scispace - formally typeset
Search or ask a question

Showing papers in "Molecular and Cellular Biology in 2020"


Journal ArticleDOI
TL;DR: The integration of the KEAP1-NRF2 system into multiple cellular signaling and metabolic pathways places NRF2 activation as a critical regulatory node in many disease phenotypes and suggests that the pharmaceutical modulation of NRF 2’s cytoprotective activity will be beneficial for human health in a broad range of noncommunicable diseases.
Abstract: The KEAP1-NRF2 pathway is the principal protective response to oxidative and electrophilic stresses. Under homeostatic conditions, KEAP1 forms part of an E3 ubiquitin ligase, which tightly regulates the activity of the transcription factor NRF2 by targeting it for ubiquitination and proteasome-dependent degradation. In response to stress, an intricate molecular mechanism facilitated by sensor cysteines within KEAP1 allows NRF2 to escape ubiquitination, accumulate within the cell, and translocate to the nucleus, where it can promote its antioxidant transcription program. Recent advances have revealed that KEAP1 contains multiple stress sensors and inactivation modalities, which together allow diverse cellular inputs, from oxidative stress and cellular metabolites to dysregulated autophagy, to regulate NRF2 activity. This integration of the KEAP1-NRF2 system into multiple cellular signaling and metabolic pathways places NRF2 activation as a critical regulatory node in many disease phenotypes and suggests that the pharmaceutical modulation of NRF2's cytoprotective activity will be beneficial for human health in a broad range of noncommunicable diseases.

448 citations


Journal ArticleDOI
TL;DR: Strategies for establishing the coding potential of putative lncRNAs are discussed and various functions of known micropeptides are described to aid in diverse processes, including cell division, transcription regulation, and cell signaling.
Abstract: Recent advancements in genetic and proteomic technologies have revealed that more of the genome encodes proteins than originally thought possible. Specifically, some putative long noncoding RNAs (lncRNAs) have been misannotated as noncoding. Numerous lncRNAs have been found to contain short open reading frames (sORFs) which have been overlooked because of their small size. Many of these sORFs encode small proteins or micropeptides with fundamental biological importance. These micropeptides can aid in diverse processes, including cell division, transcription regulation, and cell signaling. Here we discuss strategies for establishing the coding potential of putative lncRNAs and describe various functions of known micropeptides.

93 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the induction of Nrf2 ameliorates cognitive impairment in the AD model mouse by suppressing oxidative stress and neuroinflammation, suggesting that NRF2 is an important therapeutic target of AD.
Abstract: Nrf2 (NF-E2-related-factor 2) is a stress-responsive transcription factor that protects cells against oxidative stresses. To clarify whether Nrf2 prevents Alzheimer's disease (AD), AD model AppNL-G-F/NL-G-F knock-in (AppNLGF ) mice were studied in combination with genetic Nrf2 induction model Keap1FA/FA mice. While AppNLGF mice displayed shorter latency to escape than wild-type mice in the passive-avoidance task, the impairment was improved in AppNLGF ::Keap1FA/FA mice. Matrix-assisted laser desorption ionization-mass spectrometry imaging revealed that reduced glutathione levels were elevated by Nrf2 induction in AppNLGF ::Keap1FA/FA mouse brains compared to AppNLGF mouse brains. Genetic Nrf2 induction in AppNLGF mice markedly suppressed the elevation of the oxidative stress marker 8-OHdG and Iba1-positive microglial cell number. We also determined the plasmalogen-phosphatidylethanolamine (PlsPE) level as an AD biomarker. PlsPE containing polyunsaturated fatty acids was decreased in the AppNLGF mouse brain, but Nrf2 induction attenuated this decline. To evaluate whether pharmacological induction of Nrf2 elicits beneficial effects for AD treatment, we tested the natural compound 6-MSITC [6-(methylsulfinyl)hexyl isothiocyanate]. Administration of 6-MSITC improved the impaired cognition of AppNLGF mice in the passive-avoidance task. These results demonstrate that the induction of Nrf2 ameliorates cognitive impairment in the AD model mouse by suppressing oxidative stress and neuroinflammation, suggesting that Nrf2 is an important therapeutic target of AD.

79 citations


Journal ArticleDOI
TL;DR: Lysine demethylase 6A (KDM6A), also known as UTX), belongs to the KDM6 family of histone H3 lysine 27 (H3K27) demethylases, which also includes UTY and KDM 6B (JMJD3).
Abstract: Lysine demethylase 6A (KDM6A), also known as UTX, belongs to the KDM6 family of histone H3 lysine 27 (H3K27) demethylases, which also includes UTY and KDM6B (JMJD3). The KDM6A protein contains six tetratricopeptide repeat (TPR) domains and an enzymatic Jumonji C (JmjC) domain that catalyzes the removal of di- and trimethylation on H3K27. KDM6A physically associates with histone H3 lysine 4 monomethyltransferases MLL3 (KMT2C) and MLL4 (KMT2D). Since its identification as an H3K27 demethylase in 2007, studies have reported KDM6A's critical roles in cell differentiation, development, and cancer. KDM6A is important for differentiation of embryonic stem cells and development of various tissues. Mutations of KDM6A cause Kabuki syndrome. KDM6A is frequently mutated in cancers and functions as a tumor suppressor. KDM6A is redundant with UTY and functions largely independently of its demethylase activity. It regulates gene expression, likely through the associated transcription factors and MLL3/4 on enhancers. However, KDM6A enzymatic activity is required in certain cellular contexts. Functional redundancy between H3K27 demethylase activities of KDM6A and KDM6B in vivo has yet to be determined. Further understanding of KDM6A functions and working mechanisms will provide more insights into enhancer regulation and may help generate novel therapeutic approaches to treat KDM6A-related diseases.

