scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Neurobiology in 2020"


Journal ArticleDOI
TL;DR: The various molecular mediators that regulate GBM angiogenesis are highlighted and summarized with focus on recent clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.
Abstract: Angiogenesis is the growth of new capillaries from the preexisting blood vessels. Glioblastoma (GBM) tumors are highly vascularized tumors, and glioma growth depends on the formation of new blood vessels. Angiogenesis is a complex process involving proliferation, migration, and differentiation of vascular endothelial cells (ECs) under the stimulation of specific signals. It is controlled by the balance between its promoting and inhibiting factors. Various angiogenic factors and genes have been identified that stimulate glioma angiogenesis. Therefore, attention has been directed to anti-angiogenesis therapy in which glioma proliferation is inhibited by inhibiting the formation of new tumor vessels using angiogenesis inhibitory factors and drugs. Here, in this review, we highlight and summarize the various molecular mediators that regulate GBM angiogenesis with focus on recent clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.

162 citations


Journal ArticleDOI
TL;DR: An overview of gut microbiota and their dysregulation in the pathogenesis of Alzheimer’s disease is provided and novel insights into the modification of Gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Abstract: Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.

148 citations


Journal ArticleDOI
TL;DR: Early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage.
Abstract: According to the United States Centers for Disease Control and Prevention (CDC), as of July 11, 2016, the reported average incidence of children diagnosed with an autism spectrum disorder (ASD) was 1 in 68 (1.46%) among 8-year-old children born in 2004 and living within the 11 monitoring sites' surveillance areas in the United States of America (USA) in 2012. ASD is a multifaceted neurodevelopmental disorder that is also considered a hidden disability, as, for the most part; there are no apparent morphological differences between children with ASD and typically developing children. ASD is diagnosed based upon a triad of features including impairment in socialization, impairment in language, and repetitive and stereotypic behaviors. The increasing incidence of ASD in the pediatric population and the lack of successful curative therapies make ASD one of the most challenging disorders for medicine. ASD neurobiology is thought to be associated with oxidative stress, as shown by increased levels of reactive oxygen species and increased lipid peroxidation, as well as an increase in other indicators of oxidative stress. Children with ASD diagnosis are considered more vulnerable to oxidative stress because of their imbalance in intracellular and extracellular glutathione levels and decreased glutathione reserve capacity. Several studies have suggested that the redox imbalance and oxidative stress are integral parts of ASD pathophysiology. As such, early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage. In this review, many aspects of the role of oxidative stress in ASD are discussed, taking into account that the process of oxidative stress may be a target for therapeutic interventions.

140 citations


Journal ArticleDOI
TL;DR: The presented data strongly support the hypothesis that whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in maintaining and fostering the neurodegenersative process.
Abstract: Although the pathogenesis of neurodegenerative diseases is still widely unclear, various mechanisms have been proposed and several pieces of evidence are supportive for an important role of mitochondrial dysfunction. The present review provides a comprehensive and up-to-date overview about the role of mitochondria in the two most common neurodegenerative disorders: Alzheimer's disease (AD) and Parkinson's disease (PD). Mitochondrial involvement in AD is supported by clinical features like reduced glucose and oxygen brain metabolism and by numerous microscopic and molecular findings, including altered mitochondrial morphology, impaired respiratory chain function, and altered mitochondrial DNA. Furthermore, amyloid pathology and mitochondrial dysfunction seem to be bi-directionally correlated. Mitochondria have an even more remarkable role in PD. Several hints show that respiratory chain activity, in particular complex I, is impaired in the disease. Mitochondrial DNA alterations, involving deletions, point mutations, depletion, and altered maintenance, have been described. Mutations in genes directly implicated in mitochondrial functioning (like Parkin and PINK1) are responsible for rare genetic forms of the disease. A close connection between alpha-synuclein accumulation and mitochondrial dysfunction has been observed. Finally, mitochondria are involved also in atypical parkinsonisms, in particular multiple system atrophy. The available knowledge is still not sufficient to clearly state whether mitochondrial dysfunction plays a primary role in the very initial stages of these diseases or is secondary to other phenomena. However, the presented data strongly support the hypothesis that whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in maintaining and fostering the neurodegenerative process.

127 citations


Journal ArticleDOI
TL;DR: CIRS plays a key role in the pathophysiology of schizophrenia by negatively regulating the primary IRS and contributing to recovery from the acute phase of illness, and components of the CIRS may offer promising therapeutic targets for schizophrenia.
Abstract: Several lines of evidence indicate that aberrations in immune-inflammatory pathways may contribute to the pathophysiology of schizophrenia spectrum disorders. Here, we propose a novel theoretical framework that was previously developed for major depression and bipolar disorder, namely, the compensatory immune-regulatory reflex system (CIRS), as applied to the neuro-immune pathophysiology of schizophrenia and its phenotypes, including first-episode psychosis (FEP), acute relapses, chronic and treatment-resistant schizophrenia (TRS), comorbid depression, and deficit schizophrenia. These schizophrenia phenotypes and manifestations are accompanied by increased production of positive acute-phase proteins, including haptoglobin and α2-macroglobulin, complement factors, and macrophagic M1 (IL-1β, IL-6, and TNF-α), T helper (Th)-1 (interferon-γ and IL-2R), Th-2 (IL-4, IL-5), Th-17 (IL-17), and T regulatory (Treg; IL-10 and transforming growth factor (TGF)-β1) cytokines, cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway, and chemokines, including CCL-11 (eotaxin), CCL-2, CCL-3, and CXCL-8. While the immune profiles in the different schizophrenia phenotypes indicate the activation of the immune-inflammatory response system (IRS), there are simultaneous signs of CIRS activation, including increased levels of the IL-1 receptor antagonist (sIL-1RA), sIL-2R and tumor necrosis factor-α receptors, Th-2 and Treg phenotypes with increased IL-4 and IL-10 production, and increased levels of TRYCATs and haptoglobin, α2-macroglobulin, and other acute-phase reactants, which have immune-regulatory and anti-inflammatory effects. Signs of activated IRS and CIRS pathways are also detected in TRS, chronic, and deficit schizophrenia, indicating that these conditions are accompanied by a new homeostatic setpoint between upregulated IRS and CIRS components. In FEP, increased baseline CIRS activity is a protective factor that may predict favorable clinical outcomes. Moreover, impairments in the CIRS are associated with deficit schizophrenia and greater impairments in semantic and episodic memory. It is concluded that CIRS plays a key role in the pathophysiology of schizophrenia by negatively regulating the primary IRS and contributing to recovery from the acute phase of illness. Therefore, components of the CIRS may offer promising therapeutic targets for schizophrenia.

