scispace - formally typeset
Search or ask a question

Showing papers in "Molecular and Cellular Biology in 2004"


Journal ArticleDOI
TL;DR: It is found that both the BTB and intervening-region (IVR) domains are crucial for Nrf2 degradation, implying that these two domains act to recruit ubiquitin-proteasome factors.
Abstract: Transcription factor Nrf2 is a major regulator of genes encoding phase 2 detoxifying enzymes and antioxidant stress proteins in response to electrophilic agents and oxidative stress. In the absence of such stimuli, Nrf2 is inactive owing to its cytoplasmic retention by Keap1 and rapid degradation through the proteasome system. We examined the contribution of Keap1 to the rapid turnover of Nrf2 (half-life of less than 20 min) and found that a direct association between Keap1 and Nrf2 is required for Nrf2 degradation. In a series of domain function analyses of Keap1, we found that both the BTB and intervening-region (IVR) domains are crucial for Nrf2 degradation, implying that these two domains act to recruit ubiquitin-proteasome factors. Indeed, Cullin 3 (Cul3), a subunit of the E3 ligase complex, was found to interact specifically with Keap1 in vivo. Keap1 associates with the N-terminal region of Cul3 through the IVR domain and promotes the ubiquitination of Nrf2 in cooperation with the Cul3-Roc1 complex. These results thus provide solid evidence that Keap1 functions as an adaptor of Cul3-based E3 ligase. To our knowledge, Nrf2 and Keap1 are the first reported mammalian substrate and adaptor, respectively, of the Cul3-based E3 ligase system.

1,908 citations


Journal ArticleDOI
TL;DR: The results suggest that the ability of Keap1 to assemble into a functional E3 ubiquitin ligase complex is the critical determinant that controls steady-state levels of Nrf2 in response to cancer-preventive compounds and oxidative stress.
Abstract: The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2 and controls both the subcellular localization and steady-state levels of Nrf2. In this report, we demonstrate that Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex. Keap1 assembles into a functional E3 ubiquitin ligase complex with Cul3 and Rbx1 that targets multiple lysine residues located in the N-terminal Neh2 domain of Nrf2 for ubiquitin conjugation both in vivo and in vitro. Keap1-dependent ubiquitination of Nrf2 is inhibited following exposure of cells to quinone-induced oxidative stress and sulforaphane, a cancer-preventive isothiocyanate. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 is markedly resistant to inhibition by either quinone-induced oxidative stress or sulforaphane. Inhibition of Keap1-dependent ubiquitination of Nrf2 correlates with decreased association of Keap1 with Cul3. Neither quinone-induced oxidative stress nor sulforaphane disrupts association between Keap1 and Nrf2. Our results suggest that the ability of Keap1 to assemble into a functional E3 ubiquitin ligase complex is the critical determinant that controls steady-state levels of Nrf2 in response to cancer-preventive compounds and oxidative stress.

1,127 citations


Journal ArticleDOI
TL;DR: The data demonstrate that Keap1 restrains Nrf2 activity via its capacity to target NRF2 to a cytoplasmic Cul3-based E3 ligase and suggest a model in which Keap 1 coordinately regulates both Nrf 2 accumulation and access to target genes.
Abstract: The Nrf2 transcription factor promotes survival following cellular insults that trigger oxidative damage. Nrf2 activity is opposed by the BTB/POZ domain protein Keap1. Keap1 is proposed to regulate Nrf2 activity strictly through its capacity to inhibit Nrf2 nuclear import. Recent work suggests that inhibition of Nrf2 may also depend upon ubiquitin-mediated proteolysis. To address the contribution of Keap1-dependent sequestration versus Nrf2 proteolysis, we identified the E3 ligase that regulates Nrf2 ubiquitination. We demonstrate that Keap1 is not solely a cytosolic anchor; rather, Keap1 is an adaptor that bridges Nrf2 to Cul3. We demonstrate that Cul3-Keap1 complexes regulate Nrf2 polyubiquitination both in vitro and in vivo. Inhibition of either Keap1 or Cul3 increases Nrf2 nuclear accumulation, leading to promiscuous activation of Nrf2-dependent gene expression. Our data demonstrate that Keap1 restrains Nrf2 activity via its capacity to target Nrf2 to a cytoplasmic Cul3-based E3 ligase and suggest a model in which Keap1 coordinately regulates both Nrf2 accumulation and access to target genes.

892 citations


Journal ArticleDOI
TL;DR: It is demonstrated that, as for the regulation of cell growth and cell size, the S6K1 and 4E-BP1/eIF4E pathways each represent critical mediators of mTOR-dependent cell cycle control.
Abstract: The mammalian target of rapamycin (mTOR) integrates nutrient and mitogen signals to regulate cell growth (increased cell mass and cell size) and cell division. The immunosuppressive drug rapamycin inhibits cell cycle progression via inhibition of mTOR; however, the signaling pathways by which mTOR regulates cell cycle progression have remained poorly defined. Here we demonstrate that restoration of mTOR signaling (by using a rapamycin-resistant mutant of mTOR) rescues rapamycin-inhibited G1-phase progression, and restoration of signaling along the mTOR-dependent S6K1 or 4E-BP1/eukaryotic translation initiation factor 4E (eIF4E) pathways provides partial rescue. Furthermore, interfering RNA-mediated reduction of S6K1 expression or overexpression of mTOR-insensitive 4E-BP1 isoforms that block eIF4E activity inhibit G1-phase progression individually and additively. Thus, the activities of both the S6K1 and 4E-BP1/eIF4E pathways are required for and independently mediate mTOR-dependent G1-phase progression. In addition, overexpression of constitutively active mutants of S6K1 or wild-type eIF4E accelerates serum-stimulated G1-phase progression, and stable expression of wild-type S6K1 confers a proliferative advantage in low-serum-containing media, suggesting that the activity of each of these pathways is limiting for cell proliferation. These data demonstrate that, as for the regulation of cell growth and cell size, the S6K1 and 4E-BP1/eIF4E pathways each represent critical mediators of mTOR-dependent cell cycle control.