61 citations


Journal ArticleDOI
TL;DR: Findings indicate that HuR regulates autophagy by modulating ATG16L1 translation via interaction with circPABPN1 in the intestinal epithelium.
Abstract: Intestinal epithelial autophagy is crucial for host defense against invasive pathogens, and defects in this process occur frequently in patients with inflammatory bowel disease (IBD) and other mucosal disorders, but the exact mechanism that activates autophagy is poorly defined. Here, we investigated the role of RNA-binding protein HuR (human antigen R) in the posttranscriptional control of autophagy-related genes (ATGs) in the intestinal epithelium. We found that targeted deletion of HuR in intestinal epithelial cells (IECs) specifically decreased the levels of ATG16L1 in the intestinal mucosa. Intestinal mucosa from patients with IBD exhibited reduced levels of both HuR and ATG16L1. HuR directly interacted with Atg16l1 mRNA via its 3' untranslated region and enhanced ATG16L1 translation, without affecting Atg16l1 mRNA stability. Circular RNA circPABPN1 blocked HuR binding to Atg16l1 mRNA and lowered ATG16L1 production. HuR silencing in cultured IECs also prevented rapamycin-induced autophagy, which was abolished by overexpressing ATG16L1. These findings indicate that HuR regulates autophagy by modulating ATG16L1 translation via interaction with circPABPN1 in the intestinal epithelium.

52 citations


Journal ArticleDOI
TL;DR: When overexpressing MMP14 in the early-stage obese adipose tissue, the transgenic mice showed a healthier metabolic profile, including ameliorated fibrosis and inflammation, as well as improved lipid and glucose metabolism, which is likely due to digestion/modification of the dense adiposity tissue extracellular matrix by MMP 14, thereby releasing the mechanical stress to allow for its healthy expansion.
Abstract: Fibrosis is recognized as the major pathological change in adipose tissue during the development of obesity. However, the detailed mechanisms governing the interactions between the fibrotic components and their modifiers remain largely unclear. Here, we reported that matrix metalloproteinase 14 (MMP14), a key pericellular collagenase, is dramatically upregulated in obese adipose tissue. We generated a doxycycline-inducible adipose tissue-specific MMP14 overexpression model to study its regulatory function. We found that overexpression of MMP14 in the established obese adipose tissue leads to enlarged adipocytes and increased body weights in transgenic mice. Furthermore, the mice exhibited decreased energy expenditure, impaired lipid metabolism, and insulin resistance. Mechanistically, we found that MMP14 digests collagen 6α3 to produce endotrophin, a potent costimulator of fibrosis and inflammation. Unexpectedly, when overexpressing MMP14 in the early-stage obese adipose tissue, the transgenic mice showed a healthier metabolic profile, including ameliorated fibrosis and inflammation, as well as improved lipid and glucose metabolism. This unique metabolic phenotype is likely due to digestion/modification of the dense adipose tissue extracellular matrix by MMP14, thereby releasing the mechanical stress to allow for its healthy expansion. Understanding these dichotomous impacts of MMP14 provides novel insights into strategies to treat obesity-related metabolic disorders.

48 citations


Journal ArticleDOI
TL;DR: Further research on NF-κB in invertebrates will reveal information about the evolutionary roots of this major signaling pathway, will shed light on the origins of regulated innate immunity, and may have relevance to the understanding of the responses of ecologically important organisms to changing environmental conditions and emerging pathogen-based diseases.
Abstract: The diversified NF-κB transcription factor family has been extensively characterized in organisms ranging from flies to humans. However, homologs of NF-κB and many upstream signaling components have recently been characterized in basal phyla, including Cnidaria (sea anemones, corals, hydras, and jellyfish), Porifera (sponges), and single-celled protists, including Capsaspora owczarzaki and some choanoflagellates. Herein, we review what is known about basal NF-κBs and how that knowledge informs on the evolution and conservation of key sequences and domains in NF-κB, as well as the regulation of NF-κB activity. The structures and DNA-binding activities of basal NF-κB proteins resemble those of mammalian NF-κB p100 proteins, and their posttranslational activation appears to have aspects of both canonical and noncanonical pathways in mammals. Several studies suggest that the single NF-κB proteins found in some basal organisms have dual roles in development and immunity. Further research on NF-κB in invertebrates will reveal information about the evolutionary roots of this major signaling pathway, will shed light on the origins of regulated innate immunity, and may have relevance to our understanding of the responses of ecologically important organisms to changing environmental conditions and emerging pathogen-based diseases.