99 citations


Journal ArticleDOI
TL;DR: The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71.
Abstract: Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.

83 citations


Journal ArticleDOI
TL;DR: The results demonstrated that 6-OHDA-induced ferroptosis could be observed in vivo zebrafish and in vitro human dopaminergic cell line (SH-SY5Y cells) model and found that high p62/SQSTM1 (p62) expression could protect SH-SY 5Y cells against ferroPTosis through promoting Nrf2 nuclear transfer and upregulating the expression of the antioxidant protein heme oxygenase-1 (HO-1).
Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder primarily caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). However, the manner of death of dopaminergic neurons remains indistinct. Ferroptosis is a form of cell death involving in the iron-dependent accumulation of glutathione depletion and lipid peroxide. Besides, previous studies indicated that ferroptosis might be involved in the death of dopaminergic neurons. In this study, we aim to explore the protective effect of the p62-Keap1-Nrf2 pathway against 6-hydroxydopamine (6-OHDA)-induced ferroptosis in dopaminergic cells. Firstly, our results demonstrated that 6-OHDA-induced ferroptosis could be observed in vivo zebrafish and in vitro human dopaminergic cell line (SH-SY5Y cells) model. Moreover, ferroptosis induced by 6-OHDA mitigates in SH-SY5Y cells upon ferrostatin-1 (Fer, an inhibitor of ferroptosis) treatment via upregulating the protein expression of glutathione peroxidase 4 (GPX4). Then, we found that high p62/SQSTM1 (p62) expression could protect SH-SY5Y cells against ferroptosis through promoting Nrf2 nuclear transfer and upregulating the expression of the antioxidant protein heme oxygenase-1 (HO-1). Ultimately, high p62 expression activates the Nrf2/HO-1 signaling pathway through binding to Kelch-like ECH-associated protein 1 (Keap1). Collectively, the activation of the p62-Keap1-Nrf2 pathway prevents 6-OHDA-induced ferroptosis in SH-SY5Y cells, targeting this pathway in combination with a pharmacological inhibitor of ferroptosis can be a potential approach for PD therapy.

80 citations


Journal ArticleDOI
TL;DR: The role of ER stress and how to target it using different pharmacological approaches in AD development and onset is extensively discussed.
Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.

78 citations


Journal ArticleDOI
TL;DR: Resveratrol increased the levels of phosphorylated AMPK in the cerebral cortex of rats subjected to middle cerebral artery occlusion and in primary cultured neurons exposed to glutamate-induced excitotoxicity, showing that its protective effect depends, partially, on the activation of the AMPK/autophagy pathway.
Abstract: During cerebral ischemia, oxygen and glucose levels decrease, producing many consequences such as the generation of reactive oxygen species, tissue injury, and the general metabolism collapse. Resveratrol triggers signaling dependent on the protein kinase activated by adenosine monophosphate (AMPK), the sensor of cellular energy metabolism that regulates autophagy, eliminates damaged mitochondria, and increases energy sources. In the present study, we investigated the participation of AMPK activation in the protective effect of resveratrol on cerebral ischemia and excitotoxicity. We found that resveratrol increased the levels of phosphorylated AMPK in the cerebral cortex of rats subjected to middle cerebral artery occlusion (MCAO) and in primary cultured neurons exposed to glutamate-induced excitotoxicity. Resveratrol (1.8 mg/Kg; i. v.; administered at the beginning of reperfusion) decreased the infarct area and increased survival of rats subjected to MCAO. In neuronal cultures, resveratrol treatment (40 μM, after excitotoxicity) reduced the production of superoxide anion, prevented the overload of intracellular Ca+2 associated to mitochondrial failure, reduced the release of the lactate dehydrogenase enzyme, and reduced death. It also promoted mitophagy (increased Beclin 1 level, favored the recruitment of LC3-II, reduced LAMP1, and reduced mitochondrial matrix protein HSP60 levels). In both models, inhibition of AMPK activation with Compound C obstructed the effect of resveratrol, showing that its protective effect depends, partially, on the activation of the AMPK/autophagy pathway.