829 citations


Journal ArticleDOI
TL;DR: It is shown that mice deficient for S 6K1 or S6K2 are born at the expected Mendelian ratio, and analysis of S6 phosphorylation in the cytoplasm and nucleoli of cells derived from the distinct S7K genotypes suggests that both kinases are required for full S6osphorylation but that S6k2 may be more prevalent in contributing to this response.
Abstract: Recent studies showed that the 40S ribosomal protein S6 kinase (S6K) p70S6K/p85S6K, termed S6K1 (51), is a major effector of cell growth. This conclusion stems from gene deletion studies with Drosophila (39) and with mice (51) as well as recent studies with cell cultures (11). The loss of the Drosophila S6K (dS6K) gene is semilethal, with the few surviving adults having a severely reduced body size. The larvae of such flies exhibit a long developmental delay, consistent with a twofold increase in cell cycle doubling times. The few surviving adults are quite lethargic, living no longer than 2 weeks, and females are sterile. Surprisingly, the reduction in mass is strictly due to a decrease in cell size rather than to a decrease in cell number (39). In mice, removal of this kinase is not lethal, but the mice are approximately 20% smaller at birth (51). Such mice exhibit normal fasting glucose levels but are mildly glucose intolerant due to markedly reduced levels of circulating insulin (42). Reduced insulin levels are caused by a reduction in pancreatic endocrine mass and an impairment of insulin secretion, which can be traced to a selective reduction in β-cell size. Unexpectedly, the effects on body mass and hypoinsulinemia do not appear to be attributable to a reduction in S6 phosphorylation, as this response proved to be largely intact in S6K1-deficient animals (51). However, S6 phosphorylation in such animals was still sensitive to the bacterial macrolide rapamycin (51), which inhibits the mammalian target of rapamycin (mTOR) (1, 7, 16, 48), the upstream S6K1 kinase (4, 8, 18), suggesting the existence of a second S6K. Subsequent searches of expressed sequence tag databases and biochemical studies led to the identification of S6K2, which exhibited overall homology of over 80% with S6K1 in the highly conserved kinase and linker domains (17, 47, 51). In all tissues examined from S6K1-deficient mice, S6K2 transcripts were upregulated (51). From this observation, it was reasoned that S6K1 and S6K2 functions were redundant and that a deletion of the S6K1 gene led to a compensatory increase in the expression of S6K2. In parallel studies, it was demonstrated that rapamycin suppressed the serum-induced translational upregulation of a family of mRNAs which contain a polypyrimidine tract at their 5′ end (5′-terminal oligopyrimidine [5′TOP] mRNAs) (20, 55). These mRNAs largely code for components of the translational apparatus, most notably, ribosomal proteins (37). Earlier studies had shown that the translation of such transcripts is under selective translational control (22) and requires an intact 5′TOP tract (19, 49). In addition, a dominant interfering allele of S6K1 inhibited the mitogen-induced translational upregulation of 5′TOP mRNAs to the same extent as rapamycin, whereas an activated allele of S6K1, which exhibits a substantial degree of rapamycin resistance, largely protected these transcripts from the inhibitory effects of rapamycin (19, 49). Seemingly consistent with these arguments, in embryonic stem (ES) cells from which S6K1 had been homologously deleted by selection with high doses of G418, serum no longer had an effect on the upregulation of 5′TOP mRNAs, nor was there a redistribution of 5′TOP mRNAs from polysomes to nonpolysomes in the presence of rapamycin (24). However, S6 phosphorylation was initially reported to be abolished in these cells (24), despite the fact that it was largely intact in cells and tissues derived from S6K1−/− mice (51). This difference seemed to be resolved in subsequent studies, where S6 phosphorylation was detected in these same S6K1−/− ES cells and S6K2 was present and active (31, 60). Despite these observations, it was again recently reported that S6 phosphorylation was absent from these same cells (53). Furthermore, it was also claimed in the latter study that S6K activation, S6 phosphorylation, and rapamycin had little impact on 5′TOP mRNA translation in PC12 cells (53), although others working with these same cells had reported earlier that rapamycin treatment abolished the selective recruitment of these transcripts from small to large polysomes (44). Obviously, cells lacking both S6K1 and S6K2 would facilitate such studies. Therefore, we set out to delete the S6K2 gene from mice and to determine whether we could generate S6K1−/−/S6K2−/− mice. Here we report on the deletion of the S6K2 gene and the effects of deleting both S6K1 and S6K2 on animal growth and viability as well as on S6 phosphorylation, cell proliferation, and 5′TOP mRNA translation.