48 citations


Journal ArticleDOI
Yufeng Jiang1, Haimin Zhang1, Wei Li1, Yang Yan1, Xudong Yao1, Wenyu Gu1 
TL;DR: It is expounded that LINC01094 exerted its tumor-promoting performance in ccRCC development through miR-224-5p/CHSY1 regulatory axis, which shed light on the molecular mechanism underlying LINC 01094 in CCRCC and opened a new prospective for the treatment ofccRCC.
Abstract: Clear cell renal cell carcinoma (ccRCC) is regarded as the most aggressive subtype of RCC, with high rates of metastasis and recurrence. An extensive body of studies had proved long noncoding RNAs (lncRNAs) play pivotal parts in the development and evolution of diverse malignant tumors. However, the potential of LINC01094 in ccRCC tumorigenesis is still unexplored. In the present research, with the aid of the TCGA database, we found that LINC01094 was highly expressed in ccRCC tissues. Upregulation of LINC01094 was also confirmed in ccRCC cell lines, and functional experiments delineated that LINC01094 knockdown led to inhibition on ccRCC cell growth and metastasis. Moreover, LINC01094 was activated by FOXM1 at the transcriptional level. Further assay demonstrated that LINC01094 worked as a sponge of microRNA 224-5p (miR-224-5p) and CHSY1 was a miR-224-5p-targeted mRNA. Further, we verified that LINC01094 acted as a competing endogenous RNA in ccRCC to regulate CHSY1 expression via competitively bind to miR-224-5p. Lastly, our results expounded that LINC01094 exerted its tumor-promoting performance in ccRCC development through miR-224-5p/CHSY1 regulatory axis, which shed light on the molecular mechanism underlying LINC01094 in ccRCC and opened a new prospective for the treatment of ccRCC.

41 citations


Journal ArticleDOI
TL;DR: H19 knockdown suppresses MM tumorigenesis via inhibiting BRD4-mediated cell proliferation through targeting miR-152-3p, implying that H19 is a promising biomarker and drug target for MM.
Abstract: Multiple myeloma (MM) accounts for over twenty percent of hematological cancer-related death worldwide. Long noncoding RNA (lncRNA) H19 is associated with multiple tumorigenesis and is increased in MM, but the underlying mechanism of H19 in MM is unclear. In this study, the expression of H19, microRNA 152-3p (miR-152-3p), and BRD4 in MM patients was evaluated by quantitative real-time PCR (qRT-PCR) and Western blotting. Colony formation and flow cytometry analysis were used to determine the effects of H19 and miR-152-3p on MM cell proliferation, apoptosis, and cell cycle. A luciferase reporter assay was conducted to confirm the interaction among H19, miR-152-3p, and BRD4. A nude mouse xenograft model was established, and the cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) staining and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay. We found that levels of H19 and BRD4 were upregulated and the expression of miR-152-3p was downregulated in MM patients. Dual luciferase reporter assay showed H19 targeted miR-152-3p to promote BRD4 expression. Knockdown of H19 repressed proliferation and enhanced apoptosis and cell cycle G1 arrest by upregulating miR-152-3p in MM cells. Furthermore, H19 knockdown suppressed the growth of xenograft tumor, reduced Ki-67 and BRD4 levels, and increased cell apoptosis in xenograft tumor tissues. Taking these results together, H19 knockdown suppresses MM tumorigenesis via inhibiting BRD4-mediated cell proliferation through targeting miR-152-3p, implying that H19 is a promising biomarker and drug target for MM.

36 citations


Journal ArticleDOI
TL;DR: The results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.
Abstract: Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap 'n' collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.

31 citations


Journal ArticleDOI
TL;DR: Investigating the PM pool of accessible cholesterol in cholesterol-loaded fibroblasts with a knockdown of Aster-A and in mouse macrophages from Aster-B and Aster-a/B-deficient mice revealed expansion of the accessible cholesterol pool in cells lacking Aster expression, and revealed that the Aster-mediated nonvesicular cholesterol transport pathway controls levels ofaccessible cholesterol in the PM, as well as the activity of the SREBP pathway.
Abstract: Recent studies have demonstrated the existence of a discrete pool of cholesterol in the plasma membranes (PM) of mammalian cells-referred to as the accessible cholesterol pool-that can be detected by the binding of modified versions of bacterial cytolysins (e.g., anthrolysin O). When the amount of accessible cholesterol in the PM exceeds a threshold level, the excess cholesterol moves to the endoplasmic reticulum (ER), where it regulates the SREBP2 pathway and undergoes esterification. We reported previously that the Aster/Gramd1 family of sterol transporters mediates nonvesicular movement of cholesterol from the PM to the ER in multiple mammalian cell types. Here, we investigated the PM pool of accessible cholesterol in cholesterol-loaded fibroblasts with a knockdown of Aster-A and in mouse macrophages from Aster-B and Aster-A/B-deficient mice. Nanoscale secondary ion mass spectrometry (NanoSIMS) analyses revealed expansion of the accessible cholesterol pool in cells lacking Aster expression. The increased accessible cholesterol pool in the PM was accompanied by reduced cholesterol movement to the ER, evidenced by increased expression of SREBP2-regulated genes. Cosedimentation experiments with liposomes revealed that the Aster-B GRAM domain binds to membranes in a cholesterol concentration-dependent manner and that the binding is facilitated by the presence of phosphatidylserine. These studies revealed that the Aster-mediated nonvesicular cholesterol transport pathway controls levels of accessible cholesterol in the PM, as well as the activity of the SREBP pathway.