65 citations


Journal ArticleDOI
TL;DR: A review of existing research on key proteins affected in neurodegenerative conditions, such as amyloid-β precursor protein (AβPP or APP), huntingtin-associated protein-1 (HAP1), HAP1, Abelson helper integration site-1, AHI1 or Jouberin, kinesin, and tau are gathered to highlight the link between neurodegenersative conditions and diabetes mellitus.
Abstract: Alzheimer's (or Alzheimer) disease (AD) is the most prevalent subset of dementia, affecting elderly populations worldwide. The cumulative costs of the AD care are rapidly accelerating as the average lifespan increases. Onset and risk factors for AD and AD-like dementias have been largely unknown until recently. Studies show that chronic type II diabetes mellitus (DM) is closely associated with neurodegeneration, especially AD. Type II DM is characterized by the cells' inability to take up insulin, as well as chronic hyperglycemia. In the central nervous system, insulin has crucial regulatory roles, while chronic hyperglycemia leads to formation and accumulation of advanced glycation end products (AGEs). AGEs are the major contributor to insulin resistance in diabetic cells, due to their regulatory role on sirtuin expression. Insulin activity in the central nervous system is known to interact with key proteins affected in neurodegenerative conditions, such as amyloid-β precursor protein (AβPP or APP), huntingtin-associated protein-1 (HAP1), Abelson helper integration site-1 (AHI1 or Jouberin), kinesin, and tau. Sirtuins have been theorized to be the mechanism for insulin resistance, and have been found to be affected in neurodegenerative conditions as well. There are hints that all these neuronal proteins may be closely related, although the mechanisms remain unclear. This review will gather existing research on these proteins and highlight the link between neurodegenerative conditions and diabetes mellitus.

59 citations


Journal ArticleDOI
TL;DR: The critical interaction between estrogen signaling and AD is discussed and the potential of targeting estrogen-related signaling for therapeutic intervention in AD is highlighted.
Abstract: Estrogens play a crucial physiological function in the brain; however, debates exist concerning the role of estrogens in Alzheimer’s disease (AD). Women during pre-, peri-, or menopause periods are more susceptible for developing AD, suggesting the connection of sex factors and a decreased estrogen signaling in AD pathogenesis. Yet, the underlying mechanism of estrogen-mediated neuroprotection is unclarified and is complicated by the existence of estrogen-related factors. Consequently, a deeper analysis of estrogen receptor (ER) expression and estrogen-metabolizing enzymes could interpret the importance of estrogen in age-linked cognitive alterations. Previous studies propose that hormone replacement therapy may attenuate AD onset in postmenopausal women, demonstrating that estrogen signaling is important for the development and progression of AD. For example, ERα exerts neuroprotection against AD by maintaining intracellular signaling cascades and study reported reduced expression of ERα in hippocampal neurons of AD patients. Similarly, reduced expression of ERβ in female AD patients has been associated with abnormal function in mitochondria and improved markers of oxidative stress. In this review, we discuss the critical interaction between estrogen signaling and AD. Moreover, we highlight the potential of targeting estrogen-related signaling for therapeutic intervention in AD.

Journal ArticleDOI
TL;DR: The currently available evidence is reviewed to discuss the plausible immunologic pathways that may contribute to the development of COVID-19 neurological complications, namely Alzheimer's disease, Parkinson’s disease, stroke, multiple sclerosis, Guillain-Barre syndrome, seizure, and brainstem involvement.
Abstract: Similar to its predecessors, coronavirus disease 2019 (COVID-19) exhibits neurotrophic properties, which lead to progression of neurologic sequelae. Besides direct viral invasion to the central nervous system (CNS), indirect CNS involvement through viral-mediated immune response is plausible. Aberrant immune pathways such as extreme release of cytokines (cytokine storm), autoimmunity mediated by cross-reactivity between CNS components and viral particles, and microglial activation propagate CNS damage in these patients. Here, we review the currently available evidence to discuss the plausible immunologic pathways that may contribute to the development of COVID-19 neurological complications, namely Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, Guillain-Barre syndrome, seizure, and brainstem involvement.

Journal ArticleDOI
TL;DR: Results indicate that the nasal administration of NE as a CD73 siRNA delivery system offered an efficient means of gene knockdown and may represent a potential alternative for glioblastoma treatment.
Abstract: Glioblastoma is the most devastating primary brain tumor. Effective therapies are not available, mainly due to high tumor heterogeneity, chemoresistance, and the difficulties imposed by blood-brain barrier. CD73, an enzyme responsible for adenosine (ADO) production, is overexpressed in cancer cells and emerges as a target for glioblastoma treatment. Indeed, ADO causes a variety of tumor-promoting actions, particularly by inducing tumor immune escape, whereas CD73 inhibition impairs tumor progression. Here, a cationic nanoemulsion to deliver CD73siRNA (NE-siRNA CD73R) via nasal route aiming glioblastoma treatment was developed. NE-siRNA CD73R was uptaken by glioma cells in culture, resulting in a parallel 60-80% decrease in AMPase activity and 30-50% in cell viability. Upon nasal delivery, NE-siRNA CD73R was detected in rat brain and serum. Notably, treatment with CD73siRNA complexes of glioma-bearing Wistar rats reduced tumor growth by 60%. Additionally, NE-siRNA CD73R treatment decreased 95% ADO levels in liquor and tumor CD73 expression, confirming in vivo CD73 silencing. Finally, no toxicity was observed in either primary astrocytes or rats with this cationic nanoemulsion. These results suggest that nasal administration of cationic NE as CD73 siRNA delivery system represents a novel potential treatment for glioblastoma. Graphical Abstract Glioblastoma is the most common and devastating form of primary brain tumor. CD73, a protein involved in cell-cell adhesion and migration processes and also responsible for extracellular adenosine (ADO) production, is overexpressed by glioma cells and emerges as an important target for glioma treatment. Indeed, ADO participates in tumor immune escape, cell proliferation, and angiogenesis, and CD73 inhibition impairs those processes. Here, a cationic nanoemulsion to deliver CD73 siRNA (NE-siRNA CD73R) via nasal route aiming glioblastoma treatment was developed. NE-siRNA CD73R knockdown in vitro and in vivo CD73. Upon nasal delivery of NE-siRNA CD73R, the treatment markedly reduced tumor volume by 60% in a rat preclinical glioblastoma model. The treatment was well tolerated, and did not induce kidney, liver, lung, olfactory, bone marrow, or behavior alterations. These results indicate that the nasal administration of NE as a CD73 siRNA delivery system offered an efficient means of gene knockdown and may represent a potential alternative for glioblastoma treatment.