761 citations


Journal ArticleDOI
TL;DR: It is shown that mammalian Snail requires histone deacetylase (HDAC) activity to repress E-cadherin promoter and that treatment with trichostatin A (TSA) is sufficient to block the repressor effect of Snail.
Abstract: The transcription factor Snail has been described as a direct repressor of E-cadherin expression during development and carcinogenesis; however, the specific mechanisms involved in this process remain largely unknown. Here we show that mammalian Snail requires histone deacetylase (HDAC) activity to repress E-cadherin promoter and that treatment with trichostatin A (TSA) is sufficient to block the repressor effect of Snail. Moreover, overexpression of Snail is correlated with deacetylation of histones H3 and H4 at the E-cadherin promoter, and TSA treatment in Snail-expressing cells reverses the acetylation status of histones. Additionally, we demonstrate that Snail interacts in vivo with the E-cadherin promoter and recruits HDAC activity. Most importantly, we demonstrate an interaction between Snail, histone deacetylase 1 (HDAC1) and HDAC2, and the corepressor mSin3A. This interaction is dependent on the SNAG domain of Snail, indicating that the Snail transcription factor mediates the repression by recruitment of chromatin-modifying activities, forming a multimolecular complex to repress E-cadherin expression. Our results establish a direct causal relationship between Snail-dependent repression of E-cadherin and the modification of chromatin at its promoter.

721 citations


Journal ArticleDOI
TL;DR: The results support the hypothesis that p62 may act as a critical ubiquitin chain-targeting factor that shuttles substrates for proteasomal degradation.
Abstract: Herein, we demonstrate that the ubiquitin-associated (UBA) domain of sequestosome 1/p62 displays a preference for binding K63-polyubiquitinated substrates. Furthermore, the UBA domain of p62 was necessary for aggregate sequestration and cell survival. However, the inhibition of proteasome function compromised survival in cells with aggregates. Mutational analysis of the UBA domain reveals that the conserved hydrophobic patch MGF as well as the conserved leucine in helix 2 are necessary for binding polyubiquitinated proteins and for sequestration-aggregate formation. We report that p62 interacts with the proteasome by pull-down assay, coimmunoprecipitation, and colocalization. Depletion of p62 levels results in an inhibition of ubiquitin proteasome-mediated degradation and an accumulation of ubiquitinated proteins. Altogether, our results support the hypothesis that p62 may act as a critical ubiquitin chain-targeting factor that shuttles substrates for proteasomal degradation.

691 citations


Journal ArticleDOI
TL;DR: The biochemical purification of MLL is reported and it is demonstrated that it associates with a cohort of proteins shared with the yeast and human SET1 histone methyltransferase complexes, including a homolog of Ash2, another Trx-G group protein, and a potential mechanism for regulating its antagonistic transcriptional properties.
Abstract: MLL (for mixed-lineage leukemia) is a proto-oncogene that is mutated in a variety of human leukemias. Its product, a homolog of Drosophila melanogaster trithorax, displays intrinsic histone methyltransferase activity and functions genetically to maintain embryonic Hox gene expression. Here we report the biochemical purification of MLL and demonstrate that it associates with a cohort of proteins shared with the yeast and human SET1 histone methyltransferase complexes, including a homolog of Ash2, another Trx-G group protein. Two other members of the novel MLL complex identified here are host cell factor 1 (HCF-1), a transcriptional coregulator, and the related HCF-2, both of which specifically interact with a conserved binding motif in the MLLN (p300) subunit of MLL and provide a potential mechanism for regulating its antagonistic transcriptional properties. Menin, a product of the MEN1 tumor suppressor gene, is also a component of the 1-MDa MLL complex. Abrogation of menin expression phenocopies loss of MLL and reveals a critical role for menin in the maintenance of Hox gene expression. Oncogenic mutant forms of MLL retain an ability to interact with menin but not other identified complex components. These studies link the menin tumor suppressor protein with the MLL histone methyltransferase machinery, with implications for Hox gene expression in development and leukemia pathogenesis.

671 citations


Journal ArticleDOI
TL;DR: It is shown that in both obesity and lipopolysaccharide-induced endotoxemia there is an increase in suppressor of cytokine signaling (SOCS) proteins, SOCs-1 and SOCS-3, in liver, muscle, and, to a lesser extent, fat.
Abstract: Insulin resistance is a pathophysiological component of type 2 diabetes and obesity and also occurs in states of stress, infection, and inflammation associated with an upregulation of cytokines. Here we show that in both obesity and lipopolysaccharide (LPS)-induced endotoxemia there is an increase in suppressor of cytokine signaling (SOCS) proteins, SOCS-1 and SOCS-3, in liver, muscle, and, to a lesser extent, fat. In concordance with these increases by LPS, tyrosine phosphorylation of the insulin receptor (IR) is partially impaired and phosphorylation of the insulin receptor substrate (IRS) proteins is almost completely suppressed. Direct overexpression of SOCS-3 in liver by adenoviral-mediated gene transfer markedly decreases tyrosine phosphorylation of both IRS-1 and IRS-2, while SOCS-1 overexpression preferentially inhibits IRS-2 phosphorylation. Neither affects IR phosphorylation, although both SOCS-1 and SOCS-3 bind to the insulin receptor in vivo in an insulin-dependent fashion. Experiments with cultured cells expressing mutant insulin receptors reveal that SOCS-3 binds to Tyr960 of IR, a key residue for the recognition of IRS-1 and IRS-2, whereas SOCS-1 binds to the domain in the catalytic loop essential for IRS-2 recognition in vitro. Moreover, overexpression of either SOCS-1 or SOCS-3 attenuates insulin-induced glycogen synthesis in L6 myotubes and activation of glucose uptake in 3T3L1 adipocytes. By contrast, a reduction of SOCS-1 or SOCS-3 by antisense treatment partially restores tumor necrosis factor alpha-induced downregulation of tyrosine phosphorylation of IRS proteins in 3T3L1 adipocytes. These data indicate that SOCS-1 and SOCS-3 act as negative regulators in insulin signaling and serve as one of the missing links between insulin resistance and cytokine signaling.