Journal ArticleDOI
TL;DR: SIRT4 is established as key anabolic factor that activates TORC1 signaling and regulates lipogenesis, autophagy, and cell proliferation and conclusively shows that differential expression of SIRT4 during fed and fasted states is vital for coupling mitochondrial energetics and glutamine utilization with anabolic pathways.
Abstract: Anabolic and catabolic signaling mediated via mTOR and AMPK (AMP-activated kinase) have to be intrinsically coupled to mitochondrial functions for maintaining homeostasis and mitigate cellular/organismal stress. Although glutamine is known to activate mTOR, whether and how differential mitochondrial utilization of glutamine impinges on mTOR signaling has been less explored. Mitochondrial SIRT4, which unlike other sirtuins is induced in a fed state, is known to inhibit catabolic signaling/pathways through the AMPK-PGC1α/SIRT1-peroxisome proliferator-activated receptor α (PPARα) axis and negatively regulate glutamine metabolism via the tricarboxylic acid cycle. However, physiological significance of SIRT4 functions during a fed state is still unknown. Here, we establish SIRT4 as key anabolic factor that activates TORC1 signaling and regulates lipogenesis, autophagy, and cell proliferation. Mechanistically, we demonstrate that the ability of SIRT4 to inhibit anaplerotic conversion of glutamine to α-ketoglutarate potentiates TORC1. Interestingly, we also show that mitochondrial glutamine sparing or utilization is critical for differentially regulating TORC1 under fed and fasted conditions. Moreover, we conclusively show that differential expression of SIRT4 during fed and fasted states is vital for coupling mitochondrial energetics and glutamine utilization with anabolic pathways. These significant findings also illustrate that SIRT4 integrates nutrient inputs with mitochondrial retrograde signals to maintain a balance between anabolic and catabolic pathways.

Journal ArticleDOI
TL;DR: A mechanism of lung tumorigenesis that involves HRD1-mediated downregulation of SIRT2 is proposed and interventions targetingHRD1 activity could be a potential therapeutic strategy to treat patients with lung cancer.
Abstract: The NAD-dependent histone deacetylase sirtuin 2 (SIRT2) plays critical roles in mitosis and cell cycle progression and recently was shown to suppress tumor growth and to be downregulated in several types of cancers. However, the underlying mechanism of SIRT2 downregulation remains unknown. In this study, using bioinformatics, gene expression profiling, protein overexpression approaches, and cell migration assays, we showed that E3 ubiquitin ligase 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase degradation 1 (HRD1) interacts with SIRT2 and promotes its ubiquitination and degradation. Furthermore, we found that HRD1 deficiency induces SIRT2 upregulation and inhibits the growth and tumor formation of lung cancer cells both in vitro and in vivo Of note, we observed that SIRT2 expression is downregulated in human lung cancer and also negatively correlates with HRD1 expression in these cancers. Additionally, we found that patients with lung adenocarcinoma having lower HRD1 or higher SIRT2 expression levels tend to survive longer. On the basis of these results, we propose a mechanism of lung tumorigenesis that involves HRD1-mediated downregulation of SIRT2 and suggest that interventions targeting HRD1 activity could be a potential therapeutic strategy to treat patients with lung cancer.

Journal ArticleDOI
TL;DR: Bioinformatics analysis of KAT8, the gene encoding hMOF, indicated that it is highly overexpressed in kidney tumors as part of a concerted gene coexpression program that can support high levels of chromosome segregation and cell proliferation.
Abstract: The DNA and protein complex known as chromatin is subject to posttranslational modifications (PTMs) that regulate cellular functions such that PTM dysregulation can lead to disease, including cancer. One critical PTM is acetylation/deacetylation, which is being investigated as a means to develop targeted cancer therapies. The histone acetyltransferase (HAT) family of proteins performs histone acetylation. In humans, MOF (hMOF), a member of the MYST family of HATs, acetylates histone H4 at lysine 16 (H4K16ac). MOF-mediated acetylation plays a critical role in the DNA damage response (DDR) and embryonic stem cell development. Functionally, MOF is found in two distinct complexes: NSL (nonspecific lethal) in humans and MSL (male-specific lethal) in flies. The NSL complex is also able to acetylate additional histone H4 sites. Dysregulation of MOF activity occurs in multiple cancers, including ovarian cancer, medulloblastoma, breast cancer, colorectal cancer, and lung cancer. Bioinformatics analysis of KAT8, the gene encoding hMOF, indicated that it is highly overexpressed in kidney tumors as part of a concerted gene coexpression program that can support high levels of chromosome segregation and cell proliferation. The linkage between MOF and tumor proliferation suggests that there are additional functions of MOF that remain to be discovered.

Journal ArticleDOI
TL;DR: It is identified that Cdc48 and Ubx3, a CDC48 cofactor implicated in endocytic function, regulates the turnover and toxicity of TDP-43 and FUS expressed in Saccharomyces cerevisiae and may represent a novel therapeutic target of promise.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease. TDP-43 (TAR DNA-binding protein 43) and FUS (fused in sarcoma) are aggregation-prone RNA-binding proteins that in ALS can mislocalize to the cytoplasm of affected motor neuron cells, often forming cytoplasmic aggregates in the process. Such mislocalization and aggregation are implicated in ALS pathology, though the mechanism(s) of TDP-43 and FUS cytoplasmic toxicity remains unclear. Recently, we determined that the endocytic function aids the turnover (i.e., protein degradation) of TDP-43 and reduces TDP-43 toxicity. Here, we identified that Cdc48 and Ubx3, a Cdc48 cofactor implicated in endocytic function, regulates the turnover and toxicity of TDP-43 and FUS expressed in Saccharomyces cerevisiae Cdc48 physically interacts and colocalizes with TDP-43, as does VCP, in ALS patient tissue. In yeast, FUS toxicity also depends strongly on endocytic function but not on autophagy under normal conditions. FUS expression also impairs endocytic function, as previously observed with TDP-43. Taken together, our data identify a role for Cdc48/VCP and endocytic function in regulating TDP-43 and FUS toxicity and turnover. Furthermore, endocytic dysfunction may be a common defect affecting the cytoplasmic clearance of ALS aggregation-prone proteins and may represent a novel therapeutic target of promise.

