundaries of this enhancer and analyzed its interactions with nuclear factors from a variety of myogenic and nonmyogenic cell types. Deletion mutagenesis showed that the region between 1,204 and 1,095 bp upstream of mck functions as a weak muscle-specific enhancer that is dependent on an adjacent enhancer element for strong activity. This adjacent activating element does not exhibit enhancer activity in single copy but acts as a strong enhancer when multimerized. Gel retardation assays combined with DNase I footprinting and diethyl pyrocarbonate interference showed that a nuclear factor from differentiated C2 myotubes and BC3H1 myocytes recognized a conserved A + T-rich sequence within the peripheral activating region. This myocyte-specific enhancer-binding factor, designated MEF-2, was undetectable in nuclear extracts from C2 or BC3H1 myoblasts or several nonmyogenic cell lines. MEF-2 was first detectable within 2 h after exposure of myoblasts to mitogen-deficient medium and increased in abundance for 24 to 48 h thereafter. The appearance of MEF-2 required ongoing protein synthesis and was prevented by fibroblast growth factor and type beta transforming growth factor, which block the induction of muscle-specific genes. A myoblast-specific factor that is down regulated within 4 h after removal of growth factors was also found to bind to the MEF-2 recognition site. A 10-bp sequence, which was shown by DNase I footprinting and diethyl pyrocarbonate interference to interact directly with MEF-2, was identified within the rat and human mck enhancers, the rat myosin light-chain (mlc)-1/3 enhancer, and the chicken cardiac mlc-2A promoter. Oligomers corresponding to the region of the mlc-1/3 enhancer, which encompasses this conserved sequence, bound MEF-2 and competed for its binding to the mck enhancer. These results thus provide evidence for a novel myocyte-specific enhancer-binding factor, MEF-2, that is expressed early in the differentiation program and is suppressed by specific polypeptide growth factors. The ability of MEF-2 to recognize conserved activating elements associated with multiple-specific genes suggests that this factor may participate in the coordinate regulation of genes during myogenesis.

604 citations


Journal ArticleDOI
TL;DR: Results indicate that the product of the human trk locus is a novel tyrosine kinase cell surface receptor for an as yet unknown ligand.
Abstract: Molecular analysis of the human trk oncogene, a transforming gene isolated from a colon carcinoma biopsy, revealed the existence of a novel member of the tyrosine kinase gene family. This locus, which we now designate the trk proto-oncogene, codes for a protein of 790 amino acid residues that has several features characteristic of cell surface receptors. They include (i) a 32-amino-acid-long putative signal peptide, (ii) an amino-terminal moiety (residues 33 to 407) rich in consensus sites for N-glycosylation, (iii) a transmembrane domain, (iv) a kinase catalytic region highly related to that of other tyrosine kinases, and (v) a very short (15 residue) carboxy-terminal tail. Residues 1 to 392 were absent in the trk oncogene, as they were replaced by tropomyosin sequences. However, no other differences were found between the transforming and nontransforming trk alleles (residues 392 to 790), suggesting that no additional mutations are required to activate the transforming potential of this gene. The human trk proto-oncogene codes for a 140,000-dalton glycoprotein, designated gp140proto-trk. However, its primary translational product is a 110,000-dalton glycoprotein which becomes immediately glycosylated, presumably during its translocation into the endoplasmic reticulum. This molecule, designated gp110proto-trk, is further glycosylated to yield the mature form, gp140proto-trk. Both gp110proto-trk and gp140proto-trk proteins possess in vitro kinase activity specific for tyrosine residues. Finally, iodination of intact NIH 3T3 cells expressing trk proto-oncogene products indicated that only the mature form, gp140proto-trk, cross the plasma membrane, becoming exposed to the outside of the cell. These results indicate that the product of the human trk locus is a novel tyrosine kinase cell surface receptor for an as yet unknown ligand.

592 citations


Journal ArticleDOI
TL;DR: A detailed analysis of the proximal regulatory region of the TTR gene is reported, which has uncovered two new DNA-binding factors that are present mainly (or only) in hepatocytes and binds to two sites that are crucial in TTR expression as well as to two additional sites in the alpha 1-AT proximal enhancer region.
Abstract: Transthyretin (TTR) and alpha 1-antitrypsin (alpha 1-AT) are expressed at high levels in the liver and also in at least one other cell type. We report here a detailed analysis of the proximal regulatory region of the TTR gene, which has uncovered two new DNA-binding factors that are present mainly (or only) in hepatocytes. One of these new factors, hepatocyte nuclear factor 3 (HNF-3), binds to two sites that are crucial in TTR expression as well as to two additional sites in the alpha 1-AT proximal enhancer region. The second new factor, HNF-4, binds to two sites in TTR that are required for gene activity. We had previously identified binding sites for another hepatocyte-enriched DNA-binding protein (C/EBP or a relative thereof), and additional promoter-proximal sites for that protein in both TTR and alpha 1-AT are also reported here. From these results it seems clear that cell-specific expression is not simply the result of a single cell-specific factor for each gene but the result of a combination of such factors. The variation and distribution of such factors among different cell types could be an important basis for the coordinate expression of the TTR and alpha 1-AT genes in the liver or the discordant transcriptional activation of these genes in a few other cell types. The identification of such cell-enriched factors is a necessary prelude to understanding the basis for cell specificity.

