scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Cancer Therapeutics in 2015"


Journal ArticleDOI
TL;DR: Improved understanding of the host immune system and tumor microenvironment will better elucidate which patients derive benefit from these promising agents, and the issue of PD-L1 as an exclusionary predictive biomarker is clarified.
Abstract: The resurgence of cancer immunotherapy stems from an improved understanding of the tumor microenvironment. The PD-1/PD-L1 axis is of particular interest, in light of promising data demonstrating a restoration of host immunity against tumors, with the prospect of durable remissions. Indeed, remarkable clinical responses have been seen in several different malignancies including, but not limited to, melanoma, lung, kidney, and bladder cancers. Even so, determining which patients derive benefit from PD-1/PD-L1-directed immunotherapy remains an important clinical question, particularly in light of the autoimmune toxicity of these agents. The use of PD-L1 (B7-H1) immunohistochemistry (IHC) as a predictive biomarker is confounded by multiple unresolved issues: variable detection antibodies, differing IHC cutoffs, tissue preparation, processing variability, primary versus metastatic biopsies, oncogenic versus induced PD-L1 expression, and staining of tumor versus immune cells. Emerging data suggest that patients whose tumors overexpress PD-L1 by IHC have improved clinical outcomes with anti-PD-1-directed therapy, but the presence of robust responses in some patients with low levels of expression of these markers complicates the issue of PD-L1 as an exclusionary predictive biomarker. An improved understanding of the host immune system and tumor microenvironment will better elucidate which patients derive benefit from these promising agents.

1,621 citations


Journal ArticleDOI
TL;DR: This study reported that ANRIL expression was increased in NSCLC tissues, and its expression level was significantly correlated with tumor–node–metastasis stages and tumor size, providing novel insights on the function of lncRNA-driven tumorigenesis.
Abstract: Recent evidence highlights long noncoding RNAs (lncRNA) as crucial regulators of cancer biology that contribute to essential cancer cell functions such as cell proliferation, apoptosis, and metastasis. In non-small cell lung cancer (NSCLC), several lncRNAs' expressions are misregulated and have been nominated as critical actors in NSCLC tumorigenesis. LncRNA ANRIL was first found to be required for the PRC2 recruitment to and silencing of p15(INK4B), the expression of which is induced by the ATM-E2F1 signaling pathway. Our previous study showed that ANRIL was significantly upregulated in gastric cancer, and it could promote cell proliferation and inhibit cell apoptosis by silencing of miR99a and miR449a transcription. However, its clinical significance and potential role in NSCLC is still not documented. In this study, we reported that ANRIL expression was increased in NSCLC tissues, and its expression level was significantly correlated with tumor-node-metastasis stages and tumor size. Moreover, patients with high levels of ANRIL expression had a relatively poor prognosis. In addition, taking advantage of loss-of-function experiments in NSCLC cells, we found that knockdown of ANRIL expression could impair cell proliferation and induce cell apoptosis both in vitro and vivo. Furthermore, we uncover that ANRIL could not repress p15 expression in PC9 cells, but through silencing of KLF2 and P21 transcription. Thus, we conclusively demonstrate that lncRNA ANRIL plays a key role in NSCLC development by associating its expression with survival in patients with NSCLC, providing novel insights on the function of lncRNA-driven tumorigenesis.

329 citations


Journal ArticleDOI
TL;DR: This review will be focused on recent discoveries about oxaliplatin tumor-related resistance mechanisms, including alterations in transport, detoxification, DNA damage response and repair, cell death (apoptotic and nonapoptosis), and epigenetic mechanisms.
Abstract: Oxaliplatin was the first platinum drug with proven activity against colorectal tumors, becoming a standard in the management of this malignancy. It is also considered for the treatment of pancreatic and gastric cancers. However, a major reason for treatment failure still is the existence of tumor intrinsic or acquired resistance. Consequently, it is important to understand the molecular mechanisms underlying the appearance of this phenomenon to find ways of circumventing it and to improve and optimize treatments. This review will be focused on recent discoveries about oxaliplatin tumor-related resistance mechanisms, including alterations in transport, detoxification, DNA damage response and repair, cell death (apoptotic and nonapoptotic), and epigenetic mechanisms.

224 citations


Journal ArticleDOI
TL;DR: It is indicated that non-LAR subtypes of TNBC are AR dependent and, moreover, that enzalutamide is a promising targeted therapy for multiple molecular sub types of AR+ TNBC.
Abstract: Triple-negative breast cancer (TNBC) has the lowest 5-year survival rate of invasive breast carcinomas, and currently there are no approved targeted therapies for this aggressive form of the disease. The androgen receptor (AR) is expressed in up to one third of TNBC and we find that all AR(+) TNBC primary tumors tested display nuclear localization of AR, indicative of transcriptionally active receptors. While AR is most abundant in the "luminal AR (LAR)" molecular subtype of TNBC, here, for the first time, we use both the new-generation anti-androgen enzalutamide and AR knockdown to demonstrate that the other non-LAR molecular subtypes of TNBC are critically dependent on AR protein. Indeed, AR inhibition significantly reduces baseline proliferation, anchorage-independent growth, migration, and invasion and increases apoptosis in four TNBC lines (SUM159PT, HCC1806, BT549, and MDA-MB-231), representing three non-LAR TNBC molecular subtypes (mesenchymal-like, mesenchymal stem-like, and basal-like 2). In vivo, enzalutamide significantly decreases viability of SUM159PT and HCC1806 xenografts. Furthermore, mechanistic analysis reveals that AR activation upregulates secretion of the EGFR ligand amphiregulin (AREG), an effect abrogated by enzalutamide in vitro and in vivo. Exogenous AREG partially rescues the effects of AR knockdown on proliferation, migration, and invasion, demonstrating that upregulation of AREG is one mechanism by which AR influences tumorigenicity. Together, our findings indicate that non-LAR subtypes of TNBC are AR dependent and, moreover, that enzalutamide is a promising targeted therapy for multiple molecular subtypes of AR(+) TNBC.