Journal ArticleDOI
TL;DR: In this paper, the role of microRNAs (miRNAs) in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene (Hmgcr) expression was explored.
Abstract: Hypercholesterolemia is a strong predictor of cardiovascular diseases. The 3-hydroxy-3-methylglutaryl coenzyme A reductase gene (Hmgcr) coding for the rate-limiting enzyme in the cholesterol biosynthesis pathway is a crucial regulator of plasma cholesterol levels. However, the posttranscriptional regulation of Hmgcr remains poorly understood. The main objective of this study was to explore the role of microRNAs (miRNAs) in the regulation of Hmgcr expression. Systematic in silico predictions and experimental analyses reveal that miRNA 27a (miR-27a) specifically interacts with the Hmgcr 3' untranslated region in murine and human hepatocytes. Moreover, our data show that Hmgcr expression is inversely correlated with miR-27a levels in various cultured cell lines and in human and rodent tissues. Actinomycin D chase assays and relevant experiments demonstrate that miR-27a regulates Hmgcr by translational attenuation followed by mRNA degradation. Early growth response 1 (Egr1) regulates miR-27a expression under basal and cholesterol-modulated conditions. miR-27a augmentation via tail vein injection of miR-27a mimic in high-cholesterol-diet-fed Apoe -/- mice shows downregulation of hepatic Hmgcr and plasma cholesterol levels. Pathway and gene expression analyses show that miR-27a also targets several other genes (apart from Hmgcr) in the cholesterol biosynthesis pathway. Taken together, miR-27a emerges as a key regulator of cholesterol biosynthesis and has therapeutic potential for the clinical management of hypercholesterolemia.

Journal ArticleDOI
TL;DR: This work demonstrates that SURF4 functions as an ER cargo receptor that mediates the efficient secretion of EPO, suggesting a new strategy for more efficient production of recombinant EPO.
Abstract: Erythropoietin (EPO) stimulates erythroid differentiation and maturation. Though the transcriptional regulation of EPO has been well studied, the molecular determinants of EPO secretion remain unknown. Here, we generated a HEK293T reporter cell line that provides a quantifiable and selectable readout of intracellular EPO levels and performed a genome-scale CRISPR screen that identified SURF4 as an important mediator of EPO secretion. Targeting SURF4 with multiple independent single guide RNAs (sgRNAs) resulted in intracellular accumulation and extracellular depletion of EPO. Both of these phenotypes were rescued by expression of SURF4 cDNA. Additionally, we found that disruption of SURF4 resulted in accumulation of EPO in the endoplasmic reticulum (ER) compartment and that SURF4 and EPO physically interact. Furthermore, SURF4 disruption in Hep3B cells also caused a defect in the secretion of endogenous EPO under conditions mimicking hypoxia, ruling out an artifact of heterologous overexpression. This work demonstrates that SURF4 functions as an ER cargo receptor that mediates the efficient secretion of EPO. Our findings also suggest that modulating SURF4 may be an effective treatment for disorders of erythropoiesis that are driven by aberrant EPO levels. Finally, we show that SURF4 overexpression results in increased secretion of EPO, suggesting a new strategy for more efficient production of recombinant EPO.

Journal ArticleDOI
TL;DR: The results provide the novel regulatory mechanism of basal proteasome activity in cancer cells through an NFE2L3-CPEB3-NFE2 L1 translational repression axis and patients with cancer having tumors expressing higher levels of CPEB3/NFE 2L3 exhibit poor prognosis.
Abstract: Proteasomes are protease complexes essential for cellular homeostasis, and their activity is crucial for cancer cell growth. However, the mechanism of how proteasome activity is maintained in cancer cells has remained unclear. The CNC family transcription factor NFE2L1 induces the expression of almost all proteasome-related genes under proteasome inhibition. Both NFE2L1 and its phylogenetically closest homolog, NFE2L3, are highly expressed in several types of cancer, such as colorectal cancer. Here, we demonstrate that NFE2L1 and NFE2L3 complementarily maintain basal proteasome activity in cancer cells. Double knockdown of NFE2L1 and NFE2L3 impaired basal proteasome activity in cancer cells and cancer cell resistance to a proteasome inhibitor anticancer drug, bortezomib, by significantly reducing the basal expression of seven proteasome-related genes: PSMB3, PSMB7, PSMC2, PSMD3, PSMG2, PSMG3, and POMP Interestingly, the molecular basis behind these cellular consequences was that NFE2L3 repressed NFE2L1 translation by the induction of the gene encoding the translational regulator CPEB3, which binds to the NFE2L1 3' untranslated region and decreases polysome formation on NFE2L1 mRNA. Consistent results were obtained from clinical analysis, wherein patients with cancer having tumors expressing higher levels of CPEB3/NFE2L3 exhibit poor prognosis. These results provide the novel regulatory mechanism of basal proteasome activity in cancer cells through an NFE2L3-CPEB3-NFE2L1 translational repression axis.