524 citations


Journal ArticleDOI
TL;DR: The primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos are reported on.
Abstract: UV irradiation of human and murine cells enhances the transcription of several genes. Here we report on the primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos. In order to induce the expression of genes. UV radiation needs to be absorbed by DNA and to cause DNA damage of the kind that cannot be repaired by cells from patients with xeroderma pigmentosum group A. UV-induced activation of the three genes is mediated by the major enhancer elements (located between nucleotide positions -105 and -79 of HIV-1, between positions -72 and -65 of the collagenase gene, and between positions -320 and -299 of fos). These elements share no apparent sequence motif and bind different trans-acting proteins; a member of the NF kappa B family binds to the HIV-1 enhancer, the heterodimer of Jun and Fos (AP-1) binds to the collagenase enhancer, and the serum response factors p67 and p62 bind to fos. DNA-binding activities of the factors recognizing the HIV-1 and collagenase enhancers are augmented in extracts from UV-treated cells. The increase in activity is due to posttranslational modification. While AP-1 resides in the nucleus and must be modulated there, NF kappa B is activated in the cytoplasm, indicating the existence of a cytoplasmic signal transduction pathway triggered by UV-induced DNA damage. In addition to activation, new synthesis of AP-1 is induced by UV radiation.

518 citations


Journal ArticleDOI
S Jindal1, Anil K. Dudani1, Bhupinder Singh1, C B Harley1, Radhey S. Gupta1 
TL;DR: The observed high degree of homology between human P1 and mycobacterial antigen also suggests the possible involvement of this protein in certain autoimmune diseases.
Abstract: The complete cDNA for a human mitochondrial protein designated P1, which was previously identified as a microtubule-related protein, has been cloned and sequenced. The deduced amino acid sequence of P1 shows strong homology (40 to 50% identical residues and an additional 20% conservative replacements) to the 65-kilodalton major antigen of mycobacteria, to the GroEL protein of Escherichia coli, and to the ribulose 1,5-bisphosphate carboxylase-oxygenase (rubisco) subunit binding protein of plant chloroplasts. Similar to the case with the latter two proteins, which have been shown to act as chaperonins in the posttranslational assembly of oligomeric protein structures, it is suggested that P1 may play a similar role in mammalian cells. The observed high degree of homology between human P1 and mycobacterial antigen also suggests the possible involvement of this protein in certain autoimmune diseases.

518 citations


Journal ArticleDOI
TL;DR: Portions of tau proteins generated by in vitro translation were used to show that these repeats represent tubulin-binding domains, two of which are sufficient to bind to microtubules assembled from purified tubulin in the presence of taxol.
Abstract: Tau proteins consist of a family of proteins, heterogeneous in size, which associate with microtubules in vivo and are induced during neurite outgrowth. In humans, tau is one of the major components of the pathognomonic neurofibrillary tangles in Alzheimer's disease brain. Screening of a cDNA library prepared from bovine brain led to the isolation of several cDNA clones encoding tau proteins with different N termini and differing by insertions or deletions, suggesting differential splicing of the tau transcripts. One of the N-terminal domains and the repeated C-terminal domain of the encoded tau proteins are recognized by polyclonal antibodies to bovine tau. The bovine tau proteins are highly homologous to murine and human tau, especially within the repeated C-terminal domain. Compared with murine and human tau, bovine tau contains the insertion of three longer segments, one of which is an additional characteristic repeat. Portions of tau proteins generated by in vitro translation were used to show that these repeats represent tubulin-binding domains, two of which are sufficient to bind to microtubules assembled from purified tubulin in the presence of taxol.