192 citations


Journal ArticleDOI
TL;DR: In vivo antitumor studies in breast cancer PDX models showed that SYD985 is very active in HER2 3+, 2+, and 1+ models, whereas T-DM1 only showed significant antitumors activity in HER 2 3+ breast cancerPDX models.
Abstract: SYD985 is a HER2-targeting antibody-drug conjugate (ADC) based on trastuzumab and vc-seco-DUBA, a cleavable linker-duocarmycin payload. To evaluate the therapeutic potential of this new ADC, mechanistic in vitro studies and in vivo patient-derived xenograft (PDX) studies were conducted to compare SYD985 head-to-head with T-DM1 (Kadcyla), another trastuzumab-based ADC. SYD985 and T-DM1 had similar binding affinities to HER2 and showed similar internalization. In vitro cytotoxicity assays showed similar potencies and efficacies in HER2 3+ cell lines, but in cell lines with low HER2 expression, SYD985 was 3- to 50-fold more potent than T-DM1. In contrast with T-DM1, SYD985 efficiently induced bystander killing in vitro in HER2-negative (HER2 0) cells mixed with HER2 3+, 2+, or 1+ cell lines. At pH conditions relevant for tumors, cathepsin-B cleavage studies showed efficient release of the active toxin by SYD985 but not by T-DM1. These in vitro data suggest that SYD985 might be a more potent ADC in HER2-expressing tumors in vivo, especially in low HER2-expressing and/or in heterogeneous tumors. In line with this, in vivo antitumor studies in breast cancer PDX models showed that SYD985 is very active in HER2 3+, 2+, and 1+ models, whereas T-DM1 only showed significant antitumor activity in HER2 3+ breast cancer PDX models. These properties of SYD985 may enable expansion of the target population to patients who have low HER2-expressing breast cancer, a patient population with still unmet high medical need.

150 citations


Journal ArticleDOI
TL;DR: In this article, a trastuzumab-maytansinoid ADC (TM-ADC) was applied to breast cancer cell lines, and the authors found that the ADC-resistant cells, 361-TM and JIMT1-TM, were characterized by cytotoxicity, proteomic, transcriptional and other profiling.
Abstract: Antibody-drug conjugates (ADC) are emerging as clinically effective therapy. We hypothesized that cancers treated with ADCs would acquire resistance mechanisms unique to immunoconjugate therapy and that changing ADC components may overcome resistance. Breast cancer cell lines were exposed to multiple cycles of anti-Her2 trastuzumab-maytansinoid ADC (TM-ADC) at IC80 concentrations followed by recovery. The resistant cells, 361-TM and JIMT1-TM, were characterized by cytotoxicity, proteomic, transcriptional, and other profiling. Approximately 250-fold resistance to TM-ADC developed in 361-TM cells, and cross-resistance was observed to other non-cleavable-linked ADCs. Strikingly, these 361-TM cells retained sensitivity to ADCs containing cleavable mcValCitPABC-linked auristatins. In JIMT1-TM cells, 16-fold resistance to TM-ADC developed, with cross-resistance to other trastuzumab-ADCs. Both 361-TM and JIMT1-TM cells showed minimal resistance to unconjugated mertansine (DM1) and other chemotherapeutics. Proteomics and immunoblots detected increased ABCC1 (MRP1) drug efflux protein in 361-TM cells, and decreased Her2 (ErbB2) in JIMT1-TM cells. Proteomics also showed alterations in various pathways upon chronic exposure to the drug in both cell models. Tumors derived from 361-TM cells grew in mice and were refractory to TM-ADC compared with parental cells. Hence, acquired resistance to trastuzumab-maytansinoid ADC was generated in cultured cancer cells by chronic drug treatment, and either increased ABCC1 protein or reduced Her2 antigen were primary mediators of resistance. These ADC-resistant cell models retain sensitivity to other ADCs or standard-of-care chemotherapeutics, suggesting that alternate therapies may overcome acquired ADC resistance. Mol Cancer Ther; 14(4); 952-63. ©2015 AACR.

146 citations


Journal ArticleDOI
TL;DR: The development of an anti-FRα antibody–drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules, supports the clinical development of IMGN853 as a novel targeted therapy for patients with FR α-expressing tumors.
Abstract: A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα) Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules From screening a large panel of anti-FRα monoclonal antibodies, we selected the humanized antibody M9346A as the best antibody for targeted delivery of a maytansinoid payload into FRα-positive cells We compared M9346A conjugates with various linker/maytansinoid combinations, and found that a conjugate, now denoted as IMGN853, with the N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate (sulfo-SPDB) linker and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) exhibited the most potent antitumor activity in several FRα-expressing xenograft tumor models The level of expression of FRα on the surface of cells was a major determinant in the sensitivity of tumor cells to the cytotoxic effect of the conjugate Efficacy studies of IMGN853 in xenografts of ovarian cancer and non-small cell lung cancer cell lines and of a patient tumor-derived xenograft model demonstrated that the ADC was highly active against tumors that expressed FRα at levels similar to those found on a large fraction of ovarian and non-small cell lung cancer patient tumors, as assessed by immunohistochemistry IMGN853 displayed cytotoxic activity against FRα-negative cells situated near FRα-positive cells (bystander cytotoxic activity), indicating its ability to eradicate tumors with heterogeneous expression of FRα Together, these findings support the clinical development of IMGN853 as a novel targeted therapy for patients with FRα-expressing tumors