Journal ArticleDOI
TL;DR: GA prevented LPS-induced programmed cell deaths of nigrostriatal dopaminergic neurons of the rat brain, suggesting that GA may be neuroprotective by attenuating neuroinflammation in CNS neurodegenerative diseases.
Abstract: Gallic acid (3,4,5-trihydroxybenzoic acid, GA), a phenolic acid, is ubiquitous in almost all parts of the plant. In the present study, a neuroinflammatory rat model using intranigral infusion of lipopolysaccharides (LPS, 4 μg/μL) was employed to study the neuroprotective effect of GA which was orally administered daily. Compared with the vehicle-treated rats, systemic administration of GA (100 mg/kg) significantly attenuated LPS-induced increases in glial fibrillary acidic protein (a biomarker of activated astrocytes) and ED-1 (a biomarker of activated microglia), as well as inducible nitric oxide synthase (iNOS, a proinflammatory enzyme) and interleukin-1β (a proinflammatory cytokine), in the LPS-infused substantia nigra (SN) of rat brain. At the same time, GA attenuated LPS-induced elevation in heme oxygenase-1 level (a redox-regulated protein) and α-synuclein aggregation (a hallmark of CNS neurodegeneration), suggesting that GA is capable of inhibiting LPS-induced oxidative stress and protein conjugation. Furthermore, GA prevented LPS-induced caspase 3 activation (a biomarker of programmed cell death) and LPS-induced increases in receptor-interacting protein kinase (RIPK)-1 and RIPK-3 levels (biomarkers of necroptosis), indicating that GA inhibited LPS-induced apoptosis and necroptosis in the nigrostriatal dopaminergic system of rat brain. Moreover, an in vitro study was employed to investigate the anti-inflammatory effect of GA on BV2 microglial cells which were subjected to LPS (1 μg/mL) treatment. Consistently, co-incubation of GA diminished LPS-induced increases in iNOS mRNA and iNOS protein expression in the treated BV-2 cells as well as NO production in the culture medium. The anti-oxidative activity of GA was evaluated using iron-induced lipid peroxidation of brain homogenates. After 3-h incubation at 37 °C, GA was more potent than glutathione and less potent than trolox in inhibiting iron-induced lipid peroxidation. Conclusively, the present study suggests that GA is anti-inflammatory via attenuating LPS-induced neuroinflammation, oxidative stress, and protein conjugation. Furthermore, GA prevented LPS-induced programmed cell deaths of nigrostriatal dopaminergic neurons of the rat brain, suggesting that GA may be neuroprotective by attenuating neuroinflammation in CNS neurodegenerative diseases.

Journal ArticleDOI
TL;DR: It is found that stimulating DLK activity predisposes axons to SARM1-dependent degeneration, and enhancedDLK activity reduces axon survival factor abundance and renders axons more susceptible to trauma and metabolic insult.
Abstract: Axon degeneration is a prominent component of many neurological disorders. Identifying cellular pathways that contribute to axon vulnerability may identify new therapeutic strategies for maintenance of neural circuits. Dual leucine zipper kinase (DLK) is an axonal stress response MAP3K that is chronically activated in several neurodegenerative diseases. Activated DLK transmits an axon injury signal to the neuronal cell body to provoke transcriptional adaptations. However, the consequence of enhanced DLK signaling to axon vulnerability is unknown. We find that stimulating DLK activity predisposes axons to SARM1-dependent degeneration. Activating DLK reduces levels of the axon survival factors NMNAT2 and SCG10, accelerating their loss from severed axons. Moreover, mitochondrial dysfunction independently decreases the levels of NMNAT2 and SCG10 in axons, and in conjunction with DLK activation, leads to a dramatic loss of axonal NMNAT2 and SCG10 and evokes spontaneous axon degeneration. Hence, enhanced DLK activity reduces axon survival factor abundance and renders axons more susceptible to trauma and metabolic insult.

Journal ArticleDOI
TL;DR: OA-induced damage on brain tissues is evaluated, and long-term AuNP treatment prevented the neuroinflammation, modulation of mitochondrial function, and impaired cognition induced by AD model, showing that AuNPs may be a promising treatment for neurodisease caused by these elements.
Abstract: Alzheimer’s disease (AD) is characterized by amyloid (A)β peptide accumulation and intracellular neurofibrillary tangles. New hypotheses have suggested that AD involves neuroinflammation and oxidative stress. Gold nanoparticles (AuNP) presents anti-inflammatory and antioxidant characteristics. The present study evaluated the AuNP treatment on an AD model (okadaic acid, OA). Male Wistar rats were injected intracerebroventricularly with OA (100 μg); 24 h later they were treated with 20-nm AuNP (at a dose 2.5 mg/kg) every 48 h for 21 days. The following groups were separated (n = 12/group): Sham, AuNP, OA, and OA + AuNP. OA increases Tau phosphorylation in the cortex and hippocampus, while AuNP treatment maintained it as normal. Spatial memory was impaired by OA, and AuNP treatment prevented this deficit. Neurotrophic factors (BDNF and NGF- β) in the cortex and hippocampus were decreased by OA. The OA and OA + AuNP groups showed increased interleukin (IL)-1 β in the hippocampus and cortex, and the AuNP group showed increased IL-1 β in the hippocampus. In both groups, S100 levels in the cortex and hippocampus were increased by OA. IL-4 was increased in OA + AuNP animals. AuNPs prevented oxidative stress (sulfhydryl and nitrite levels) in brain structures induced by OA. Moreover, OA modulated ATP synthase activity, and AuNP maintained normal brain mitochondrial function. The antioxidant capacities were reduced by OA, and AuNP restored antioxidant status (SOD, catalase activities and GSH levels) on brain. OA-induced damage on brain tissues, and long-term AuNP treatment prevented the neuroinflammation, modulation of mitochondrial function, and impaired cognition induced by AD model, showing that AuNPs may be a promising treatment for neurodisease caused by these elements.