510 citations


Journal ArticleDOI
TL;DR: Under prescribed conditions, the fidelity of initiation in extracts from animal as well as plant cells closely mimics what has been observed in vivo, and recognition of an AUG codon in a suboptimal context was higher when the adjacent downstream sequence was capable of assuming a hairpin structure than when the downstream region was unstructured.
Abstract: The context requirements for recognition of an initiator codon were evaluated in vitro by monitoring the relative use of two AUG codons that were strategically positioned to produce long (pre-chloramphenicol acetyl transferase [CAT]) and short versions of CAT protein. The yield of pre-CAT initiated from the 5'-proximal AUG codon increased, and synthesis of CAT from the second AUG codon decreased, as sequences flanking the first AUG codon increasingly resembled the eucaryotic consensus sequence. Thus, under prescribed conditions, the fidelity of initiation in extracts from animal as well as plant cells closely mimics what has been observed in vivo. Unexpectedly, recognition of an AUG codon in a suboptimal context was higher when the adjacent downstream sequence was capable of assuming a hairpin structure than when the downstream region was unstructured. This finding adds a new, positive dimension to regulation by mRNA secondary structure, which has been recognized previously as a negative regulator of initiation. Translation of pre-CAT from an AUG codon in a weak context was not preferentially inhibited under conditions of mRNA competition. That result is consistent with the scanning model, which predicts that recognition of the AUG codon is a late event that occurs after the competition-sensitive binding of a 40S ribosome-factor complex to the 5' end of mRNA. Initiation at non-AUG codons was evaluated in vitro and in vivo by introducing appropriate mutations in the CAT and preproinsulin genes. GUG was the most efficient of the six alternative initiator codons tested, but GUG in the optimal context for initiation functioned only 3 to 5% as efficiently as AUG. Initiation at non-AUG codons was artifactually enhanced in vitro at supraoptimal concentrations of magnesium.

Journal ArticleDOI
TL;DR: Three distinct mdr gene transcripts encoded by three separate mdr genes in the mouse are identified and should be considered in relation to understanding the normal physiological function of the mdr multigene family.
Abstract: The gene responsible for multidrug resistance (mdr), which encodes the P-glycoprotein, is a member of a multigene family. We have identified distinct mdr gene transcripts encoded by three separate mdr genes in the mouse. Expression levels of each mdr gene are dramatically different in various mouse tissues. Specific mdr RNA transcripts of approximately 4.5, 5, and 6 kilobases have been detected. Each of the mdr genes has a specific RNA transcript pattern. These results should be considered in relation to understanding the normal physiological function of the mdr multigene family.

Journal ArticleDOI
TL;DR: In this article, a two-stage model for cellular senescence was proposed: mortality stage 1 (M1) causes a loss of mitogen responsiveness and arrest near the G1/S interface and can be bypassed or overcome by the cellular DNA synthesis-stimulating activity of T antigen.
Abstract: IMR-90 normal human diploid fibroblasts, transfected with a steroid inducible mouse mammary tumor virus-driven simian virus 40 T antigen, were carried through crisis to yield an immortal cell line. Growth was dependent on the presence of the inducer (dexamethasone) during both the extended precrisis life span of the cells and after immortalization. After dexamethasone removal, immortal cells divided once or twice and then accumulated in G1. These results are best explained by a two-stage model for cellular senescence. Mortality stage 1 (M1) causes a loss of mitogen responsiveness and arrest near the G1/S interface and can be bypassed or overcome by the cellular DNA synthesis-stimulating activity of T antigen. Mortality stage 2 (M2) is an independent mechanism that is responsible for the failure of cell division during crisis. The inactivation of M2 is a rare event, probably of mutational origin in human cells, independent of or only indirectly related to the expression of T antigen. Under this hypothesis, T-antigen-immortalized cells contain an active but bypassed M1 mechanism and an inactivated M2 mechanism. These cells are dependent on the continued expression of T antigen for the maintenance of immortality for the same reason that precrisis cells are dependent on T antigen for growth: both contain an active M1 mechanism.

Journal ArticleDOI
TL;DR: Although the function(s) of the products encoded by the TRPM-2 gene remains unclear, their presence provides a remarkable and early indicator of programmed cell death in many types of mammalian cells.
Abstract: RNA and protein products encoded by the testosterone-repressed prostate message-2 gene (TRPM-2) are induced to high levels, coordinate with the onset of cell death, in numerous rodent models of inducible tissue damage. These models include cell death initiated by hormonal stimuli (prostate regression), pressure insult (renal atrophy after ureteral obstruction), developmental stimuli (necrosis of interdigital tissue), and cytotoxic injury (chemotherapeutic regression of a tumor). Sequence analysis of cDNA encoding TRPM-2 revealed its close homology with a product referred to as SGP-2 or clusterin expressed constitutively by Sertoli cells; however, the immunologically related polypeptides expressed in regressing tissues differ in molecular mass from the forms secreted by the testis. Although the function(s) of the products encoded by the TRPM-2 gene remains unclear, their presence provides a remarkable and early indicator of programmed cell death in many types of mammalian cells.