138 citations


Journal ArticleDOI
TL;DR: The characterization of a novel CHK1 inhibitor, LY2606368, which as a single agent causes double-stranded DNA breakage while simultaneously removing the protection of the DNA damage checkpoints is described, suggesting replication catastrophe as the mechanism of DNA damage.
Abstract: CHK1 is a multifunctional protein kinase integral to both the cellular response to DNA damage and control of the number of active replication forks. CHK1 inhibitors are currently under investigation as chemopotentiating agents due to CHK1's role in establishing DNA damage checkpoints in the cell cycle. Here, we describe the characterization of a novel CHK1 inhibitor, LY2606368, which as a single agent causes double-stranded DNA breakage while simultaneously removing the protection of the DNA damage checkpoints. The action of LY2606368 is dependent upon inhibition of CHK1 and the corresponding increase in CDC25A activation of CDK2, which increases the number of replication forks while reducing their stability. Treatment of cells with LY2606368 results in the rapid appearance of TUNEL and pH2AX-positive double-stranded DNA breaks in the S-phase cell population. Loss of the CHK1-dependent DNA damage checkpoints permits cells with damaged DNA to proceed into early mitosis and die. The majority of treated mitotic nuclei consist of extensively fragmented chromosomes. Inhibition of apoptosis by the caspase inhibitor Z-VAD-FMK had no effect on chromosome fragmentation, indicating that LY2606368 causes replication catastrophe. Changes in the ratio of RPA2 to phosphorylated H2AX following LY2606368 treatment further support replication catastrophe as the mechanism of DNA damage. LY2606368 shows similar activity in xenograft tumor models, which results in significant tumor growth inhibition. LY2606368 is a potent representative of a novel class of drugs for the treatment of cancer that acts through replication catastrophe.

138 citations


Journal ArticleDOI
TL;DR: MMAE resistance and MDR1 expression are possible modes of BV resistance for Hodgkin lymphoma both in vitro and in patients.
Abstract: Brentuximab vedotin (BV) is an antibody-drug conjugate that specifically delivers the potent cytotoxic drug MMAE to CD30-positive cells. BV is FDA-approved for treatment of relapsed/refractory Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL); however, many patients do not achieve complete remission and develop BV resistant disease. We selected for BV-resistant HL (L428) and ALCL (Karpas-299) cell lines using either constant (ALCL) or pulsatile (HL) exposure to BV. We confirmed drug resistance by MTS assay, and analyzed CD30 expression in resistant cells by flow cytometry, qRT-PCR, and Western blotting. We also measured drug exporter expression, MMAE resistance, and intracellular MMAE concentrations in BV-resistant cells. Additionally, tissue biopsy samples from 10 HL and 5 ALCL patients who had relapsed or progressed after BV treatment were analyzed by immunohistocytochemistry for CD30 expression. The resistant ALCL cell line, but not the HL cell line, demonstrated downregulated CD30 expression compared to the parental cell line. In contrast, the HL cell line, but not the ALCL cell line, exhibited MMAE resistance and increased expression of the MDR1 drug exporter compared to the parental line. For both HL and ALCL, samples from patients relapsed/resistant on BV persistently expressed CD30 by immunohistocytochemistry. One HL patient sample expressed MDR1 by immunohistocytochemistry. Although loss of CD30 expression is a possible mode of BV resistance in ALCL in vitro models, this has not been confirmed in patients. MMAE resistance and MDR1 expression are possible modes of BV resistance for HL both in vitro and in patients.

134 citations


Journal ArticleDOI
TL;DR: It is reported that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials and it is shown that all five compounds inhibit mitochondrial respiration, suggesting that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis.
Abstract: Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials.

126 citations


Journal ArticleDOI
TL;DR: A small cyclic peptide, LY2510924, which is a potent and selective CXCR4 antagonist currently in phase II clinical studies for cancer, showed dose-dependent inhibition of tumor growth in human xenograft models developed with non–Hodgkin lymphoma, renal cell carcinoma, lung, and colon cancer cells that express functional CX CR4.
Abstract: Emerging evidence demonstrates that stromal cell-derived factor 1 (SDF-1) and CXCR4, a chemokine and chemokine receptor pair, play important roles in tumorigenesis. In this report, we describe a small cyclic peptide, LY2510924, which is a potent and selective CXCR4 antagonist currently in phase II clinical studies for cancer. LY2510924 specifically blocked SDF-1 binding to CXCR4 with IC50 value of 0.079 nmol/L, and inhibited SDF-1-induced GTP binding with Kb value of 0.38 nmol/L. In human lymphoma U937 cells expressing endogenous CXCR4, LY2510924 inhibited SDF-1-induced cell migration with IC50 value of 0.26 nmol/L and inhibited SDF-1/CXCR4-mediated intracellular signaling. LY2510924 exhibited a concentration-dependent inhibition of SDF-1-stimulated phospho-ERK and phospho-Akt in tumor cells. Biochemical and cellular analyses revealed that LY2510924 had no apparent agonist activity. Pharmacokinetic analyses suggested that LY2510924 had acceptable in vivo stability and a pharmacokinetic profile similar to a typical small-molecular inhibitor in preclinical species. LY2510924 showed dose-dependent inhibition of tumor growth in human xenograft models developed with non-Hodgkin lymphoma, renal cell carcinoma, lung, and colon cancer cells that express functional CXCR4. In MDA-MB-231, a breast cancer metastatic model, LY2510924 inhibited tumor metastasis by blocking migration/homing process of tumor cells to the lung and by inhibiting cell proliferation after tumor cell homing. Collectively, the preclinical data support further investigation of LY2510924 in clinical studies for cancer.