647 citations


Journal ArticleDOI
TL;DR: Pulse-chase labeling experiments indicate that repression of IκBα translation plays an important role in NF-κB activation in cells experiencing high levels of eIF2α phosphorylation, and suggest a direct role for eif2αosphorylation-dependent translational control in activating NF-kkB during ER stress.
Abstract: Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.

614 citations


Journal ArticleDOI
TL;DR: It is reported that mice lacking HDAC5 display a similar cardiac phenotype and develop profoundly enlarged hearts in response to pressure overload resulting from aortic constriction or constitutive cardiac activation of calcineurin, a transducer of cardiac stress signals.
Abstract: The adult heart responds to stress signals by hypertrophic growth, which is often accompanied by activation of a fetal cardiac gene program and eventual cardiac demise. We showed previously that histone deacetylase 9 (HDAC9) acts as a suppressor of cardiac hypertrophy and that mice lacking HDAC9 are sensitized to cardiac stress signals. Here we report that mice lacking HDAC5 display a similar cardiac phenotype and develop profoundly enlarged hearts in response to pressure overload resulting from aortic constriction or constitutive cardiac activation of calcineurin, a transducer of cardiac stress signals. In contrast, mice lacking either HDAC5 or HDAC9 show a hypertrophic response to chronic β-adrenergic stimulation identical to that of wild-type littermates, suggesting that these HDACs modulate a specific subset of cardiac stress response pathways. We also show that compound mutant mice lacking both HDAC5 and HDAC9 show a propensity for lethal ventricular septal defects and thin-walled myocardium. These findings reveal central roles for HDACs 5 and 9 in the suppression of a subset of cardiac stress signals as well as redundant functions in the control of cardiac development.

Journal ArticleDOI
TL;DR: Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells, and showed that mTOR controls both cell Size and proliferation in early mouse embryos and embryonicstem cells.
Abstract: TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.

Journal ArticleDOI
TL;DR: It is reported that PRMT5 can be found in association with endogenous hSWI/SNF complexes, which can methylate H3 and H4 N-terminal tails, and it is shown that H3 arginine 8 and H2Arginine 3 are preferred sites of methylation by recombinant and h SWI/ SNF-associatedPRMT5.
Abstract: Protein arginine methyltransferases (PRMTs) have been implicated in transcriptional activation and repression, but their role in controlling cell growth and proliferation remains obscure. We have recently shown that PRMT5 can interact with flag-tagged BRG1- and hBRM-based hSWI/SNF chromatin remodelers and that both complexes can specifically methylate histones H3 and H4. Here we report that PRMT5 can be found in association with endogenous hSWI/SNF complexes, which can methylate H3 and H4 N-terminal tails, and show that H3 arginine 8 and H4 arginine 3 are preferred sites of methylation by recombinant and hSWI/SNF-associated PRMT5. To elucidate the role played by PRMT5 in gene regulation, we have established a PRMT5 antisense cell line and determined by microarray analysis that more genes are derepressed when PRMT5 levels are reduced. Among the affected genes, we show that suppressor of tumorigenicity 7 (ST7) and nonmetastatic 23 (NM23) are direct targets of PRMT5-containing BRG1 and hBRM complexes. Furthermore, we demonstrate that expression of ST7 and NM23 is reduced in a cell line that overexpresses PRMT5 and that this decrease in expression correlates with H3R8 methylation, H3K9 deacetylation, and increased transformation of NIH 3T3 cells. These findings suggest that the BRG1- and hBRM-associated PRMT5 regulates cell growth and proliferation by controlling expression of genes involved in tumor suppression.

Journal ArticleDOI
TL;DR: The NuA4 HAT complex is highly conserved in eukaryotes, in which it plays primary roles in transcription, cellular response to DNA damage, and cell cycle control.
Abstract: The NuA4 histone acetyltransferase (HAT) multisubunit complex is responsible for acetylation of histone H4 and H2A N-terminal tails in yeast. Its catalytic component, Esa1, is essential for cell cycle progression, gene-specific regulation and has been implicated in DNA repair. Almost all NuA4 subunits have clear homologues in higher eukaryotes, suggesting that the complex is conserved throughout evolution to metazoans. We demonstrate here that NuA4 complexes are indeed present in human cells. Tip60 and its splice variant Tip60b/PLIP were purified as stable HAT complexes associated with identical polypeptides, with 11 of the 12 proteins being homologs of yeast NuA4 subunits. This indicates a highly conserved subunit composition and the identified human proteins underline the role of NuA4 in the control of mammalian cell proliferation. ING3, a member of the ING family of growth regulators, links NuA4 to p53 function which we confirmed in vivo. Proteins specific to the human NuA4 complexes include ruvB-like helicases and a bromodomain-containing subunit linked to ligand-dependent transcription activation by the thyroid hormone receptor. We also demonstrate that subunits MRG15 and DMAP1 are present in distinct protein complexes harboring histone deacetylase and SWI2-related ATPase activities, respectively. Finally, analogous to yeast, a recombinant trimeric complex formed by Tip60, EPC1, and ING3 is sufficient to reconstitute robust nucleosomal HAT activity in vitro. In conclusion, the NuA4 HAT complex is highly conserved in eukaryotes, in which it plays primary roles in transcription, cellular response to DNA damage, and cell cycle control.