Journal ArticleDOI
TL;DR: CM-NP could be an ideal carrier to deliver curcumin for potential therapeutic approaches into glioblastoma, and the data indicate that CM-NP exhibited stronger anti-tumor effects on GSCs than CM.
Abstract: Using a novel curcumin-loaded niosome nanoparticle (CM-NP), the present study was designed to evaluate the effect of curcumin on human glioblastoma stem-like cells (GSCs). CM-NP has a diameter of ~ 60 nm and a zeta potential of ~ − 35 mV with a constant physicochemical stability. The cytotoxic effects of free curcumin (CM) and CM-NP were investigated on GSCs obtained during the removal of a brain tumor. Both CM and CM-NP caused a dose-dependent decrease in cell proliferation and viability of GSCs. The IC50 values of CM and CM-NP on GSCs were 50 and 137 μg/ml after 24 h, respectively. CM-NP exerted significantly higher effects on GSC viability, apoptosis, cell cycle arrest, and the expression of Bax, a pro-apoptotic marker, compared with CM. In addition, the migration of GSCs was significantly impaired following the administration of CM-NP compared with CM. Furthermore, CM-NP significantly increased the values of reactive oxygen species and decreased the mRNA expressions of NF-κB and IL-6 of GSCs compared with CM. Our data also revealed that CM-NP could significantly reduce the invasiveness of GSCs compared with CM, possibly via MCP-1-mediated pathways. In addition, CM-NP exhibited a significantly greater inhibitory effect on colony formation of GSCs compared with CM. These data indicate that CM-NP exhibited stronger anti-tumor effects on GSCs than CM. Although further in vivo investigations are warranted, our results suggest that CM-NP could be an ideal carrier to deliver curcumin for potential therapeutic approaches into glioblastoma.

Journal ArticleDOI
TL;DR: The results suggest that histone modifications may have a crucial role in the development of epilepsy and early treatment with HDACi might be a possible strategy for preventing epileptogenesis also affecting behavioural comorbidities.
Abstract: Epigenetic mechanisms, such as alterations in histone acetylation based on histone deacetylases (HDACs) activity, have been linked not only to normal brain function but also to several brain disorders including epilepsy and the epileptogenic process. In WAG/Rij rats, a genetic model of absence epilepsy, epileptogenesis and mild-depression comorbidity, we investigated the effects of two HDAC inhibitors (HDACi), namely sodium butyrate (NaB), valproic acid (VPA) and their co-administration, on the development of absence seizures and related psychiatric/neurologic comorbidities following two different experimental paradigms. Treatment effects have been evaluated by EEG recordings (EEG) and behavioural tests at different time points. Prolonged and daily VPA and NaB treatment, started before absence seizure onset (P30), significantly reduced the development of absence epilepsy showing antiepileptogenic effects. These effects were enhanced by NaB/VPA co-administration. Furthermore, early-chronic HDACi treatment improved depressive-like behaviour and cognitive performance 1 month after treatment withdrawal. WAG/Rij rats of 7 months of age showed reduced acetylated levels of histone H3 and H4, analysed by Western Blotting of homogenized brain, in comparison to WAG/Rij before seizure onset (P30). The brain histone acetylation increased significantly during treatment with NaB or VPA alone and more markedly during co-administration. We also observed decreased expression of both HDAC1 and 3 following HDACi treatment compared to control group. Our results suggest that histone modifications may have a crucial role in the development of epilepsy and early treatment with HDACi might be a possible strategy for preventing epileptogenesis also affecting behavioural comorbidities.

Journal ArticleDOI
TL;DR: The results suggest long-standing effects of prenatal infections on schizophrenia-like behavioral deficits are mediated by immune-inflammatory and apoptotic pathways, increased oxidative stress toxicity, and lowered antioxidant and neuroprotective defenses.
Abstract: Schizophrenia is a complex neuropsychiatric disorder, influenced by a combined action of genes and environmental factors. The neurodevelopmental origin is one of the most widely recognized etiological models of this heterogeneous disorder. Environmental factors, especially infections during gestation, appear to be a major risk determinant of neurodevelopmental basis of schizophrenia. Prenatal infection may cause maternal immune activation (MIA) and enhance risk of schizophrenia in the offspring. However, the precise mechanistic basis through which MIA causes long-lasting schizophrenia-like behavioral deficits in offspring remains inadequately understood. Herein, we aimed to delineate whether prenatal infection-induced MIA causes schizophrenia-like behaviors through its long-lasting effects on immune-inflammatory and apoptotic pathways, oxidative stress toxicity, and antioxidant defenses in the brain of offspring. Sprague-Dawley rats were divided into three groups (n = 15/group) and were injected with poly (I:C), LPS, and saline at gestational day (GD)-12. Except IL-1β, plasma levels of IL-6, TNF-α, and IL-17A assessed after 24 h were significantly elevated in both the poly (I:C)- and LPS-treated pregnant rats, indicating MIA. The rats born to dams treated with poly (I:C) and LPS displayed increased anxiety-like behaviors and significant deficits in social behaviors. Furthermore, the hippocampus of the offspring rats of both the poly (I:C)- and LPS-treated groups showed increased signs of lipid peroxidation, diminished total antioxidant content, and differentially upregulated expression of inflammatory (TNFα, IL6, and IL1β), and apoptotic (Bax, Cas3, and Cas9) genes but decreased expression of neuroprotective (BDNF and Bcl2) genes. The results suggest long-standing effects of prenatal infections on schizophrenia-like behavioral deficits, which are mediated by immune-inflammatory and apoptotic pathways, increased oxidative stress toxicity, and lowered antioxidant and neuroprotective defenses. The findings suggest that prenatal infections may underpin neurodevelopmental aberrations and neuroprogression and subsequently schizophrenia-like symptoms.