Journal ArticleDOI
TL;DR: A novel synthetic lethal assay is developed, based on fluorescently labeled isogenic wild-type and Keap1 knockout cell lines, in order to screen for compounds which selectively kill cells in an NRF2-dependent manner, and identifies three compounds based on the geldanamycin scaffold which display synthetic lethality withNRF2.
Abstract: Activating mutations in KEAP1-NRF2 are frequently found in tumours of the lung, oesophageous and liver, where they are associated with aggressive growth, resistance to cancer therapies, and low overall survival. Despite the fact that NRF2 is a validated driver of tumorigenesis and chemotherapeutic resistance, there are currently no approved drugs which can inhibit its activity. Therefore, there is an urgent clinical need to identify NRF2-selective cancer therapies. To this end, we developed a novel synthetic lethal assay, based on fluorescently labelled isogenic wild-type and Keap1 knockout cell lines, in order to screen for compounds which selectively kill cells in an NRF2-dependent manner. Through this approach, we identified three compounds based on the geldanamycin scaffold which display synthetic lethality with NRF2. Mechanistically, we show that NRF2 target genes metabolize the quinone-containing geldanamycin compounds into more potent HSP90 inhibitors, which enhances their cytotoxicity while simultaneously restricting the synthetic lethal effect to cells with aberrant NRF2 activity. As all three of the geldanamycin-derived compounds have been used in clinical trials, they represent ideal candidates for drug repositioning to target the currently untreatable NRF2 activity in cancer.

Journal ArticleDOI
TL;DR: Novel findings on the role of the SOX9-ALDH axis support the use of this CSC regulator as a prognostic marker of cancer chemoresistance and as a potential drug target for CSC therapy.
Abstract: Chemotherapy resistance and tumor relapse are the major contributors to low patient survival, and both have been largely attributed to cancer stem-like cells (CSCs) or tumor-initiating cells (TICs). Moreover, most conventional therapies are not effective against CSCs, which necessitates the discovery of CSC-specific biomarkers and drug targets. Here, we demonstrated that the embryonic transcription factor SOX9 is an important regulator of acquired chemoresistance in non-small-cell lung cancer (NSCLC). Our results show that SOX9 expression is elevated in NSCLC cells after treatment with the chemotherapeutic cisplatin and that overexpression of SOX9 correlates with worse overall survival in lung cancer patients. We further demonstrated that SOX9 knockdown increases cellular sensitivity to cisplatin, whereas its overexpression promotes drug resistance. Moreover, this transcription factor promotes the stem-like properties of NSCLC cells and increases their aldehyde dehydrogenase (ALDH) activity, which was identified to be the key mechanism of SOX9-induced chemoresistance. Finally, we showed that ALDH1A1 is a direct transcriptional target of SOX9, based on chromatin immunoprecipitation and luciferase reporter assays. Taken together, our novel findings on the role of the SOX9-ALDH axis support the use of this CSC regulator as a prognostic marker of cancer chemoresistance and as a potential drug target for CSC therapy.

Journal ArticleDOI
TL;DR: Cep57 plays a key role in architecting the Cep63-Cep152 assembly around centriolar MTs and promoting centriole biogenesis, and may offer a platform to investigate how the organization and function of the pericentriolar architecture are altered by disease-associated mutations found in the Ceps.
Abstract: Cep57 has been characterized as a component of a pericentriolar complex containing Cep63 and Cep152. Interestingly, Cep63 and Cep152 self-assemble into a pericentriolar cylindrical architecture, and this event is critical for the orderly recruitment of Plk4, a key regulator of centriole duplication. However, the way in which Cep57 interacts with the Cep63-Cep152 complex and contributes to the structure and function of Cep63-Cep152 self-assembly remains unknown. We demonstrate that Cep57 interacts with Cep63 through N-terminal motifs and associates with Cep152 via Cep63. Three-dimensional structured illumination microscopy (3D-SIM) analyses suggested that the Cep57-Cep63-Cep152 complex is concentrically arranged around a centriole in a Cep57-in and Cep152-out manner. Cep57 mutant cells defective in Cep63 binding exhibited improper Cep63 and Cep152 localization and impaired Sas6 recruitment for procentriole assembly, proving the significance of the Cep57-Cep63 interaction. Intriguingly, Cep63 fused to a microtubule (MT)-binding domain of Cep57 functioned in concert with Cep152 to assemble around stabilized MTs in vitro Thus, Cep57 plays a key role in architecting the Cep63-Cep152 assembly around centriolar MTs and promoting centriole biogenesis. This study may offer a platform to investigate how the organization and function of the pericentriolar architecture are altered by disease-associated mutations found in the Cep57-Cep63-Cep152 complex.