Journal ArticleDOI
TL;DR: RIP3 is generated by gene targeting and found to be dispensable for normal mouse development, which can exclude RIP3 as an essential modulator of NF-κB signaling downstream of several receptor systems.
Abstract: RIP3 was first identified as a protein able to interact with the serine/threonine kinase RIP and as a protein with an N-terminal kinase domain similar to that found in RIP and the related kinase RIP2 (5, 11, 17, 20). Whereas RIP possesses a C-terminal death domain and RIP2 has a C-terminal caspase activation and recruitment domain, RIP3 has a unique C terminus. Transient expression of RIP3 at high levels in cell lines was found to promote apoptosis (5, 11, 17, 20), an outcome that also can be observed with RIP (15). However, studies of RIP-deficient mice have shown that in a physiological setting RIP is essential for tumor necrosis factor (TNF)-induced activation of the IκB kinase (IKK) complex and is antiapoptotic (1, 6). IKK-mediated phosphorylation of the IκBs promotes their ubiquitination and degradation, which allow the NF-κB transcription factors that IκBs sequester in the cytosol to move into the nucleus (3, 4). Consistent with a role for RIP in activation of NF-κB, RIP is a potent activator of NF-κB-dependent reporter genes in transient-overexpression studies. RIP3, by comparison, is a poor activator of such reporter genes and will even inhibit RIP- or TNF-induced NF-κB activation (5, 11, 17, 20). Nevertheless, RIP3 was isolated recently from a mouse thymus expression library in a screen for proteins that could activate an NF-κB-dependent reporter gene (13). Mutagenesis experiments have indicated that interactions between RIP and RIP3 are mediated by a RIP homotypic interaction motif located toward the C terminus of RIP3 and between the kinase and death domains of RIP (18). Disruption of either RIP homotypic interaction motif prevented RIP3 from phosphorylating RIP. It also negated the inhibitory effect of RIP3 on RIP- or TNF-induced NF-κB activation. Phosphorylation of RIP by RIP3 was crucial to the inhibitory action of RIP3 because a kinase-dead form of RIP3 failed to block RIP- or TNF-induced NF-κB activation (18). These results suggested that RIP3, similar to the protein A20 (8), might play a role in limiting the NF-κB-dependent gene transcription that occurs in response to TNF engaging TNF receptor 1 (TNFR-1). To determine the importance of RIP3 to signaling in the whole animal, we have generated RIP3-deficient mice by gene targeting. Mice lacking RIP3 were healthy and fertile and showed no signs of deregulated NF-κB signaling downstream of TNFR-1 or Toll-like receptors 2 and 4 (TLR-2 and -4).

Journal ArticleDOI
TL;DR: Overexpression of Nox4 provides a novel link between the IR and the generation of cellular reactive oxygen species that enhance insulin signal transduction, at least in part via the oxidative inhibition of cellular protein-tyrosine phosphatases (PTPases), including PTP1B, a PTPase that has been previously implicated in the regulation of insulin action.
Abstract: Insulin stimulation of target cells elicits a burst of H2O2 that enhances tyrosine phosphorylation of the insulin receptor and its cellular substrate proteins as well as distal signaling events in the insulin action cascade. The molecular mechanism coupling the insulin receptor with the cellular oxidant-generating apparatus has not been elucidated. Using reverse transcription-PCR and Northern blot analyses, we found that Nox4, a homolog of gp91phox, the phagocytic NAD(P)H oxidase catalytic subunit, is prominently expressed in insulin-sensitive adipose cells. Adenovirus-mediated expression of Nox4 deletion constructs lacking NAD(P)H or FAD/NAD(P)H cofactor binding domains acted in a dominant-negative fashion in differentiated 3T3-L1 adipocytes and attenuated insulin-stimulated H2O2 generation, insulin receptor (IR) and IRS-1 tyrosine phosphorylation, activation of downstream serine kinases, and glucose uptake. Transfection of specific small interfering RNA oligonucleotides reduced Nox4 protein abundance and also inhibited the insulin signaling cascade. Overexpression of Nox4 also significantly reversed the inhibition of insulin-stimulated IR tyrosine phosphorylation induced by coexpression of PTP1B by inhibiting PTP1B catalytic activity. These data suggest that Nox4 provides a novel link between the IR and the generation of cellular reactive oxygen species that enhance insulin signal transduction, at least in part via the oxidative inhibition of cellular protein-tyrosine phosphatases (PTPases), including PTP1B, a PTPase that has been previously implicated in the regulation of insulin action.

Journal ArticleDOI
TL;DR: Direct and functional evidence is provided that htt is involved in fast axonal trafficking in mammals and mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.
Abstract: Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.