Journal ArticleDOI
TL;DR: Understanding the precise molecular cascade following cannabinoid treatment is suggested, focusing especially on gene expression to identify drug targets for preventing and repairing neurodegeneration.
Abstract: Neurodegeneration leading to Parkinson’s disease (PD) and Alzheimer’s disease (AD) has become a major health burden globally. Current treatments mainly target controlling symptoms and there are no therapeutics available in clinical practice to preventing the neurodegeneration or inducing neuronal repairing. Thus, the demand of novel research for the two disorders is imperative. This literature review aims to provide a collection of published work on PD and AD and current uses of endocannabinoid system (ECS) as a potential drug target for neurodegeneration. PD is frequently treated with l-DOPA and deep brain stimulation. Recent gene modification and remodelling techniques, such as CRISPR through human embryonic stem cells and induced pluripotent stem cells, have shown promising strategy for personalised medicine. AD characterised by extracellular deposits of amyloid β-senile plaques and neurofibrillary tangles of tau protein commonly uses choline acetyltransferase enhancers as therapeutics. The ECS is currently being studied as PD and AD drug targets where overexpression of ECS receptors exerted neuroprotection against PD and reduced neuroinflammation in AD. The delta-9-tetrahydrocannabinoid (Δ9-THC) and cannabidiol (CBD) cannabinoids of plant Cannabis sativa have shown neuroprotection upon PD and AD animal models yet triggered toxic effects on patients when administered directly. Therefore, understanding the precise molecular cascade following cannabinoid treatment is suggested, focusing especially on gene expression to identify drug targets for preventing and repairing neurodegeneration.

Journal ArticleDOI
TL;DR: Keeping specific membrane lipid compositions at the synapses, especially regarding anionic lipids, affect the level of NT-membrane association and provide a plausible link between the MLC imbalances and neurological diseases such as depression or Parkinson’s disease.
Abstract: Synaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to the membrane. Accordingly, when a lipophilic NT is on route to a membrane-buried binding site, it adheres on the membrane and, then, travels along its plane towards the receptor. In contrast, lipophobic NTs, which are destined to bind into receptors with extracellular binding sites, prefer the water phase. This membrane-based sorting splits the neurotransmission into membrane-independent and membrane-dependent mechanisms and should make the NT binding into the receptors more efficient than random diffusion would allow. The potential implications and notable exceptions to the mechanisms are discussed here. Importantly, maintaining specific membrane lipid compositions (MLCs) at the synapses, especially regarding anionic lipids, affect the level of NT-membrane association. These effects provide a plausible link between the MLC imbalances and neurological diseases such as depression or Parkinson’s disease. Moreover, the membrane plays a vital role in other phases of the NT life cycle, including storage and release from the synaptic vesicles, transport from the synaptic cleft, as well as their synthesis and degradation.

Journal ArticleDOI
TL;DR: The purinergic receptor subunit P2rx2 is known to display restricted expression in placodal-derived nodose neurons, and it is demonstrated that the gene profiles defining cells high and low in expression of P2 Rx2 include G protein coupled receptors and ion channels, indicative of preferential expression in nodose or jugular neurons.
Abstract: Bronchopulmonary sensory neurons are derived from the vagal sensory ganglia and are essential for monitoring the physical and chemical environment of the airways and lungs. Subtypes are heterogenous in their responsiveness to stimuli, phenotype, and developmental origin, but they collectively serve to regulate normal respiratory and pulmonary processes and elicit a diverse range of defensive physiological responses that protect against noxious stimuli. In this study, we aimed to investigate the transcriptional features of vagal bronchopulmonary sensory neurons using single-cell RNA sequencing (scRNA-seq) to provide a deeper insight into their molecular profiles. Retrogradely labeled vagal sensory neurons projecting to the airways and lungs were hierarchically clustered into five types reflecting their developmental lineage (neural crest versus placodal) and putative function (nociceptors versus mechanoreceptors). The purinergic receptor subunit P2rx2 is known to display restricted expression in placodal-derived nodose neurons, and we demonstrate that the gene profiles defining cells high and low in expression of P2rx2 include G protein coupled receptors and ion channels, indicative of preferential expression in nodose or jugular neurons. Our results provide valuable insight into the transcriptional characteristics of bronchopulmonary sensory neurons and provide rational targets for future physiological investigations.

Journal ArticleDOI
TL;DR: The evidence for NfL being a reliable biomarker in the early detection and disease management in several CNS-related disorders is summarized and the correlation between MRI and N fL is highlighted and asked whether they can be combined.
Abstract: The search for diagnostic and prognostic biomarkers for neurodegenerative conditions is of high importance, since these disorders may present difficulties in differential diagnosis. Biomarkers with high sensitivity and specificity are required. Neurofilament light chain (NfL) is a unique biomarker related to axonal damage and neural cell death, which is elevated in a number of neurological disorders, and can be detected in cerebrospinal fluid (CSF), as well as blood, serum, or plasma samples. Although the NfL concentration in CSF is higher than that in blood, blood measurement may be easier in practice due to its lesser invasiveness, reproducibility, and convenience. Many studies have investigated NfL in both CSF and serum/plasma as a potential biomarker of neurodegenerative disorders. Neuroimaging biomarkers can also potentially improve detection of CNS-related disorders at an early stage. Magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) are sensitive techniques to visualize neuroaxonal loss. Therefore, investigating the combination of NfL levels with indices extracted from MRI and DTI scans could potentially improve diagnosis of CNS-related disorders. This review summarizes the evidence for NfL being a reliable biomarker in the early detection and disease management in several CNS-related disorders. Moreover, we highlight the correlation between MRI and NfL and ask whether they can be combined.