Journal ArticleDOI
TL;DR: The authors' results on the initial characterization of circ-MDM2 identify a new player from the MDM2 locus that suppresses p53 levels and cell cycle progression and transcriptome profiling showed increased expression of several direct p53 targets, reduced retinoblastoma protein (Rb) phosphorylation, and defects in G1-S progression upon silencing circ-mdM2.
Abstract: Circular RNAs (circRNAs) are a class of noncoding RNAs produced by a noncanonical form of alternative splicing called back-splicing. To investigate a potential role of circRNAs in the p53 pathway, we analyzed RNA sequencing (RNA-seq) data from colorectal cancer cell lines (HCT116, RKO, and SW48) that were untreated or treated with a DNA-damaging agent. Surprisingly, unlike the strong p53-dependent induction of hundreds of p53-induced mRNAs upon DNA damage, only a few circRNAs were upregulated from p53-induced genes. circ-MDM2, an annotated circRNA from the MDM2 locus, was one of the handful of circRNAs that originated from a p53-induced gene. Given the central role of MDM2 in suppressing p53 protein levels and p53 activity, we investigated the function of circ-MDM2 Knocking down circ-MDM2 with small interfering RNAs (siRNAs) that targeted circ-MDM2 did not alter MDM2 mRNA or MDM2 protein levels but resulted in increased basal p53 levels and growth defects in vitro and in vivo Consistent with these results, transcriptome profiling showed increased expression of several direct p53 targets, reduced retinoblastoma protein (Rb) phosphorylation, and defects in G1-S progression upon silencing circ-MDM2 Our results on the initial characterization of circ-MDM2 identify a new player from the MDM2 locus that suppresses p53 levels and cell cycle progression.

Journal ArticleDOI
TL;DR: It is demonstrated by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo.
Abstract: The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B-/-). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.

Journal ArticleDOI
TL;DR: It is demonstrated that liver X receptors are necessary for the proper resumption of cholesterol synthesis in response to inflammatory signals, and function as bidirectional regulators of cholesterol homeostasis, driving efflux when cholesterol levels are high and facilitating synthesis in Response toinflammatory signals.
Abstract: Immune cell function can be modulated by changes in lipid metabolism. Our studies indicate that cholesterol and fatty acid synthesis increases in macrophages between 12 and 18 h after the activation of Toll-like receptors with proinflammatory stimuli and that the upregulation of lipogenesis may contribute to the resolution of inflammation. The inflammation-dependent increase in lipogenesis requires the induction of the liver X receptors, members of the nuclear receptor superfamily of transcription factors, by type I interferons in response to inflammatory signals. Instead of the well-established role for liver X receptors in stimulating cholesterol efflux, we demonstrate that liver X receptors are necessary for the proper resumption of cholesterol synthesis in response to inflammatory signals. Thus, liver X receptors function as bidirectional regulators of cholesterol homeostasis, driving efflux when cholesterol levels are high and facilitating synthesis in response to inflammatory signals. Liver X receptor activity is also required for the proper shutdown of a subset of type I interferon-stimulated genes as inflammation subsides, placing the receptors in a negative-feedback loop that may contribute to the resolution of the inflammatory response.

Journal ArticleDOI
TL;DR: It is demonstrated that the 3′-end processing and stability of NEAT1 RNAs are regulated by arsenic resistance protein 2 (ARS2), a factor interacting with the cap-binding complex (CBC) that binds to the m7G cap structure of RNA polymerase II transcripts.
Abstract: Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA that functions as an essential framework of subnuclear paraspeckle bodies. Of the two isoforms (NEAT1_1 and NEAT1_2) produced by alternative 3'-end RNA processing, the longer isoform, NEAT1_2, plays a crucial role in paraspeckle formation. Here, we demonstrate that the 3'-end processing and stability of NEAT1 RNAs are regulated by arsenic resistance protein 2 (ARS2), a factor interacting with the cap-binding complex (CBC) that binds to the m7G cap structure of RNA polymerase II transcripts. The knockdown of ARS2 inhibited the association between NEAT1 and mammalian cleavage factor I (CFIm), which produces the shorter isoform, NEAT1_1. Furthermore, the knockdown of ARS2 led to the preferential stabilization of NEAT1_2. As a result, NEAT1_2 RNA levels were markedly elevated in ARS2 knockdown cells, leading to an increase in the number of paraspeckles. These results reveal a suppressive role for ARS2 in NEAT1_2 expression and the subsequent formation of paraspeckles.

Journal ArticleDOI
TL;DR: Deletion of UCHL5 from HCT116 cells is found to cause increased levels of ubiquitinated proteins in whole-cell extract and at proteasomes, suggesting that UCHL 5 activity cannot be fully assumed by other DUBs.
Abstract: hRpn13/ADRM1 links substrate recruitment with deubiquitination at the proteasome through its proteasome- and ubiquitin-binding Pru domain and DEUBAD domain, which binds and activates deubiquitinating enzyme (DUB) UCHL5/Uch37. Here, we edit the HCT116 colorectal cancer cell line to delete part of the hRpn13 Pru, producing cells that express truncated hRpn13 (trRpn13), which is competent for UCHL5 binding but defective for proteasome interaction. trRpn13 cells demonstrate reduced levels of proteasome-bound ubiquitinated proteins, indicating that the loss of hRpn13 function at proteasomes cannot be fully compensated for by the two other dedicated substrate receptors (hRpn1 and hRpn10). Previous studies indicated that the loss of full-length hRpn13 causes a corresponding reduction of UCHL5. We find UCHL5 levels unaltered in trRpn13 cells, but hRpn11 is elevated in ΔhRpn13 and trRpn13 cells, perhaps from cell stress. Despite the ∼90 DUBs in human cells, including two others in addition to UCHL5 at the proteasome, we found deletion of UCHL5 from HCT116 cells to cause increased levels of ubiquitinated proteins in whole-cell extract and at proteasomes, suggesting that UCHL5 activity cannot be fully assumed by other DUBs. We also report anticancer molecule RA190, which binds covalently to hRpn13 and UCHL5, to require hRpn13 Pru and not UCHL5 for cytotoxicity.