Journal ArticleDOI
TL;DR: HOTAIR expression may serve as a potentially important disease biomarker for the identification of high-risk gastric cancer patients and provide mechanistic evidence for HOTAIR overexpression and PCBP1 downregulation and the ensuing malignant phenotype in both cultured and xenograft Gastric cancer cells.
Abstract: The objective of this study was to evaluate the role of HOTAIR long noncoding RNA in gastric cancer metastasis. We analyzed HOTAIR expression levels by real-time reverse transcription PCR and Northern blot analysis in 100 gastric tissues (50 gastric cancer tissues and 50 adjacent normal mucosa), and in four gastric cancer cell lines. Transient RNAi-mediated knockdown and pcDNA-mediated overexpression of HOTAIR were performed. Stable shRNA-mediated knockdown and lentiviral-mediated overexpression of HOTAIR were to study the role of HOTAIR on in vivo tumorigenicity and metastatic burden in the context of xenograft assays. Proteomic profiling was performed to decipher differential protein expression in cells with different HOTAIR expression levels. One of the differentially regulated proteins, Poly r(C)-binding protein (PCBP) 1, was subsequently validated and its function evaluated through xenograft assays. Expression of HOTAIR was significantly higher in cancerous tissues than in adjacent normal mucosa. HOTAIR expression levels dictated in vitro and in vivo tumorigenicity and metastatic potential in these cells. PCBP1 and HOTAIR have an inverse relationship, both at expression level and in function. A direct interaction between the two was confirmed through RNA immunoprecipitation coupled with quantitative real-time PCR. PCBP1 was confirmed to be an inhibitor of gastric cancer pathogenesis and as functionally opposite to HOTAIR long noncoding RNA. In conclusion, HOTAIR expression may serve as a potentially important disease biomarker for the identification of high-risk gastric cancer patients. Moreover, our findings provide mechanistic evidence for HOTAIR overexpression and PCBP1 downregulation and the ensuing malignant phenotype in both cultured and xenograft gastric cancer cells.

Journal ArticleDOI
TL;DR: A molecular mechanism for the role of Notch-mediated regulation of breast CSCs is revealed and a compelling rationale for CSC-targeted therapeutics is provided.
Abstract: Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.

Journal ArticleDOI
TL;DR: It is suggested that HAhigh matrix in vivo may form a barrier inhibiting access of both mAb and NK cells, and that PEGPH20 treatment in combination with anticancer mAbs may be an effective adjunctive therapy for HAhigh tumors.
Abstract: Despite tremendous progress in cancer immunotherapy for solid tumors, clinical success of monoclonal antibody (mAb) therapy is often limited by poorly understood mechanisms associated with the tumor microenvironment (TME). Accumulation of hyaluronan (HA), a major component of the TME, occurs in many solid tumor types, and is associated with poor prognosis and treatment resistance in multiple malignancies. In this study, we describe that a physical barrier associated with high levels of HA (HAhigh) in the TME restricts antibody and immune cell access to tumors, suggesting a novel mechanism of in vivo resistance to mAb therapy. We determined that approximately 60% of HER23+ primary breast tumors and approximately 40% of EGFR+ head and neck squamous cell carcinomas are HAhigh, and hypothesized that HAhigh tumors may be refractory to mAb therapy. We found that the pericellular matrix produced by HAhigh tumor cells inhibited both natural killer (NK) immune cell access to tumor cells and antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro . Depletion of HA by PEGPH20, a pegylated recombinant human PH20 hyaluronidase, resulted in increased NK cell access to HAhigh tumor cells, and greatly enhanced trastuzumab- or cetuximab-dependent ADCC in vitro . Furthermore, PEGPH20 treatment enhanced trastuzumab and NK cell access to HAhigh tumors, resulting in enhanced trastuzumab- and NK cell–mediated tumor growth inhibition in vivo . These results suggest that HAhigh matrix in vivo may form a barrier inhibiting access of both mAb and NK cells, and that PEGPH20 treatment in combination with anticancer mAbs may be an effective adjunctive therapy for HAhigh tumors. Mol Cancer Ther; 14(2); 523–32. ©2014 AACR . This article is featured in Highlights of This Issue, [p. 315][1] [1]: /lookup/volpage/14/315?iss=2

Journal ArticleDOI
TL;DR: Therapeutic combination studies of AMG 232 with chemotherapies that induce DNA damage and p53 activity resulted in significantly superior antitumor efficacy and regression, and markedly increased activation of p53 signaling in tumors.
Abstract: p53 is a critical tumor suppressor and is the most frequently inactivated gene in human cancer. Inhibition of the interaction of p53 with its negative regulator MDM2 represents a promising clinical strategy to treat p53 wild-type tumors. AMG 232 is a potential best-in-class inhibitor of the MDM2-p53 interaction and is currently in clinical trials. We characterized the activity of AMG 232 and its effect on p53 signaling in several preclinical tumor models. AMG 232 binds the MDM2 protein with picomolar affinity and robustly induces p53 activity, leading to cell-cycle arrest and inhibition of tumor cell proliferation. AMG 232 treatment inhibited the in vivo growth of several tumor xenografts and led to complete and durable regression of MDM2-amplified SJSA-1 tumors via growth arrest and induction of apoptosis. Therapeutic combination studies of AMG 232 with chemotherapies that induce DNA damage and p53 activity resulted in significantly superior antitumor efficacy and regression, and markedly increased activation of p53 signaling in tumors. These preclinical data support the further evaluation of AMG 232 in clinical trials as both a monotherapy and in combination with standard-of-care cytotoxics.