Journal ArticleDOI
TL;DR: It is demonstrated that signaling by protein kinase C (PKC) is sufficient and, in some cases, necessary to drive nuclear export of class II HDAC5 in cardiomyocytes, and a novel function for the PKC/PKD axis is revealed in coupling extracellular cues to chromatin modifications that control cellular growth.
Abstract: A variety of stress signals stimulate cardiac myocytes to undergo hypertrophy. Persistent cardiac hypertrophy is associated with elevated risk for the development of heart failure. Recently, we showed that class II histone deacetylases (HDACs) suppress cardiac hypertrophy and that stress signals neutralize this repressive function by triggering phosphorylation- and CRM1-dependent nuclear export of these chromatin-modifying enzymes. However, the identities of cardiac HDAC kinases have remained unclear. Here, we demonstrate that signaling by protein kinase C (PKC) is sufficient and, in some cases, necessary to drive nuclear export of class II HDAC5 in cardiomyocytes. Inhibition of PKC prevents nucleocytoplasmic shuttling of HDAC5 in response to a subset of hypertrophic agonists. Moreover, a nonphosphorylatable HDAC5 mutant is refractory to PKC signaling and blocks cardiomyocyte hypertrophy mediated by pharmacological activators of PKC. We also demonstrate that protein kinase D (PKD), a downstream effector of PKC, directly phosphorylates HDAC5 and stimulates its nuclear export. These findings reveal a novel function for the PKC/PKD axis in coupling extracellular cues to chromatin modifications that control cellular growth, and they suggest potential utility for small-molecule inhibitors of this pathway in the treatment of pathological cardiac gene expression.

Journal ArticleDOI
TL;DR: It is demonstrated that by orchestrating the activity of multiple transcription factors, p38 MAPK is a central mediator of the cAMP signaling mechanism of brown fat that promotes thermogenesis.
Abstract: It is well established that catecholamine-stimulated thermogenesis in brown fat requires β-adrenergic elevations in cyclic AMP (cAMP) to increase expression of the uncoupling protein 1 (UCP1) gene. However, little is known about the downstream components of the signaling cascade or the relevant transcription factor targets thereof. Here we demonstrate that cAMP- and protein kinase A-dependent activation of p38 mitogen-activated protein kinase (MAPK) in brown adipocytes is an indispensable step in the transcription of the UCP1 gene in mice. By phosphorylating activating transcription factor 2 (ATF-2) and peroxisome proliferator-activated receptor gamma (PPARγ) coativator 1α (PGC-1α), members of two distinct nuclear factor families, p38 MAPK controls the expression of the UCP1 gene through their respective interactions with a cAMP response element and a PPAR response element that both reside within a critical enhancer motif of the UCP1 gene. Activation of ATF-2 by p38 MAPK additionally serves as the cAMP sensor that increases expression of the PGC-1α gene itself in brown adipose tissue. In conclusion, our findings illustrate that by orchestrating the activity of multiple transcription factors, p38 MAPK is a central mediator of the cAMP signaling mechanism of brown fat that promotes thermogenesis.

Journal ArticleDOI
TL;DR: Overexpression of ATF3 in mouse embryo fibroblasts partially bypasses the requirement for PEK for induction of GADD34 in response to ER stress, further supporting the idea that ATF3 functions directly or indirectly as a transcriptional activator of genes targeted by the eIF2 kinase stress pathway.
Abstract: In response to environmental stress, cells induce a program of gene expression designed to remedy cellular damage or, alternatively, induce apoptosis. In this report, we explore the role of a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) in coordinating stress gene responses. We find that expression of activating transcription factor 3 (ATF3), a member of the ATF/CREB subfamily of basic-region leucine zipper (bZIP) proteins, is induced in response to endoplasmic reticulum (ER) stress or amino acid starvation by a mechanism requiring eIF2 kinases PEK (Perk or EIF2AK3) and GCN2 (EIF2AK4), respectively. Increased expression of ATF3 protein occurs early in response to stress by a mechanism requiring the related bZIP transcriptional regulator ATF4. ATF3 contributes to induction of the CHOP transcriptional factor in response to amino acid starvation, and loss of ATF3 function significantly lowers stress-induced expression of GADD34, an eIF2 protein phosphatase regulatory subunit implicated in feedback control of the eIF2 kinase stress response. Overexpression of ATF3 in mouse embryo fibroblasts partially bypasses the requirement for PEK for induction of GADD34 in response to ER stress, further supporting the idea that ATF3 functions directly or indirectly as a transcriptional activator of genes targeted by the eIF2 kinase stress pathway. These results indicate that ATF3 has an integral role in the coordinate gene expression induced by eIF2 kinases. Given that ATF3 is induced by a very large number of environmental insults, this study supports involvement of eIF2 kinases in the coordination of gene expression in response to a more diverse set of stress conditions than previously proposed.

Journal ArticleDOI
TL;DR: Deletion of Stat5 during pregnancy, after mammary epithelium had entered Stat5-mediated differentiation, resulted in premature cell death, indicating that at this stage epithelial cell proliferation, differentiation, and survival require Stat5.
Abstract: This study explored the functions of the signal transducers and activators of transcription 5a and 5b (referred to as Stat5 here) during different stages of mouse mammary gland development by using conditional gene inactivation. Mammary gland morphogenesis includes cell specification, proliferation and differentiation during pregnancy, cell survival and maintenance of differentiation throughout lactation, and cell death during involution. Stat5 is activated by prolactin, and its presence is mandatory for the proliferation and differentiation of mammary epithelium during pregnancy. To address the question of whether Stat5 is also necessary for the maintenance and survival of the differentiated epithelium, the two genes were deleted at different time points. The 110-kb Stat5 locus in the mouse was bracketed with loxP sites, and its deletion was accomplished by using two Cre-expressing transgenic lines. Loss of Stat5 prior to pregnancy prevented epithelial proliferation and differentiation. Deletion of Stat5 during pregnancy, after mammary epithelium had entered Stat5-mediated differentiation, resulted in premature cell death, indicating that at this stage epithelial cell proliferation, differentiation, and survival require Stat5.