Journal ArticleDOI
TL;DR: The hypothesis that DAI kinase activation reduces translation initiation through phosphorylation of eIF-2 alpha is substantiate and reinforce the importance of phosphorylations of eif-2alpha as a way to control initiation of translation in intact cells.
Abstract: Phosphorylation of the alpha subunit of the eucaryotic translation initiation factor (eIF-2 alpha) by the double-stranded RNA-activated inhibitor (DAI) kinase correlates with inhibition of translation initiation. The importance of eIF-2 alpha phosphorylation in regulating translation was studied by expression of specific mutants of eIF-2 alpha in COS-1 cells. DNA transfection of certain plasmids could activate DAI kinase and result in poor translation of plasmid-derived mRNAs. In these cases, translation of the plasmid-derived mRNAs was improved by the presence of DAI kinase inhibitors or by the presence of a nonphosphorylatable mutant (serine to alanine) of eIF-2 alpha. The improved translation mediated by expression of the nonphosphorylatable eIF-2 alpha mutant was specific to plasmid-derived mRNA and did not affect global mRNA translation. Expression of a serine-to-aspartic acid mutant eIF-2 alpha, created to mimic the phosphorylated serine, inhibited translation of the mRNAs derived from the transfected plasmid. These results substantiate the hypothesis that DAI kinase activation reduces translation initiation through phosphorylation of eIF-2 alpha and reinforce the importance of phosphorylation of eIF-2 alpha as a way to control initiation of translation in intact cells.

Journal ArticleDOI
D Chelsky1, R Ralph1, G Jonak1
TL;DR: Comparison of the sequences which were effective at nuclear targeting with those that were not revealed a possible consensus sequence for peptide-mediated nuclear transport.
Abstract: The abilities of 18 synthetic peptides to target a carrier protein to the nucleus following microinjection into the cytoplasm of HeLa cells were determined. Eight of the sequences chosen for synthesis were based on published nuclear targeting regions as determined by gene fusion and deletion experiments. Six of these sequences were found to be effective when mimicked by a synthetic peptide and conjugated to a carrier protein. One additional peptide was based on a region of lamin L1, a nuclear protein from Xenopus laevis, in which the nuclear targeting region had not been previously investigated. This peptide was also able to target a carrier protein to the nucleus. Eight other peptides which resemble the known targeting signals had little or no nuclear targeting ability. Peptides which were able to target a carrier protein to the nucleus did so within 45 min of injection into the cytoplasm. Two peptides with little or no apparent nuclear targeting ability after 45 min were examined for longer times as well. No increase in nuclear accumulation was observed between 45 min and 4 h after cytoplasmic injection. Comparison of the sequences which were effective at nuclear targeting with those that were not revealed a possible consensus sequence for peptide-mediated nuclear transport.

Journal ArticleDOI
TL;DR: The findings support the conclusion that NF-kappa B exists in the cytoplasm of unstimulated cells in an inactive form that can be converted by exposure to PKA or PKC to an active DNA-binding forms that can translocate to the nucleus.
Abstract: We have examined whether a precursor form of NF-kappa B, a DNA-binding protein that plays a role in the transcriptional control of several genes, including kappa immunoglobulin light chain and interleukin-2 receptor alpha subunit, could be activated in vitro by protein kinases. DNA-binding activity of NF-kappa B was induced in the cytosolic fraction of unstimulated 70Z/3 murine pre-B cells by incubation with the catalytic subunit of cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). In contrast, PKA and PKC did not activate NF-kappa B in nuclear extracts from unstimulated cells. Identical results were obtained with the human natural killer-like cell line YT, which can be induced to express the interleukin-2 receptor alpha subunit in response to interleukin-1, cyclic AMP, or phorbol 12-myristate 13-acetate. Furthermore, when nuclei from unstimulated cells were incubated with PKA- or PKC-treated cytosolic fraction for 30 min at 30 degrees C, NF-kappa B was translocated into the nuclei. This translocation did not occur at 4 degrees C and was inhibited by wheat germ agglutinin but not by concanavalin A. Our findings support the conclusion that NF-kappa B exists in the cytoplasm of unstimulated cells in an inactive form that can be converted by exposure to PKA or PKC to an active DNA-binding form that can translocate to the nucleus.

Journal ArticleDOI
TL;DR: Observations provide direct evidence that mutant alleles of the p53 oncogene have oncogenic potential in vivo and that different cell types show intrinsic differences in susceptibility to malignant transformation by p53.
Abstract: We have investigated the role of the p53 gene in oncogenesis in vivo by generating transgenic mice carrying murine p53 genomic fragments isolated from a mouse Friend erythroleukemia cell line or BALB/c mouse liver DNA. Elevated levels of p53 mRNA were detected in several tissues of two transgenic lines tested. Increased levels of p53 protein were also detected in most of the tissues analyzed by Western blotting (immunoblotting). Because both transgenes encoded p53 proteins that were antigenically distinct from wild-type p53, it was possible to demonstrate that overexpression of the p53 protein was mostly, if not entirely, due to the expression of the transgenes. Neoplasms developed in 20% of the transgenic mice, with a high incidence of lung adenocarcinomas, osteosarcomas, and lymphomas. Tissues such as ovaries that expressed the transgene at high levels were not at higher risk of malignant transformation than tissues expressing p53 protein at much lower levels. The long latent period and low penetrance suggest that overexpression of p53 alone is not sufficient to induce malignancies and that additional events are required. These observations provide direct evidence that mutant alleles of the p53 oncogene have oncogenic potential in vivo and that different cell types show intrinsic differences in susceptibility to malignant transformation by p53. Since recent data suggest that p53 may be a recessive oncogene, it is possible that the elevated tumor incidence results from functional inactivation of endogenous p53 by overexpression of the mutant transgene. The high incidence of lung and bone tumors suggests that p53 transgenic mice may provide a useful model to investigate the molecular events that underlie these malignancies in humans.