Journal ArticleDOI
TL;DR: JG-98, an allosteric inhibitor of this PPI, indeed has antiproliferative activity across cancer cell lines from multiple origins and suggested that the Hsp70–Bag3 interaction may be a promising, new target for anticancer therapy.
Abstract: Hsp70 is a stress-inducible molecular chaperone that is required for cancer development at several steps. Targeting the active site of Hsp70 has proven relatively challenging, driving interest in alternative approaches. Hsp70 collaborates with the Bcl2-associated athanogene 3 (Bag3) to promote cell survival through multiple pathways, including FoxM1. Therefore, inhibitors of the Hsp70-Bag3 protein-protein interaction (PPI) may provide a noncanonical way to target this chaperone. We report that JG-98, an allosteric inhibitor of this PPI, indeed has antiproliferative activity (EC50 values between 0.3 and 4 μmol/L) across cancer cell lines from multiple origins. JG-98 destabilized FoxM1 and relieved suppression of downstream effectors, including p21 and p27. On the basis of these findings, JG-98 was evaluated in mice for pharmacokinetics, tolerability, and activity in two xenograft models. The results suggested that the Hsp70-Bag3 interaction may be a promising, new target for anticancer therapy.

Journal ArticleDOI
TL;DR: It is demonstrated that AZD2014 has broad antiproliferative effects across multiple cell lines, including ER+ breast models with acquired resistance to hormonal therapy and cell lines with acquired Resistance to rapalogs, an ideal candidate for combining with endocrine therapies in the clinic.
Abstract: mTOR is an atypical serine threonine kinase involved in regulating major cellular functions, such as nutrients sensing, growth, and proliferation. mTOR is part of the multiprotein complexes mTORC1 and mTORC2, which have been shown to play critical yet functionally distinct roles in the regulation of cellular processes. Current clinical mTOR inhibitors only inhibit the mTORC1 complex and are derivatives of the macrolide rapamycin (rapalogs). Encouraging effects have been observed with rapalogs in estrogen receptor-positive (ER(+)) breast cancer patients in combination with endocrine therapy, such as aromatase inhibitors. AZD2014 is a small-molecule ATP competitive inhibitor of mTOR that inhibits both mTORC1 and mTORC2 complexes and has a greater inhibitory function against mTORC1 than the clinically approved rapalogs. Here, we demonstrate that AZD2014 has broad antiproliferative effects across multiple cell lines, including ER(+) breast models with acquired resistance to hormonal therapy and cell lines with acquired resistance to rapalogs. In vivo, AZD2014 induces dose-dependent tumor growth inhibition in several xenograft and primary explant models. The antitumor activity of AZD2014 is associated with modulation of both mTORC1 and mTORC2 substrates, consistent with its mechanism of action. In combination with fulvestrant, AZD2014 induces tumor regressions when dosed continuously or using intermittent dosing schedules. The ability to dose AZD2014 intermittently, together with its ability to block signaling from both mTORC1 and mTORC2 complexes, makes this compound an ideal candidate for combining with endocrine therapies in the clinic. AZD2014 is currently in phase II clinical trials.

Journal ArticleDOI
TL;DR: This study suggests that a redox-mediated pathway contributes to the intrinsic resistance of PDAC to gemcitabine and provides a basis for developing strategies to preferentially kill PDAC cells through ROS-mediated mechanism.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) frequently develops therapeutic resistances, which can be divided into extrinsic and intrinsic resistance. The extrinsic resistance that arises from the surrounding dense tumor stroma is much better understood. However, the mechanisms of intrinsic resistance are not well understood. Here, we report that reactive oxygen species (ROS) induced by gemcitabine treatment, a newly discovered cytotoxic activity, served as a probe in our study to reveal the mechanisms of the intrinsic therapeutic resistance. Our results showed that gemcitabine-induced ROS is generated by NOX and through the increase of p22(-phox) expression via NF-κB activation. As a feedback mechanism, nuclear translocation of Nrf2 stimulated the transcription of cytoprotective antioxidant genes, especially genes encoding enzymes that catalyze glutathione (GSH) production to reduce elevated ROS as an intrinsic resistance countermeasure. RNAi-mediated depletion of Nrf2 or addition of β-phenylethyl isothiocyanate inhibited the ROS detoxification process by reducing GSH levels, which, in turn, increased the efficacy of gemcitabine in vitro and in vivo. Thus, our study suggests that a redox-mediated pathway contributes to the intrinsic resistance of PDAC to gemcitabine and provides a basis for developing strategies to preferentially kill PDAC cells through ROS-mediated mechanism. The combination of gemcitabine and PEITC has a selective cytotoxic effect against pancreatic cancer cells in vivo and could thus prove valuable as a cancer treatment.

Journal ArticleDOI
TL;DR: Results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisPlatin for the treatment of patients with TP53 mutant H NSCC.
Abstract: Although cisplatin has played a role in "standard-of-care" multimodality therapy for patients with advanced squamous cell carcinoma of the head and neck (HNSCC), the rate of treatment failure remains particularly high for patients receiving cisplatin whose tumors have mutations in the TP53 gene. We found that cisplatin treatment of HNSCC cells with mutant TP53 leads to arrest of cells in the G2 phase of the cell cycle, leading us to hypothesize that the wee-1 kinase inhibitor MK-1775 would abrogate the cisplatin-induced G2 block and thereby sensitize isogenic HNSCC cells with mutant TP53 or lacking p53 expression to cisplatin. We tested this hypothesis using clonogenic survival assays, flow cytometry, and in vivo tumor growth delay experiments with an orthotopic nude mouse model of oral tongue cancer. We also used a novel TP53 mutation classification scheme to identify which TP53 mutations are associated with limited tumor responses to cisplatin treatment. Clonogenic survival analyses indicate that nanomolar concentration of MK-1775 sensitizes HNSCC cells with high-risk mutant p53 to cisplatin. Consistent with its ability to chemosensitize, MK-1775 abrogated the cisplatin-induced G2 block in p53-defective cells leading to mitotic arrest associated with a senescence-like phenotype. Furthermore, MK-1775 enhanced the efficacy of cisplatin in vivo in tumors harboring TP53 mutations. These results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisplatin for the treatment of patients with TP53 mutant HNSCC.

