Journal•ISSN: 0026-8976

# Molecular Physics

Taylor & Francis

About: Molecular Physics is an academic journal published by Taylor & Francis. The journal publishes majorly in the area(s): Ab initio & Excited state. It has an ISSN identifier of 0026-8976. Over the lifetime, 17367 publications have been published receiving 483983 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, a direct difference method for the computation of molecular interactions has been based on a bivariational transcorrelated treatment, together with special methods for the balancing of other errors.

Abstract: A new direct difference method for the computation of molecular interactions has been based on a bivariational transcorrelated treatment, together with special methods for the balancing of other errors. It appears that these new features can give a strong reduction in the error of the interaction energy, and they seem to be particularly suitable for computations in the important region near the minimum energy. It has been generally accepted that this problem is dominated by unresolved difficulties and the relation of the new methods to these apparent difficulties is analysed here.

19,483 citations

••

TL;DR: In this paper, a molecular dynamics simulation method which can generate configurations belonging to the canonical (T, V, N) ensemble or the constant temperature constant pressure ensemble was proposed, which is tested for an atomic fluid (Ar) and works well.

Abstract: A molecular dynamics simulation method which can generate configurations belonging to the canonical (T, V, N) ensemble or the constant temperature constant pressure (T, P, N) ensemble, is proposed. The physical system of interest consists of N particles (f degrees of freedom), to which an external, macroscopic variable and its conjugate momentum are added. This device allows the total energy of the physical system to fluctuate. The equilibrium distribution of the energy coincides with the canonical distribution both in momentum and in coordinate space. The method is tested for an atomic fluid (Ar) and works well.

8,110 citations

••

TL;DR: In this paper, an ab initio gauge-invariant molecular orbital theory is developed for nuclear magnetic shielding, which is written as linear combinations of gauge invariant atomic orbitals, the wavefunctions in the presence of a uniform external magnetic field being determined by self-consistent field perturbation theory.

Abstract: An ab initio gauge-invariant molecular orbital theory is developed for nuclear magnetic shielding. The molecular orbitals are written as linear combinations of gauge-invariant atomic orbitals, the wavefunctions in the presence of a uniform external magnetic field being determined by self-consistent field perturbation theory. The final magnetic shielding result is broken up into contributions which can be related to various features of electronic structure. Calculated magnetic shielding constants are presented using three sets of atomic orbitals, all of which are taken as contracted gaussian-type functions. The first two sets are minimal and the third is slightly extended. All three levels of theory give good descriptions of shielding at first row and hydrogen atoms. Carbon and hydrogen chemical shifts calculated at the extended level are in excellent agreement with experimental values.

3,843 citations

••

TL;DR: The constant pressure molecular dynamics (MD) method proposed by Andersen and extended by Parrinello and Rahman to allow changes in the shape of the MD cell is discussed in this paper.

Abstract: Technical aspects of the constant pressure molecular dynamics (MD) method proposed by Andersen and extended by Parrinello and Rahman to allow changes in the shape of the MD cell are discussed. The new MD method is extended to treat molecular systems and to include long range charge-charge interactions. Results on the conservation laws, the frequency of oscillation of the MD cell, and the equations which constrain the shape of the MD cell are also given. An additional constraint is introduced to stop the superfluous MD cell rotation which would otherwise complicate the analysis of crystal structures. The method is illustrated by examining the behaviour of solid nitrogen at high pressure.

2,562 citations

••

TL;DR: In this article, quasi-relativistic energy-adjusted pseudopotentials for the elements of groups 13-17 up to atomic number 53 (I) are presented together with corresponding energy-optimized valence basis sets.

Abstract: Quasi-relativistic energy-adjusted ab initio pseudopotentials for the elements of groups 13–17 up to atomic number 53 (I) are presented together with corresponding energy-optimized valence basis sets. Test calculations for atomic excitation and ionization energies show the reliability of the derived pseudopotentials and basis sets.

2,483 citations