Journal ArticleDOI
TL;DR: Ulastructural analysis supports the ribonucleoprotein nature of HSGs and their composition of approximately 10-nm precursor particles and gives a reasonable explanation for the striking conservation of untranslated mRNAs during heat shock and may apply also to animal cells.
Abstract: In heat-shocked tomato cell cultures, cytoplasmic heat shock granules (HSGs) are tightly associated with a specific subset of mRNAs coding mainly for the untranslated control proteins. This messenger ribonucleoprotein complex was banded in a CsCl gradient after fixation with formaldehyde (approximately 1.30 g/cm3). It contains all the heat shock proteins and most of the RNA applied to the gradient. During heat shock, a reversible aggregation of HSGs from 15S precursor particles can be shown. These pre-HSGs are not identical to the 19S plant prosomes. Ultrastructural analysis supports the ribonucleoprotein nature of HSGs and their composition of approximately 10-nm precursor particles. A model summarizes our results. It gives a reasonable explanation for the striking conservation of untranslated mRNAs during heat shock and may apply also to animal cells.

Journal ArticleDOI
TL;DR: Results indicate that an important function of poly(A), in conjunction with its binding protein, is to protect polyadenylated mRNAs from indiscriminate destruction by cellular nucleases.
Abstract: Using an in vitro mRNA decay system, we investigated how poly(A) and its associated poly(A)-binding protein (PABP) affect mRNA stability. Cell extracts used in the decay reactions were depleted of functional PABP either by adding excess poly(A) competitor or by passing the extracts over a poly(A)-Sepharose column. Polyadenylated mRNAs for beta-globin, chloramphenicol acetyltransferase, and simian virus 40 virion proteins were degraded 3 to 10 times faster in reactions lacking PABP than in those containing excess PABP. The addition of purified Saccharomyces cerevisiae or human cytoplasmic PABP to PABP-depleted reactions stabilized the polyadenylated mRNAs. In contrast, the decay rates of nonpolyadenylated mRNAs were unaffected by PABP, indicating that both the poly(A) and its binding protein were required for maintaining mRNA stability. A nonspecific single-stranded binding protein from Escherichia coli did not restore stability to polyadenylated mRNA, and the stabilizing effect of PABP was inhibited by anti-PABP antibody. The poly(A) tract was the first mRNA segment to be degraded in PABP-depleted reactions, confirming that the poly(A)-PABP complex was protecting the 3' region from nucleolytic attack. These results indicate that an important function of poly(A), in conjunction with its binding protein, is to protect polyadenylated mRNAs from indiscriminate destruction by cellular nucleases. A model is proposed to explain how the stability of an mRNA could be affected by the stability of its poly(A)-PABP complex.

Journal ArticleDOI
TL;DR: This work has selected mutations in genes encoding components of the signaling pathway for alpha interferon (IFN-alpha) by using a specially constructed cell line using the upstream region of the IFN-regulated human gene 6-16 fused to the Escherichia coli guanine phosphoribosyltransferase (gpt) gene and transfected into hypoxanthine-guanine phosphate-negative human cells.
Abstract: We have selected mutations in genes encoding components of the signaling pathway for alpha interferon (IFN-alpha) by using a specially constructed cell line. The upstream region of the IFN-regulated human gene 6-16 was fused to the Escherichia coli guanine phosphoribosyltransferase (gpt) gene and transfected into hypoxanthine-guanine phosphoribosyltransferase-negative human cells. These cells express gpt only in the presence of IFN-alpha. They grow in medium containing hypoxanthine, aminopterin, and thymidine plus IFN and are killed by 6-thioguanine plus IFN. Two different types of mutants were obtained after treating the cells with mutagens. A recessive mutant, selected in 6-thioguanine plus IFN, was completely resistant to IFN-alpha but responded normally to IFN-gamma and, unexpectedly, partially to IFN-beta. A constitutive mutant, selected in hypoxanthine-aminopterin-thymidine alone, was abnormal in expressing endogenous genes in the absence of IFN. Both types revert infrequently, allowing selection for complementation of the defects by transfection.