Journal ArticleDOI
TL;DR: It is demonstrated that apoptosis resulting from a loss in MCL-1 function requires expression of the proapoptotic protein BAK, and substantial synergy is demonstrated between navitoclax and Mcl-1 siRNA, the direct M CL-1 inhibitor A-1210477, or the indirect MCL -1 inhibitor flavopiridol, highlighting the therapeutic potential for inhibiting BCL-XL and MCL,1 in breast cancer.
Abstract: Hyperexpression of antiapoptotic BCL-2 family proteins allows cells to survive despite the receipt of signals that would ordinarily induce their deletion, a facet frequently exploited by tumors. Tumors addicted to the BCL-2 family proteins for survival are now being targeted therapeutically. For example, navitoclax, a BCL-2/BCL-XL/BCL-W inhibitor, is currently in phase I/II clinical trials in numerous malignancies. However, the related family member, MCL-1, limits the efficacy of navitoclax and other chemotherapeutic agents. In the present study, we identify breast cancer cell lines that depend upon MCL-1 for survival and subsequently determine the mechanism of apoptosis mediated by the MCL-1 selective inhibitor A-1210477. We demonstrate that apoptosis resulting from a loss in MCL-1 function requires expression of the proapoptotic protein BAK. However, expression of BCL-XL can limit apoptosis resulting from loss in MCL-1 function through sequestration of free BIM. Finally, we demonstrate substantial synergy between navitoclax and MCL-1 siRNA, the direct MCL-1 inhibitor A-1210477, or the indirect MCL-1 inhibitor flavopiridol, highlighting the therapeutic potential for inhibiting BCL-XL and MCL-1 in breast cancer.

Journal ArticleDOI
TL;DR: It is demonstrated that the splicing factor heterogeneous nuclear RNA-binding protein A1 (hnRNPA1) plays a pivotal role in the generation of AR splice variants such as AR-V7, which may provide a rationale for cotargeting these pathways to achieve better efficacy through AR blockade.
Abstract: Castration resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signaling. Alternative splicing of the AR to generate constitutively active, ligand-independent variants is one of the principal mechanisms that promote the development of resistance to next-generation anti-androgens such as enzalutamide. Here, we demonstrate that the splicing factor heterogeneous nuclear RNA-binding protein A1 (hnRNPA1) plays a pivotal role in the generation of AR splice variants such as AR-V7. HnRNPA1 is overexpressed in prostate tumors compared to benign prostates and its expression is regulated by NF-kappaB2/p52 and c-Myc. CRPC cells resistant to enzalutamide exhibit higher levels of NF-kappaB2/p52, c-Myc, hnRNPA1, and AR-V7. Levels of hnRNPA1 and of AR-V7 are positively correlated with each other in PCa. The regulatory circuit involving NF-kappaB2/p52, c-Myc and hnRNPA1 plays a central role in the generation of AR splice variants. Downregulation of hnRNPA1 and consequently of AR-V7 resensitizes enzalutamide-resistant cells to enzalutamide, indicating that enhanced expression of hnRNPA1 may confer resistance to AR-targeted therapies by promoting the generation of splice variants. These findings may provide a rationale for co-targeting these pathways to achieve better efficacy through AR blockade.

Journal ArticleDOI
TL;DR: In this article, an isoquinoline alkaloid, berberine, was found to have an IC50 that is much lower than temozolomide in vitro in U87, U251, and U118 glioblastoma cells.
Abstract: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and has a poor prognosis. We, here, report a potent antitumor effect of berberine, an isoquinoline alkaloid, on GBM. Berberine was found to have an IC50 that is much lower than temozolomide in vitro in U87, U251, and U118 glioblastoma cells. Although previous studies showed that berberine primarily exerts its anticancer effect by inducing cell-cycle arrest, apoptosis, and autophagy, we observed that the antitumor effect of berberine on glioblastoma cells was primarily achieved through induction of cellular senescence. In glioblastoma cells treated with berberine, the level of epidermal growth factor receptor (EGFR) was greatly reduced. Examination of the activities of the kinases downstream of EGFR revealed that the RAF-MEK-ERK signaling pathway was remarkably inhibited, whereas AKT phosphorylation was not altered. Pharmacologic inhibition or RNA interference of EGFR similarly induced cellular senescence of glioblastoma cells. Furthermore, the cellular senescence induced by berberine could be rescued by introduction of a constitutive active MKK. Berberine also potently inhibited the growth of tumor xenografts, which was accompanied by downregulation of EGFR and induction of senescence. Our findings thus revealed a new route by which berberine exerts its anticancer activity. Because EGFR is commonly upregulated in glioblastoma, the demonstration of effective inhibition of EGFR by berberine points to the possibility of using berberine in the treatment of patients with glioblastoma.

Journal ArticleDOI
TL;DR: It is reported that a prototypic tumor-penetrating peptide iRGD (amino acid sequence: CRGDKGPDC) potently inhibits spontaneous metastasis in mice and may provide a significant additional benefit when this peptide is used for drug delivery to tumors.
Abstract: Tumor-specific tissue-penetrating peptides deliver drugs into extravascular tumor tissue by increasing tumor vascular permeability through interaction with neuropilin (NRP). Here we report that a prototypic tumor-penetrating peptide iRGD (amino acid sequence: CRGDKGPDC) potently inhibits spontaneous metastasis in mice. The anti-metastatic effect was mediated by the NRP-binding RXXK peptide motif (CendR motif), and not by the integrin-binding RGD motif. iRGD inhibited migration of tumor cells and caused chemorepulsion in vitro in a CendR- and NRP-1-dependent manner. The peptide induced dramatic collapse of cellular processes and partial cell detachment, resulting in the repellent activity. These effects were prominently displayed when the cells were seeded on fibronectin, suggesting a role of CendR in functional regulation of integrins. The anti-metastatic activity of iRGD may provide a significant additional benefit when this peptide is used for drug delivery to tumors.

