scispace - formally typeset
Search or ask a question
JournalISSN: 1380-3743

Molecular Breeding 

Springer Science+Business Media
About: Molecular Breeding is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Population & Quantitative trait locus. It has an ISSN identifier of 1380-3743. Over the lifetime, 2998 publications have been published receiving 119093 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated and wild soybean accessions, estimates based on RFLPs, RAPD, AFLPs and SSRs are highly correlated, indicating congruence between these assays.
Abstract: The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.

2,521 citations

Journal ArticleDOI
TL;DR: This article describes a network experiment involving several European laboratories, in which the reproducibility of three popular molecular marker techniques was examined: random-amplified fragment length polymorphism (RAPD), amplified fragment length SNP (AFLP) and sequence-tagged microsatellites (SSR).
Abstract: A number of PCR-based techniques can be used to detect polymorphisms in plants. For their wide-scale usage in germplasm characterisation and breeding it is important that these marker technologies can be exchanged between laboratories, which in turn requires that they can be standardised to yield reproducible results, so that direct collation and comparison of the data are possible. This article describes a network experiment involving several European laboratories, in which the reproducibility of three popular molecular marker techniques was examined: random-amplified fragment length polymorphism (RAPD), amplified fragment length polymorphism (AFLP) and sequence-tagged microsatellites (SSR). For each technique, an optimal system was chosen, which had been standardised and routinely used by one laboratory. This system (genetic screening package) was distributed to different participating laboratories in the network and the results obtained compared with those of the original sender. Different experiences were gained in this exchange experiment with the different techniques. RAPDs proved difficult to reproduce. For AFLPs, a single-band difference was observed in one track, whilst SSR alleles were amplified by all laboratories, but small differences in their sizing were obtained.

895 citations

Journal ArticleDOI
TL;DR: Applications of genome mapping and marker-assisted selection in crop improvement are reviewed and the use of MAS in breeding for disease and pest resistance is considered.
Abstract: Applications of genome mapping and marker-assisted selection (MAS) in crop improvement are reviewed. The following aspects are considered: a comparison of the choice of markers available for the generation of linkage maps (including amplified fragment length polymorphisms (AFLP); restriction fragment length polymorphisms (RFLP); randomly amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR)); quantitative trait loci (QTL) analysis; use of molecular markers in the exploitation of hybrid vigour; physical genome mapping; map-based cloning and transposon tagging of agriculturally important genes; synteny in cereal genomes; and the use of MAS in breeding for disease and pest resistance.

738 citations

Journal ArticleDOI
TL;DR: An overview of the different aspects of the KASP genotyping platform is provided, its application in crop improvement, and a comparison with the chip-based Illumina GoldenGate platform is compared.
Abstract: Single nucleotide polymorphism (SNP) data can be obtained using one of the numerous uniplex or multiplex SNP genotyping platforms that combine a variety of chemistries, detection methods, and reaction formats. Kompetitive Allele Specific PCR (KASP) is one of the uniplex SNP genotyping platforms, and has evolved to be a global benchmark technology. However, there are no publications relating either to the technology itself or to its application in crop improvement programs. In this review, we provide an overview of the different aspects of the KASP genotyping platform, discuss its application in crop improvement, and compare it with the chip-based Illumina GoldenGate platform. The International Maize and Wheat Improvement Center routinely uses KASP, generating in excess of a million data points annually for crop improvement purposes. We found that (1) 81 % of the SNPs used in a custom-designed GoldenGate assay were transferable to KASP; (2) using KASP, negative controls (no template) consistently clustered together and rarely produced signals exceeding the threshold values for allele calling, in contrast to the situation observed using GoldenGate assays; (3) KASP’s average genotyping error in positive control DNA samples was 0.7–1.6 %, which is lower than that observed using GoldenGate (2.0–2.4 %); (4) KASP genotyping costs for marker-assisted recurrent selection were 7.9–46.1 % cheaper than those of the BeadXpress and GoldenGate platforms; and (5) KASP offers cost-effective and scalable flexibility in applications that require small to moderate numbers of markers, such as quality control analysis, quantitative trait loci (QTL) mapping in bi-parental populations, marker-assisted recurrent selection, marker-assisted backcrossing, and QTL fine mapping.

716 citations

Journal ArticleDOI
TL;DR: A software application embodying two design principles: conventional reduction of raw genetic marker data to numerical summary statistics, and fast, interactive graphical display of both data and statistics.
Abstract: Efficient use of DNA markers for genomic research and crop improvement will depend as much on computational tools as on laboratory technology. The large size and multidimensional character of marker datasets invite novel approaches to data visualization. Described here is a software application embodying two design principles: conventional reduction of raw genetic marker data to numerical summary statistics, and fast, interactive graphical display of both data and statistics. The program performs various analyses for mapping quantitative-trait loci in real or simulated datasets and other analyses in aid of phenotypic and marker-assisted breeding. Functionality is described and some output is illustrated.

622 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202357
202282
202175
2020112
2019169
2018147