Journal ArticleDOI
TL;DR: Results demonstrate that regulatory sequences controlling expression of the alpha B-crystallin gene lie between sequences 666 base pairs upstream of the transcription initiation site and 2.4 kilobase pairs downstream of the poly(A) addition site and are not located within the introns.
Abstract: The murine alpha B-crystallin gene was cloned and its expression was examined. In the mouse, significant levels of alpha B-crystallin RNA were detected not only in lens but also in heart, skeletal muscle, kidney, and lung; low and trace levels were detected in brain and spleen, respectively. The RNA species in lung, brain, and spleen was 400 to 500 bases larger than that in the other tissues. Transcription in lens, heart, skeletal muscle, kidney, and brain initiated at the same position. A mouse alpha B-crystallin mini-gene was constructed and was introduced into the germ line of mice, and its expression was demonstrated to parallel that of the endogenous gene. Transgene RNA was always detected in lens, heart, and skeletal muscle, while expression in kidney and lung was variable; it remains uncertain whether there is transgene expression in brain and spleen. These results demonstrate that regulatory sequences controlling expression of the alpha B-crystallin gene lie between sequences 666 base pairs upstream of the transcription initiation site and 2.4 kilobase pairs downstream of the poly(A) addition site and are not located within the introns. Transfection studies with a series of alpha B-crystallin mini-gene deletion mutants revealed that sequences between positions -222 and -167 were required for efficient expression in primary embryonic chick lens cells; sequences downstream of the poly(A) addition signal were dispensable for expression in this in vitro system.

Journal ArticleDOI
TL;DR: A model in which both splicing and nuclear transport of an RNA molecule are coupled to its translation is presented, supporting the idea that UV mutagenesis proceeds through the formation of pyrimidine dimers in mammalian cells.
Abstract: Steady-state dihydrofolate reductase (dhfr) mRNA levels were decreased as a result of nonsense mutations in the dhfr gene. Thirteen DHFR-deficient mutants were isolated after treatment of Chinese hamster ovary cells with UV irradiation. The positions of most point mutations were localized by RNA heteroduplex mapping, the mutated regions were isolated by cloning or by enzymatic amplification, and base changes were determined by DNA sequencing. Two of the mutants suffered large deletions that spanned the entire dhfr gene. The remaining 11 mutations consisted of nine single-base substitutions, one double-base substitution, and one single-base insertion. All of the single-base substitutions took place at the 3' position of a pyrimidine dinucleotide, supporting the idea that UV mutagenesis proceeds through the formation of pyrimidine dimers in mammalian cells. Of the 11 point mutations, 10 resulted in nonsense codons, either directly or by a frameshift, suggesting that the selection method favored a null phenotype. An examination of steady-state RNA levels in cells carrying these mutations and a comparison with similar data from other dhfr mutants (A. M. Carothers, R. W. Steigerwalt, G. Urlaub, L. A. Chasin, and D. Grunberger, J. Mol. Biol., in press) showed that translation termination mutations in any of the internal exons of the gene gave rise to a low-RNA phenotype, whereas missense mutations in these exons or terminations in exon 6 (the final exon) did not affect dhfr mRNA levels. Nuclear run-on experiments showed that transcription of the mutant genes was normal. The stability of mature dhfr mRNA also was not affected, since (i) decay rates were the same in wild-type and mutant cells after inhibition of RNA synthesis with actinomycin D and (ii) intronless minigene versions of cloned wild-type and nonsense mutant genes were expressed equally after stable transfection. We conclude that RNA processing has been affected by these nonsense mutations and present a model in which both splicing and nuclear transport of an RNA molecule are coupled to its translation. Curiously, the low-RNA mutant phenotype was not exhibited after transfer of the mutant genes, suggesting that the transcripts of transfected genes may be processed differently than are those of their endogenous counterparts.

Journal ArticleDOI
TL;DR: A new method for accurately defining the sequence recognition properties of DNA-binding proteins by selecting high-affinity binding sites from random-sequence DNA is described and should prove generally useful for defining the specificities of other DNA- binding proteins and for identifying putative target sequences from genomic DNA.
Abstract: We describe a new method for accurately defining the sequence recognition properties of DNA-binding proteins by selecting high-affinity binding sites from random-sequence DNA. The yeast transcriptional activator protein GCN4 was coupled to a Sepharose column, and binding sites were isolated by passing short, random-sequence oligonucleotides over the column and eluting them with increasing salt concentrations. Of 43 specifically bound oligonucleotides, 40 contained the symmetric sequence TGA(C/G)TCA, whereas the other 3 contained sequences matching six of these seven bases. The extreme preference for this 7-base-pair sequence suggests that each position directly contacts GCN4. The three nucleotide positions on each side of this core heptanucleotide also showed sequence preferences, indicating their effect on GCN4 binding. Interestingly, deviations in the core and a stronger sequence preference in the flanking region were found on one side of the central C . G base pair. Although GCN4 binds as a dimer, this asymmetry supports a model in which interactions on each side of the binding site are not equivalent. The random selection method should prove generally useful for defining the specificities of other DNA-binding proteins and for identifying putative target sequences from genomic DNA.