Journal ArticleDOI
TL;DR: Findings identify c-MYC as a potential therapeutic target for ovarian cancers expressing high levels of this oncoprotein.
Abstract: The purpose of this study was to investigate the molecular and therapeutic effects of siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer. Statistical analysis of patient's data extracted from The Cancer Genome Atlas (TCGA) portal showed that the disease-free (DFS) and the overall (OS) survival were decreased in ovarian cancer patients with high c-MYC mRNA levels. Furthermore, analysis of a panel of ovarian cancer cell lines showed that c-MYC protein levels were higher in cisplatin-resistant cells when compared with their cisplatin-sensitive counterparts. In vitro cell viability, growth, cell-cycle progression, and apoptosis, as well as in vivo therapeutic effectiveness in murine xenograft models, were also assessed following siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer cells. Significant inhibition of cell growth and viability, cell-cycle arrest, and activation of apoptosis were observed upon siRNA-mediated c-MYC depletion. In addition, single weekly doses of c-MYC-siRNA incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000)-based nanoliposomes resulted in significant reduction in tumor growth. These findings identify c-MYC as a potential therapeutic target for ovarian cancers expressing high levels of this oncoprotein.

Journal ArticleDOI
TL;DR: Active inhibitors of Wnt secretion and Wnt/receptor interactions have been developed that are now entering clinical trials and may be predictive biomarkers to select patients responsive to newly developed upstream Wnt inhibitors.
Abstract: Wnt signaling is dysregulated in many cancers and is therefore an attractive therapeutic target. The focus of drug development has recently shifted away from downstream inhibitors of β-catenin. Active inhibitors of Wnt secretion and Wnt/receptor interactions have been developed that are now entering clinical trials. Such agents include inhibitors of Wnt secretion, as well as recombinant proteins that minimize Wnt-Frizzled interactions. These new therapies arrive together with the recent insight that cancer-specific upregulation of Wnt receptors at the cell surface regulates cellular sensitivity to Wnts. Loss-of-function mutations in RNF43 or ZNRF3 and gain-of-function chromosome translocations involving RSPO2 and RSPO3 are surprisingly common and markedly increase Wnt/β-catenin signaling in response to secreted Wnts. These mutations may be predictive biomarkers to select patients responsive to newly developed upstream Wnt inhibitors.

Journal ArticleDOI
TL;DR: A first-in-human trial designed to determine the maximum tolerated dose (MTD), safety, and pharmacokinetics/pharmacodynamics (PK/PD) of birinapant, a novel SMAC mimetic, found it well tolerated with an MTD of 47 mg/m2 and exhibited favorable PK and PD properties.
Abstract: The inhibitor of apoptosis (IAP) family of antiapoptotic proteins has been identified as a target for small molecule inhibitors in cancer. Second mitochondrial-derived activator of caspases (SMAC) efficiently and naturally antagonizes IAPs, and preclinical studies have determined that SMAC mimetics have potent anticancer properties. Here, we report a first-in-human trial designed to determine the maximum tolerated dose (MTD), safety, and pharmacokinetics/pharmacodynamics (PK/PD) of birinapant, a novel SMAC mimetic. Patients with advanced solid tumors or lymphoma were enrolled in a 3+3 dose escalation design with birinapant administered intravenously from 0.18 to 63 mg/m(2) once weekly every 3 of 4 weeks. Fifty patients were enrolled to 12 dose cohorts. Birinapant 47 mg/m(2) was determined to be the MTD. At 63 mg/m(2), dose-limiting toxicities included headache, nausea, and vomiting. Two cases of Bell's palsy (grade 2) also occurred at 63 mg/m(2). Birinapant had a plasma half-life of 30 to 35 hours and accumulated in tumor tissue. Birinapant suppressed cIAP1 and increased apoptosis in peripheral blood mononuclear cells and tumor tissue. Prolonged stable disease was observed in 3 patients: non-small cell lung cancer (5 months), colorectal cancer (5 months), and liposarcoma (9 months). Two patients with colorectal cancer had radiographic evidence of tumor shrinkage. In conclusion, birinapant was well tolerated with an MTD of 47 mg/m(2) and exhibited favorable PK and PD properties. Several patients demonstrated stable disease and evidence of antitumor activity. These results support the ongoing clinical trials of birinapant in patients with cancer.

Journal ArticleDOI
TL;DR: Preclinical results suggest greater suppression of the AR axis with VT-464 than ABI that is likely due to both superior selective suppression of androgen synthesis and AR antagonism.
Abstract: VT-464 is a novel, nonsteroidal, small-molecule CYP17A1 inhibitor with 17,20-lyase selectivity. This study evaluates the anticancer activity of VT-464 compared with abiraterone (ABI) in castrate-resistant prostate cancer cell lines and xenograft models that are enzalutamide (ENZ)-responsive (C4-2) or ENZ-resistant (MR49C, MR49F). In vitro, androgen receptor (AR) transactivation was assessed by probasin luciferase reporter, whereas AR and AR-regulated genes and steroidogenic pathway enzymes were assessed by Western blot and/or qRT-PCR. The MR49F xenograft model was used to compare effects of oral VT-464 treatment to vehicle and abiraterone acetate (AA). Steroid concentrations were measured using LC-MS chromatography. VT-464 demonstrated a greater decrease in AR transactivation compared with ABI in C4-2 and both ENZ-resistant cell lines. At the gene and protein level, VT-464 suppressed the AR axis to a greater extent compared with ABI. Gene transcripts StAR, CYP17A1, HSD17B3, and SRD5A1 increased following treatment with ABI and to a greater extent with VT-464. In vivo, intratumoral androgen levels were significantly lower after VT-464 or AA treatment compared with vehicle, with the greatest decrease seen with VT-464. Similarly, tumor growth inhibition and PSA decrease trends were greater with VT-464 than with AA. Finally, an AR-antagonist effect of VT-464 independent of CYP17A1 inhibition was observed using luciferase reporter assays, and a direct interaction was confirmed using an AR ligand binding domain biolayer interferometry. These preclinical results suggest greater suppression of the AR axis with VT-464 than ABI that is likely due to both superior selective suppression of androgen synthesis and AR antagonism.