Journal ArticleDOI
Linglong Xiao1, Huaping Zheng1, Jing Li1, Qinghua Wang1, Haitao Sun1 
TL;DR: The existence of the polarization indicates that the role of microglia in disease's progression and recovery after ICH is still unclear, perhaps involving microglial secretion of anti-inflammatory or pro-inflammatory cytokines and chemokines.
Abstract: Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke; there is still a lack of effective treatment. Microglia are a major component of the innate immune system, and they respond to acute brain injury by activating and forming classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotype. The existence of the polarization indicates that the role of microglia in disease's progression and recovery after ICH is still unclear, perhaps involving microglial secretion of anti-inflammatory or pro-inflammatory cytokines and chemokines. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is considered to be the main participant in neuroinflammation. Recent evidence has shown that NLRP3 inflammasome can be activated after ICH, resulting in inflammatory cascade reactions and aggravating brain injury. Furthermore, previous studies have reported that NLRP3 inflammasome is mainly present in microglia, so we speculate that its activation may be strongly associated with microglial polarization. Many scholars have investigated the role of brain injury caused by NLRP3 inflammasome after ICH, but the precise operating mechanisms remain uncertain. This review summarized the activation mechanism of NLRP3 inflammasome after ICH and the possible mechanism of NLRP3 inflammasome promoting neuroinflammation and aggravating nerve injury and discussed the relevant potential therapeutic targets.

Journal ArticleDOI
TL;DR: Results suggest that BHD has neuroprotective effects and neurogenesis-promoting effects via activating PI3K/Akt/Bad and Jak2/Stat3/Cyclin D1 signaling pathways.
Abstract: Buyang Huanwu Decoction (BHD), a classic traditional Chinese medicine (TCM) formula, has been used for recovering neurological dysfunctions and treating post-stroke disability in China for 200 years. In the present study, we investigated the effects of BHD on inhibiting neuronal apoptosis, promoting proliferation and differentiation of neural stem cells (NSCs) and neurite formation and enhancing learning and memory functional recovery in an experimental rat ischemic stroke model. BHD significantly reduced infarct volume and decreased cell apoptosis in the ischemic brain. BHD enhanced neuronal cell viability in vitro. BHD dose-dependently promoted the proliferation of NSCs in ischemic rat brains in vivo. Moreover, BHD promoted neuronal and astrocyte differentiation in primary cultured NSCs in vitro. Water maze test revealed that BHD promoted the recovery of learning function but not memory functions in the transient ischemic rats. We then investigated the changes of the cellular signaling molecules by using two-dimension (2D) gel electrophoresis and focused on the PI3K/Akt/Bad and Jak2/Stat3/cyclin D1signaling pathway to uncover its underlying mechanisms for its neuroprotective and neurogenetic effects. BHD significantly upregulated the expression of p-PI3K, p-Akt, and p-Bad as well as the expression of p-Jak, p-Stat3, and cyclin D1 in vitro and in vivo. In addition, BHD upregulated Hes1 and downregulated cav-1 in vitro and in vivo. Taken together, these results suggest that BHD has neuroprotective effects and neurogenesis-promoting effects via activating PI3K/Akt/Bad and Jak2/Stat3/Cyclin D1 signaling pathways.

Journal ArticleDOI
Ying Xing1, Yulong Bai1
TL;DR: The mechanisms by which exercise-induced neuroplasticity improves motor function and cognitive ability after ischemic stroke are discussed.
Abstract: After ischemic stroke, survivors experience motor dysfunction and deterioration of memory and cognition. These symptoms are associated with the disruption of normal neuronal function, i.e., the secretion of neurotrophic factors, interhemispheric connections, and synaptic activity, and hence the disruption of the normal neural circuit. Exercise is considered an effective and feasible rehabilitation strategy for improving cognitive and motor recovery following ischemic stroke through the facilitation of neuroplasticity. In this review, our aim was to discuss the mechanisms by which exercise-induced neuroplasticity improves motor function and cognitive ability after ischemic stroke. The associated mechanisms include increases in neurotrophins, improvements in synaptic structure and function, the enhancement of interhemispheric connections, the promotion of neural regeneration, the acceleration of neural function reorganization, and the facilitation of compensation beyond the infarcted tissue. We also discuss some common exercise strategies and a novel exercise therapy, robot-assisted movement, which might be widely applied in the clinic to help stroke patients in the future.

Journal ArticleDOI
TL;DR: The latest therapeutic developments against COVID-19 are discussed, including novel protease inhibitors that have made it into clinical trials and attempts to develop a vaccine.
Abstract: The coronavirus disease of 2019 (COVID-19) is a pandemic disease that has taken the lives of many around the world. It is caused by severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2). To date, the USA, Italy, Spain, France, Russia, and the UK have been hit the hardest by the virus. However, death counts are still rising. Some nations have managed to "flatten" the death rate via protective measures such physical distancing, quarantine measures, and therapeutic management. The structure of the SARS-CoV-2 virus comprises of S proteins, M proteins, E proteins, hemagglutinin esterases, nucleocapsid proteins, and a 30-kb RNA genome. Viral proteases cleave these polyproteins and RNA-dependent polymerases replicate the genome. Currently, there are no effective therapies against this new disease. Numerous investigators are developing novel protease inhibitors, some of which have made it into clinical trials. Researchers are also attempting to develop a vaccine. In this review paper, we discuss the latest therapeutic developments against COVID-19. Graphical Abstract.