Journal ArticleDOI
TL;DR: CDR1as might exert oncogenic properties, at least partially, by regulating miR-641 in CCA, and could be considered therapeutic targets for CCA.
Abstract: It has been found that the circular RNA (circRNA) CDR1as is upregulated in cholangiocarcinoma (CCA) tissues. In this study, we tried to explore the roles of CDR1as in CCA. CDR1as was overexpressed or knocked down in human CCA cells to assess the effects of CDR1as on cell behaviors and tumor xenograft growth. In vitro, the CDR1as level was significantly increased in CCA cell lines. The results showed that CDR1as promoted the cell proliferation, migration, invasion, and activation of the AKT3/mTOR pathway in CCA cells. Moreover, miR-641, a predicted target microRNA (miRNA) of CDR1as, could partially reverse the effects of CDR1as on cell behaviors in CCA cells. Furthermore, CDR1as improved tumor xenograft growth, and it could be attenuated by miR-641 in vivo Additionally, CDR1as expression was inversely correlated with miR-641 in CCA cells, and miR-641 could directly bind with CDR1as and its target genes, the AKT3 and mTOR genes. Mechanistically, CDR1as could bind with miR-641 and accelerate miR-641 degradation, which possibly leads to the upregulation of the relative mRNA levels of AKT3 and mTOR in RBE cells. In conclusion, our findings indicated that CDR1as might exert oncogenic properties, at least partially, by regulating miR-641 in CCA. CDR1as and miR-641 could be considered therapeutic targets for CCA.

Journal ArticleDOI
TL;DR: The findings suggest that rDNA is also fragile in mammalian cells and that alterations within this region have a profound effect on cellular function.
Abstract: The rRNA gene, which consists of tandem repetitive arrays (ribosomal DNA [rDNA] repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast Saccharomyces cerevisiae is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in aging mammalian cells. Using quantitative single-cell analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to levels in 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. Moreover, the level of pre-rRNA transcripts was reduced in older BALB/cA mice. We also identified many sequence variations in the rDNA. Among them, three mutations were unique to old mice, and two of them were found in the conserved region in budding yeast. We established yeast strains with the old-mouse-specific mutations and found that they shortened the life span of the cells. Our findings suggest that rDNA is also fragile in mammalian cells and that alterations within this region have a profound effect on cellular function.

Journal ArticleDOI
TL;DR: It is shown that AKT1 protein loss led to the induction of eukaryotic initiation factor 2 α subunit (eIF2α) signaling and ER stress markers under normal-chow-fed conditions, indicating chronic low-level ER stress.
Abstract: Isoforms of protein kinase B (also known as AKT) play important roles in mediating insulin and growth factor signals. Previous studies have suggested that the AKT2 isoform is critical for insulin-regulated glucose metabolism, while the role of the AKT1 isoform remains less clear. This study focuses on the effects of AKT1 on the adaptive response of pancreatic β cells. Using a mouse model with inducible β-cell-specific deletion of the Akt1 gene (βA1KO mice), we showed that AKT1 is involved in high-fat-diet (HFD)-induced growth and survival of β cells but is unnecessary for them to maintain a population in the absence of metabolic stress. When unchallenged, βA1KO mice presented the same metabolic profile and β-cell phenotype as the control mice with an intact Akt1 gene. When metabolic stress was induced by HFD, β cells in control mice with intact Akt1 proliferated as a compensatory mechanism for metabolic overload. Similar effects were not observed in βA1KO mice. We further demonstrated that AKT1 protein deficiency caused endoplasmic reticulum (ER) stress and potentiated β cells to undergo apoptosis. Our results revealed that AKT1 protein loss led to the induction of eukaryotic initiation factor 2 α subunit (eIF2α) signaling and ER stress markers under normal-chow-fed conditions, indicating chronic low-level ER stress. Together, these data established a role for AKT1 as a growth and survival factor for adaptive β-cell response and suggest that ER stress induction is responsible for this effect of AKT1.

Journal ArticleDOI
TL;DR: The emerging evidence on the association of genes causing NCL with retromer function and endosomal trafficking is summarized, the recent evidence linking NCL genes to AD is reviewed, and how NCL, AD, and PD converge on a shared molecular pathway is discussed.
Abstract: Neuronal ceroid lipofuscinosis (NCL) is one of the most prevalent neurodegenerative disorders of early life, Parkinson's disease (PD) is the most common neurodegenerative disorder of midlife, while Alzheimer's disease (AD) is the most common neurodegenerative disorder of late life. While they are phenotypically distinct, recent studies suggest that they share a biological pathway, retromer-dependent endosomal trafficking. A retromer is a multimodular protein assembly critical for sorting and trafficking cargo out of the endosome. As a lysosomal storage disease, all 13 of NCL's causative genes affect endolysosomal function, and at least four have been directly linked to retromer. PD has several known causative genes, with one directly linked to retromer and others causing endolysosomal dysfunction. AD has over 25 causative genes/risk factors, with several of them linked to retromer or endosomal trafficking dysfunction. In this article, we summarize the emerging evidence on the association of genes causing NCL with retromer function and endosomal trafficking, review the recent evidence linking NCL genes to AD, and discuss how NCL, AD, and PD converge on a shared molecular pathway. We also discuss this pathway's role in microglia and neurons, cell populations which are critical to proper brain homeostasis and whose dysfunction plays a key role in neurodegeneration.