Journal ArticleDOI
TL;DR: Ectopic expression of L23 reduced MDM2-mediated p53 ubiquitination and also induced p53 activity and G1 arrest in p 53-proficient U2OS cells but not in p53-deficient Saos-2 cells, revealing that L23 is another regulator of the p53 -MDM2 feedback regulation.
Abstract: The p53-MDM2 feedback loop is vital for cell growth control and is subjected to multiple regulations in response to various stress signals. Here we report another regulator of this loop. Using an immunoaffinity method, we purified an MDM2-associated protein complex that contains the ribosomal protein L23. L23 interacted with MDM2, forming a complex independent of the 80S ribosome and polysome. The interaction of L23 with MDM2 was enhanced by treatment with actinomycin D but not by gamma-irradiation, leading to p53 activation. This activation was inhibited by small interfering RNA against L23. Ectopic expression of L23 reduced MDM2-mediated p53 ubiquitination and also induced p53 activity and G1 arrest in p53-proficient U2OS cells but not in p53-deficient Saos-2 cells. These results reveal that L23 is another regulator of the p53-MDM2 feedback regulation.

Journal ArticleDOI
TL;DR: A role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination is supported.
Abstract: Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.

Journal ArticleDOI
TL;DR: It is concluded that TrxR2 plays a pivotal role in both hematopoiesis and heart function and the contribution of individual enzymes to the redox metabolism in different cell types is known.
Abstract: Oxygen radicals regulate many physiological processes, such as signaling, proliferation, and apoptosis, and thus play a pivotal role in pathophysiology and disease development. There are at least two thioredoxin reductase/ thioredoxin/peroxiredoxin systems participating in the cellular defense against oxygen radicals. At present, relatively little is known about the contribution of individual enzymes to the redox metabolism in different cell types. To begin to address this question, we generated and characterized mice lacking functional mitochondrial thioredoxin reductase (TrxR2). Ubiquitous Cre-mediated inactivation of TrxR2 is associated with embryonic death at embryonic day 13. TrxR2 / embryos are smaller and severely anemic and show increased apoptosis in the liver. The size of hematopoietic colonies cultured ex vivo is dramatically reduced. TrxR2-deficient embryonic fibroblasts are highly sensitive to endogenous oxygen radicals when glutathione synthesis is inhibited. Besides the defect in hematopoiesis, the ventricular heart wall of TrxR2 / embryos is thinned and proliferation of cardiomyocytes is decreased. Cardiac tissue-restricted ablation of TrxR2 results in fatal dilated cardiomyopathy, a condition reminiscent of that in Keshan disease and Friedreich’s ataxia. We conclude that TrxR2 plays a pivotal role in both hematopoiesis and heart function.

Journal ArticleDOI
TL;DR: The mTOR gene is disrupted and embryonic development of homozygous mTOR − / − mice appears to be arrested at E5.5; such embryos are severely runted and display an aberrant developmental phenotype, consistent with the inability to establish embryonic stem cells from mTOR +/ − embryos.
Abstract: The mammalian target of rapamycin (mTOR) is a key component of a signaling pathway which integrates inputs from nutrients and growth factors to regulate cell growth. Recent studies demonstrated that mice harboring an ethylnitrosourea-induced mutation in the gene encoding mTOR die at embryonic day 12.5 (E12.5). However, others have shown that the treatment of E4.5 blastocysts with rapamycin blocks trophoblast outgrowth, suggesting that the absence of mTOR should lead to embryonic lethality at an earlier stage. To resolve this discrepancy, we set out to disrupt the mTOR gene and analyze the outcome in both heterozygous and homozygous settings. Heterozygous mTOR (mTOR(+/-)) mice do not display any overt phenotype, although mouse embryonic fibroblasts derived from these mice show a 50% reduction in mTOR protein levels and phosphorylation of S6 kinase 1 T389, a site whose phosphorylation is directly mediated by mTOR. However, S6 phosphorylation, raptor levels, cell size, and cell cycle transit times are not diminished in these cells. In contrast to the situation in mTOR(+/-) mice, embryonic development of homozygous mTOR(-/-) mice appears to be arrested at E5.5; such embryos are severely runted and display an aberrant developmental phenotype. The ability of these embryos to implant corresponds to a limited level of trophoblast outgrowth in vitro, reflecting a maternal mRNA contribution, which has been shown to persist during preimplantation development. Moreover, mTOR(-/-) embryos display a lesion in inner cell mass proliferation, consistent with the inability to establish embryonic stem cells from mTOR(-/-) embryos.

Journal ArticleDOI
TL;DR: It is demonstrated that most chromatin proteins have a high turnover on chromatin with a residence time on the order of seconds, that the major fraction of each protein is bound to chromatin at steady state, and that transient binding is a common property of chromatin-associated proteins.
Abstract: Genome structure and gene expression depend on a multitude of chromatin-binding proteins. The binding properties of these proteins to native chromatin in intact cells are largely unknown. Here, we describe an approach based on combined in vivo photobleaching microscopy and kinetic modeling to analyze globally the dynamics of binding of chromatin-associated proteins in living cells. We have quantitatively determined basic biophysical properties, such as off rate constants, residence time, and bound fraction, of a wide range of chromatin proteins of diverse functions in vivo. We demonstrate that most chromatin proteins have a high turnover on chromatin with a residence time on the order of seconds, that the major fraction of each protein is bound to chromatin at steady state, and that transient binding is a common property of chromatin-associated proteins. Our results indicate that chromatin-binding proteins find their binding sites by three-dimensional scanning of the genome space and our data are consistent with a model in which chromatin-associated proteins form dynamic interaction networks in vivo. We suggest that these properties are crucial for generating high plasticity in genome expression.