Journal ArticleDOI
TL;DR: To compare OSTOX biomarkers and antioxidant (ANTIOX) defenses in deficit versus non-deficit schizophrenia, there is now evidence that schizophrenia and deficit schizophrenia are neuro-immune conditions and that oxidative stress toxicity (OSTOX) may play a pathophysiological role.
Abstract: There is now evidence that schizophrenia and deficit schizophrenia are neuro-immune conditions and that oxidative stress toxicity (OSTOX) may play a pathophysiological role. Aims of the study: to compare OSTOX biomarkers and antioxidant (ANTIOX) defenses in deficit versus non-deficit schizophrenia. We examined lipid hydroperoxides (LOOH), malondialdehyde (MDA), advanced oxidation protein products (AOPP), sulfhydryl (–SH) groups, paraoxonase 1 (PON1) activity and PON1 Q192R genotypes, and total radical-trapping antioxidant parameter (TRAP) as well as immune biomarkers in patients with deficit (n = 40) and non-deficit (n = 40) schizophrenia and healthy controls (n = 40). Deficit schizophrenia is characterized by significantly increased levels of AOPP and lowered –SH, and PON1 activity, while no changes in the OSTOX/ANTIOX biomarkers were found in non-deficit schizophrenia. An increased OSTOX/ANTIOX ratio was significantly associated with deficit versus non-deficit schizophrenia (odds ratio = 3.15, p < 0.001). Partial least squares analysis showed that 47.6% of the variance in a latent vector extracted from psychosis, excitation, hostility, mannerism, negative symptoms, psychomotor retardation, formal thought disorders, and neurocognitive test scores was explained by LOOH+AOPP, PON1 genotype + activity, CCL11, tumor necrosis factor (TNF)-α, and IgA responses to neurotoxic tryptophan catabolites (TRYCATs), whereas –SH groups and IgM responses to MDA showed indirect effects mediated by OSTOX and neuro-immune biomarkers. When overall severity of schizophrenia increases, multiple immune and oxidative (especially protein oxidation indicating chlorinative stress) neurotoxicities and impairments in immune-protective resilience become more prominent and shape a distinct nosological entity, namely deficit schizophrenia. The nomothetic network psychiatry approach allows building causal-pathway-phenotype models using machine learning techniques.

Journal ArticleDOI
TL;DR: Evidence is provided that the symptomatic and cognitive impairments in schizophrenia are to a large extent mediated by the effects of immune-mediated neurotoxicity as well as lowered regulation by the innate immune system.
Abstract: Accumulating evidence suggests that TNF-α-mediated immune-neurotoxicity contributes to cognitive impairments and the overall severity of schizophrenia (OSOS). There are no data whether peripheral IL-6 and IL-4 may affect the phenome of schizophrenia above and beyond the effects of TNF-α and whether those cytokines are regulated by lowered natural IgM to malondialdehyde (MDA) and paraoxonase 1 enzyme activity. We assessed the aforementioned biomarkers in a cross-sectional study that enrolled schizophrenia patients with (n = 40) and without (n = 40) deficit schizophrenia and 40 healthy controls. Deficit schizophrenia was best predicted by a combination of increased IL-6 and PON1 status (QQ genotype and lowered CMPAase activity) and lowered IgM to MDA. Partial least squares bootstrapping shows that 41.0% of the variance in negative symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation, and formal thought disorders was explained by increased TNF-α and PON1 status (QQ genotype and lowered CMPAase activity), which lowered IL-4 and IgM to MDA as well as male sex and lowered education. We found that 47.9% of the variance in verbal fluency, word list memory, true recall, Mini-Mental State Examination, and executive functions was predicted by increased TNF-α and lowered IL-4, IgM to MDA, and education. In addition, both TNF-α and IL-4 levels were significantly associated with lowered IgM to MDA, while TNF-α was correlated with PON1 status. These data provide evidence that the symptomatic (both the deficit subtype and OSOS) and cognitive impairments in schizophrenia are to a large extent mediated by the effects of immune-mediated neurotoxicity as well as lowered regulation by the innate immune system.

Journal ArticleDOI
TL;DR: Evidence suggests that chronic EGCG prevents distinct neuropathological AD-related hallmarks and may be a promising disease-modifying treatment for neurodegenerative diseases.
Abstract: Epigallocatechin-3-gallate (EGCG), a catechin found in green tea, has been previously investigated for its neuroprotective effects in vitro and in vivo. In the present study, we aimed to evaluate its possible beneficial effects in a well-established preclinical mixed model of familial Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) based on the use of transgenic APPswe/PS1dE9 (APP/PS1) mice fed with a high fat diet (HFD). C57BL/6 wild-type (WT) and APP/PS1 mice were used in this study. APP/PS1 mice were fed with a palmitic acid-enriched HFD (APP/PS1 HFD) containing 45% of fat mainly from hydrogenated coconut oil. Intraperitoneal glucose tolerance tests (IP-GTT) and insulin tolerance tests (IP-ITT) were performed. Western blot analyses were performed to analyse protein expression, and water maze and novel object recognition test were done to evaluate the cognitive process. EGCG treatment improves peripheral parameters such as insulin sensitivity or liver insulin pathway signalling, as well as central memory deficits. It also markedly increased synaptic markers and cAMP response element binding (CREB) phosphorylation rates, as a consequence of a decrease in the unfolded protein response (UPR) activation through the reduction in the activation factor 4 (ATF4) levels and posterior downregulation of protein tyrosine phosphatase 1B (PTP1B). Moreover, EGCG significantly decreased brain amyloid β (Aβ) production and plaque burden by increasing the levels of α-secretase (ADAM10). Also, it led to a reduction in neuroinflammation, as suggested by the decrease in astrocyte reactivity and toll-like receptor 4 (TLR4) levels. Collectively, evidence suggests that chronic EGCG prevents distinct neuropathological AD-related hallmarks. This study also provides novel insights into the metabolic and neurobiological mechanisms of EGCG against cognitive loss through its effects on UPR function, suggesting that this compound may be a promising disease-modifying treatment for neurodegenerative diseases.