Journal ArticleDOI
TL;DR: Next-generation sequencing identified theoretically actionable aberrations in 90% of patients with diverse cancers, and in all these cases the aberration could at least be targeted by an experimental drug in a clinical trial.
Abstract: Despite the increased use of molecular diagnostics, the extent to which patients who have these tests harbor potentially actionable aberrations is unclear. We retrospectively reviewed 439 patients with diverse cancers, for whom next-generation sequencing (mostly 236-gene panel) had been performed. Data pertaining to the molecular alterations identified, as well as associated treatment suggestions (on- or off-label, or experimental), were extracted from molecular diagnostic reports. Most patients (420/439; 96%) had at least one molecular alteration: 1,813 alterations (in 207 distinct genes) were identified [the majority being mutations (62%) or amplifications (29%)]. The three most common gene abnormalities were TP53 (44%), KRAS (16%), and PIK3CA (12%). The median number of alterations per patient was 3 (range, 0-16). Nineteen patients (4%) had no alterations; 48 patients (11%) had only one alteration; and 372 patients had two or more abnormalities (85%). The median number of potentially actionable anomalies per patient was 2 (range, 0-8). Most patients (393/439; 90%) had at least one potentially actionable alteration, and in all these cases the aberration could at least be targeted by an experimental drug in a clinical trial. A total of 307 patients (70%) had an alteration that was actionable with an approved drug, but in only 89 patients (20%) was the drug approved for their disease (on-label). Next-generation sequencing identified theoretically actionable aberrations in 90% of our patients. Many of the drugs are, however, experimental or would require off-label use. Strategies to address drug access for patients harboring potentially actionable mutations are needed.

Journal ArticleDOI
TL;DR: The proof of concept that dichloroacetate can effectively sensitize glioblastoma cells to radiotherapy by modulating the metabolic state of tumor cells is provided.
Abstract: Because radiotherapy significantly increases median survival in patients with glioblastoma, the modulation of radiation resistance is of significant interest. High glycolytic states of tumor cells are known to correlate strongly with radioresistance; thus, the concept of metabolic targeting needs to be investigated in combination with radiotherapy. Metabolically, the elevated glycolysis in glioblastoma cells was observed postradiotherapy together with upregulated hypoxia-inducible factor (HIF)-1α and its target pyruvate dehydrogenase kinase 1 (PDK1). Dichloroacetate, a PDK inhibitor currently being used to treat lactic acidosis, can modify tumor metabolism by activating mitochondrial activity to force glycolytic tumor cells into oxidative phosphorylation. Dichloroacetate alone demonstrated modest antitumor effects in both in vitro and in vivo models of glioblastoma and has the ability to reverse the radiotherapy-induced glycolytic shift when given in combination. In vitro, an enhanced inhibition of clonogenicity of a panel of glioblastoma cells was observed when dichloroacetate was combined with radiotherapy. Further mechanistic investigation revealed that dichloroacetate sensitized glioblastoma cells to radiotherapy by inducing the cell-cycle arrest at the G2-M phase, reducing mitochondrial reserve capacity, and increasing the oxidative stress as well as DNA damage in glioblastoma cells together with radiotherapy. In vivo, the combinatorial treatment of dichloroacetate and radiotherapy improved the survival of orthotopic glioblastoma-bearing mice. In conclusion, this study provides the proof of concept that dichloroacetate can effectively sensitize glioblastoma cells to radiotherapy by modulating the metabolic state of tumor cells. These findings warrant further evaluation of the combination of dichloroacetate and radiotherapy in clinical trials.

Journal ArticleDOI
TL;DR: The results support the rationale for the clinical testing of combined VEGF and HGF/c-met pathway blockade in the treatment of ccRCC, both in first- and second-line setting.
Abstract: Alternative pathways to the VEGF, such as hepatocyte growth factor or HGF/c-met, are emerging as key players in tumor angiogenesis and resistance to anti-VEGF therapies. The aim of this study was to assess the effects of a combination strategy targeting the VEGF and c-met pathways in clear cell renal cell carcinoma (ccRCC) models. Male SCID mice (8/group) were implanted with 786-O tumor pieces and treated with either a selective VEGF receptor tyrosine kinase inhibitor, axitinib (36 mg/kg, 2×/day); a c-met inhibitor, crizotinib (25 mg/kg, 1×/day); or combination. We further tested this drug combination in a human ccRCC patient-derived xenograft, RP-R-01, in both VEGF-targeted therapy-sensitive and -resistant models. To evaluate the resistant phenotype, we established an RP-R-01 sunitinib-resistant model by continuous sunitinib treatment (60 mg/kg, 1×/day) of RP-R-01-bearing mice. Treatment with single-agent crizotinib reduced tumor vascularization but failed to inhibit tumor growth in either model, despite also a significant increase of c-met expression and phosphorylation in the sunitinib-resistant tumors. In contrast, axitinib treatment was effective in inhibiting angiogenesis and tumor growth in both models, with its antitumor effect significantly increased by the combined treatment with crizotinib, independently from c-met expression. Combination treatment also induced prolonged survival and significant tumor growth inhibition in the 786-O human RCC model. Overall, our results support the rationale for the clinical testing of combined VEGF and HGF/c-met pathway blockade in the treatment of ccRCC, both in first- and second-line setting.