Journal ArticleDOI
TL;DR: The observation of a 120,000-Mr protein whose phosphorylation on tyrosine correlates with the induction of morphological transformation is reported, consistent with the observation that transforming src proteins are membrane associated.
Abstract: We used myristylated and nonmyristylated c-src-based variants and phosphotyrosine-specific antibodies to reevaluate the role of tyrosine phosphorylation in cellular transformation by pp60src. Prior methods used to detect tyrosine-phosphorylated proteins failed to discriminate predicted differences in tyrosine phosphorylation which are clearly observed with phosphotyrosine-specific antibodies and Western blotting (immunoblotting). Here we report the observation of a 120,000-Mr protein whose phosphorylation on tyrosine correlates with the induction of morphological transformation. p120 was not observed in cells overexpressing the regulated, nononcogenic pp60c-src, whereas phosphorylation of p120 was greatly enhanced in cells expressing activated, oncogenic pp60527F. Furthermore, phosphorylation of p120 was not induced by expression of the activated but nonmyristylated src variant pp602A/527F, which is transformation defective. p120 partitioned preferentially with cellular membranes, consistent with the observation that transforming src proteins are membrane associated. Although a number of additional putative substrates were identified and partially characterized with respect to intracellular localization, tyrosine phosphorylation of these proteins was not tightly linked to transformation.

Journal ArticleDOI
TL;DR: The thermolabile large T antigen, encoded by the simian virus 40 early-region mutant tsA58, was used to establish clonal cell lines derived from rat embryo fibroblasts that showed rapidly arrested growth and the inability of these cell lines to divide at the nonpermissive temperature was not readily complemented by the exogenous introduction of other nuclear oncogenes.
Abstract: The thermolabile large T antigen, encoded by the simian virus 40 early-region mutant tsA58, was used to establish clonal cell lines derived from rat embryo fibroblasts. These cell lines grew continuously at the permissive temperature but upon shift-up to the nonpermissive temperature showed rapidly arrested growth. The growth arrest occurred in either the G1 or G2 phase of the cell cycle. After growth arrest, the cells remained metabolically active as assayed by general protein synthesis and the ability to exclude trypan blue. The inability of these cell lines to divide at the nonpermissive temperature was not readily complemented by the exogenous introduction of other nuclear oncogenes. This finding suggests that either these genes establish cells via different pathways or that immortalization by one oncogene results in a finely balanced cellular state which cannot be adequately complemented by another establishment gene.

Journal ArticleDOI
TL;DR: The results suggest that the Bcl-2 protein is functional in normal B lymphocytes and that a quantitative difference in its expression may play a role in the pathogenesis of lymphomas carrying the t(14;18) translocation.
Abstract: We have identified a 24-kilodalton protein that is the product of the human bcl-2 gene, implicated as an oncogene because of its presence at the site of t(14;18) translocation breakpoints. The Bcl-2 protein was detected by specific, highly sensitive rabbit antibodies and was shown to be present in a number of human lymphoid cell lines and tissues, as well as in mouse B cells transfected with a bcl-2 cDNA construct. Characterization of the Bcl-2 protein demonstrated that it has a lipophilic nature and is associated with membrane structures, probably by means of its hydrophobic carboxy-terminal membrane-spanning domain. In t(14;18)-carrying cell lines, the protein is predominantly localized to the perinuclear endoplasmic reticulum, with a minor fraction in the plasma membrane. These properties, together with the observations that Bcl-2 does not have a characteristic signal peptide and is not glycosylated, suggest that it is an integral-membrane protein that spans the bilayer at its C-terminal hydrophobic region but is exposed only at the cytoplasmic surface. The relative abundance of the Bcl-2 protein in various human lymphoid cell lines correlated with transcription of the bcl-2 gene. The protein was abundant in all t(14;18)-carrying cell lines and lymphomas and was also found at lower levels in pre-B-cell lines and nonmalignant lymphoid tissues that do not carry t(14;18) translocations. These results suggest that the Bcl-2 protein is functional in normal B lymphocytes and that a quantitative difference in its expression may play a role in the pathogenesis of lymphomas carrying the t(14;18) translocation.