Journal ArticleDOI
TL;DR: The efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted implies that the proper genetic interplay of repair factors is essential to limit the mutagenic potential of DSB repair.
Abstract: Repair of chromosomal breaks is essential for cellular viability, but misrepair generates mutations and gross chromosomal rearrangements. We investigated the interrelationship between two homologous-repair pathways, i.e., mutagenic single-strand annealing (SSA) and precise homology-directed repair (HDR). For this, we analyzed the efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted. We observed an inverse relationship between HDR and SSA when RAD51 or BRCA2 was impaired, i.e., HDR was reduced but SSA was increased. In particular, expression of an ATP-binding mutant of RAD51 led to a >90-fold shift to mutagenic SSA repair. Additionally, we found that expression of an ATP hydrolysis mutant of RAD51 resulted in more extensive gene conversion, which increases genetic loss during HDR. Disruption of two other DSB repair components affected both SSA and HDR, but in opposite directions: SSA and HDR were reduced by mutation of Brca1, which, like Brca2, predisposes to breast cancer, whereas SSA and HDR were increased by Ku70 mutation, which affects nonhomologous end joining. Disruption of the BRCA1-associated protein BARD1 had effects similar to those of mutation of BRCA1. Thus, BRCA1/BARD1 has a role in homologous repair before the branch point of HDR and SSA. Interestingly, we found that Ku70 mutation partially suppresses the homologous-repair defects of BARD1 disruption. We also examined the role of RAD52 in homologous repair. In contrast to yeast, Rad52 / mouse cells had no detectable HDR defect, although SSA was decreased. These results imply that the proper genetic interplay of repair factors is essential

Journal ArticleDOI
TL;DR: Mnk1 and Mnk2 are exclusive eIF4E kinases both in cultured fibroblasts and adult tissues, and they regulate inducible and constitutive eif4E phosphorylation, respectively.
Abstract: Mnk1 and Mnk2 are protein kinases that are directly phosphorylated and activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases and implicated in the regulation of protein synthesis through their phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) at Ser209. To investigate their physiological functions, we generated mice lacking the Mnk1 or Mnk2 gene or both; the resulting KO mice were viable, fertile, and developed normally. In embryonic fibroblasts prepared from Mnk1-Mnk2 DKO mice, eIF4E was not detectably phosphorylated at Ser209, even when the ERK and/or p38 MAP kinases were activated. Analysis of embryonic fibroblasts from single KO mice revealed that Mnk1 is responsible for the inducible phosphorylation of eIF4E in response to MAP kinase activation, whereas Mnk2 mainly contributes to eIF4E's basal, constitutive phosphorylation. Lipopolysaccharide (LPS)- or insulin-induced upregulation of eIF4E phosphorylation in the spleen, liver, or skeletal muscle was abolished in Mnk1(-/-) mice, whereas the basal eIF4E phosphorylation levels were decreased in Mnk2(-/-) mice. In Mnk1-Mnk2 DKO mice, no phosphorylated eIF4E was detected in any tissue studied, even after LPS or insulin injection. However, neither general protein synthesis nor cap-dependent translation, as assayed by a bicistronic reporter assay system, was affected in Mnk-deficient embryonic fibroblasts, despite the absence of phosphorylated eIF4E. Thus, Mnk1 and Mnk2 are exclusive eIF4E kinases both in cultured fibroblasts and adult tissues, and they regulate inducible and constitutive eIF4E phosphorylation, respectively. These results strongly suggest that eIF4E phosphorylation at Ser209 is not essential for cell growth during development.

Journal ArticleDOI
TL;DR: It is concluded that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.
Abstract: Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRα have not been well defined. To identify ERRα-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRα. ERRα upregulated a subset of PGC-1α target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRα−/− mice. Consistent with the gene expression results, ERRα increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRα are known targets for the nuclear receptor PPARα, and therefore, the interaction between these regulatory pathways was explored. ERRα activated PPARα gene expression via direct binding of ERRα to the PPARα gene promoter. Furthermore, in fibroblasts null for PPARα and ERRα, the ability of ERRα to activate several PPARα targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1α was also shown to activate ERRα gene expression. We conclude that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.

Journal ArticleDOI
TL;DR: It is demonstrated that acute activation of Akt is sufficient to induce rapid and significant skeletal muscle hypertrophy in vivo, accompanied by activation of the downstream Akt/p70S6 kinase protein synthesis pathway.
Abstract: Skeletal muscle atrophy is a severe morbidity caused by a variety of conditions, including cachexia, cancer, AIDS, prolonged bedrest, and diabetes. One strategy in the treatment of atrophy is to induce the pathways normally leading to skeletal muscle hypertrophy. The pathways that are sufficient to induce hypertrophy in skeletal muscle have been the subject of some controversy. We describe here the use of a novel method to produce a transgenic mouse in which a constitutively active form of Akt can be inducibly expressed in adult skeletal muscle and thereby demonstrate that acute activation of Akt is sufficient to induce rapid and significant skeletal muscle hypertrophy in vivo, accompanied by activation of the downstream Akt/p70S6 kinase protein synthesis pathway. Upon induction of Akt in skeletal muscle, there was also a significant decrease in adipose tissue. These findings suggest that pharmacologic approaches directed toward activating Akt will be useful in inducing skeletal muscle hypertrophy and that an increase in lean muscle mass is sufficient to decrease fat storage.