Journal ArticleDOI
TL;DR: In Pichia pastoris, alcohol oxidase is the first enzyme in the methanol utilization pathway and is encoded by two genes, AOX1 and AOX2, which appear to be regulated in the same manner.
Abstract: In Pichia pastoris, alcohol oxidase (AOX) is the first enzyme in the methanol utilization pathway and is encoded by two genes, AOX1 and AOX2. The DNA and predicted amino acid sequences of the protein-coding portions of the genes are closely homologous, whereas flanking sequences share no homology. The functional roles of AOX1 and AOX2 in the metabolism of methanol were examined. Studies of strains with disrupted AOX genes revealed that AOX1 was the major source of methanol-oxidizing activity in methanol-grown P. pastoris. The results of two types of experiments each suggested that the difference in AOX activity contributed by the two genes was a consequence of sequences located 5' of the protein-coding portions of the genes. First, the coding portion of AOX2 was able to functionally substitute for that of AOX1 when placed under the control of AOX1 regulatory sequences. Second, when labeled oligonucleotide probes specific for the 5' nontranslated region of each gene were used, it was apparent that the steady-state level of AOX1 mRNA was much higher than that of AOX2. Except for the difference in the amount of mRNA present, the two genes appeared to be regulated in the same manner. A physiological reason for the existence of AOX2 was sought but was not apparent.

Journal ArticleDOI
TL;DR: Human cells treated with interferon synthesize two proteins that exhibit high homology to murine Mx1 protein, which has previously been identified as the mediator ofinterferon-induced cellular resistance of mouse cells against influenza viruses.
Abstract: Human cells treated with interferon synthesize two proteins that exhibit high homology to murine Mx1 protein, which has previously been identified as the mediator of interferon-induced cellular resistance of mouse cells against influenza viruses. Using murine Mx1 cDNA as a hybridization probe, we have isolated cDNA clones originating from two distinct human Mx genes, designated MxA and MxB. In human fibroblasts, expression of MxA and MxB is strongly induced by alpha interferon (IFN-alpha), IFN-beta, Newcastle disease virus, and, to a much lesser extent, IFN-gamma, MxA and MxB proteins have molecular masses of 76 and 73 kilodaltons, respectively, and their sequences are 63% identical. A comparison of human and mouse Mx proteins revealed that human MxA and mouse Mx2 are the most closely related proteins, showing 77% sequence identity. Near their amino termini, human and mouse Mx proteins contain a block of 53 identical amino acids and additional regions of very high sequence similarity. These conserved sequences are also present in a double-stranded RNA-inducible fish gene, which suggests that they may constitute a functionally important domain of Mx proteins. In contrast to mouse Mx1 protein, which accumulates in the nuclei of IFN-treated mouse cells, the two human Mx proteins both accumulate in the cytoplasm of IFN-treated cells.

Journal ArticleDOI
TL;DR: The muscle creatine kinase gene is transcriptionally induced when skeletal muscle myoblasts differentiate into myocytes and the factor which interacts with the two MCK enhancers myocyte-specific enhancer-binding nuclear factor 1 (MEF 1) is designated.
Abstract: The muscle creatine kinase (MCK) gene is transcriptionally induced when skeletal muscle myoblasts differentiate into myocytes. The gene contains two muscle-specific enhancer elements, one located 1,100 nucleotides (nt)5' of the transcriptional start site and one located in the first intron. We have used gel mobility shift assays to characterize the trans-acting factors that interact with a region of the MCK gene containing the 5' enhancer. MM14 and C2C12 myocyte nuclear extracts contain a sequence-specific DNA-binding factor which recognizes a site within a 110-nt fragment of the MCK enhancer region shown to be sufficient for enhancer function. Preparative mobility shift gels were combined with DNase I footprinting to determine the site of binding within the 110-nt fragment. Site-directed mutagenesis within the footprinted region produced a 110-nt fragment which did not bind the myocyte factor in vitro. The mutant fragment had about 25-fold-less activity as a transcriptional enhancer in myocytes than did the wild-type fragment. Complementary oligomers containing 21 base pairs spanning the region protected from DNase degradation were also specifically bound by MM14 and C2C12 myocyte nuclear factors. The oligomer-binding activity was not found in nuclear extracts from the corresponding myoblasts, in nuclear extracts from a variety of nonmuscle cell types (including differentiation-defective MM14-DD1 cells and 10T1/2 mesodermal stem cells), or in cytoplasmic extracts. Both the 5' and intron 1 enhancer-containing fragments competed for factors that bind the oligomer probe, while total mouse genomic DNA and several DNA fragments containing viral and cellular enhancers did not. Interestingly, a 5' MCK proximal promoter fragment that also contains muscle-specific positive regulatory elements did not compete for factor binding to the oligomer. We have designated the factor which interacts with the two MCK enhancers myocyte-specific enhancer-binding nuclear factor 1 (MEF 1). A consensus for binding sites in muscle-specific regulatory regions is proposed.