scispace - formally typeset
Search or ask a question
JournalISSN: 1359-4184

Molecular Psychiatry 

Nature Portfolio
About: Molecular Psychiatry is an academic journal published by Nature Portfolio. The journal publishes majorly in the area(s): Medicine & Population. It has an ISSN identifier of 1359-4184. Over the lifetime, 5491 publications have been published receiving 442658 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of available studies examining the human amygdala covers both lesion and electrical stimulation studies as well as the most recent functional neuroimaging studies, and attempts to integrate basic information on normal amygdala function with the current understanding of psychiatric disorders, including pathological anxiety.
Abstract: Here we provide a review of the animal and human literature concerning the role of the amygdala in fear conditioning, considering its potential influence over autonomic and hormonal changes, motor behavior and attentional processes. A stimulus that predicts an aversive outcome will change neural transmission in the amygdala to produce the somatic, autonomic and endocrine signs of fear, as well as increased attention to that stimulus. It is now clear that the amygdala is also involved in learning about positively valenced stimuli as well as spatial and motor learning and this review strives to integrate this additional information. A review of available studies examining the human amygdala covers both lesion and electrical stimulation studies as well as the most recent functional neuroimaging studies. Where appropriate, we attempt to integrate basic information on normal amygdala function with our current understanding of psychiatric disorders, including pathological anxiety.

2,781 citations

Journal ArticleDOI
TL;DR: Evidence of a preponderance of early onset cases in men, high comorbidity with a wide range of disorders, and reliable associations between disorder severity and key outcomes may have implications for how OCD is classified in DSM-V.
Abstract: Despite significant advances in the study of obsessive-compulsive disorder (OCD), important questions remain about the disorder's public health significance, appropriate diagnostic classification, and clinical heterogeneity. These issues were explored using data from the National Comorbidity Survey Replication (NCS-R), a nationally representative survey of U.S. adults. A subsample of 2073 respondents was assessed for lifetime DSM-IV OCD. More than one-quarter of respondents reported experiencing obsessions or compulsions at some time in their lives. While conditional probability of OCD was strongly associated with the number of obsessions and compulsions reported, only small proportions of respondents met full DSM-IV criteria for lifetime (2.3%) or 12-month (1.2%) OCD. OCD is associated with substantial comorbidity, not only with anxiety and mood disorders but also with impulse-control and substance use disorders. Severity of OCD, assessed by an adapted version of the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), is associated with poor insight, high comorbidity, high role impairment, and high probability of seeking treatment. The high prevalence of subthreshold OCD symptoms may help explain past inconsistencies in prevalence estimates across surveys and suggests that the public health burden of OCD may be greater than its low prevalence implies. Evidence of a preponderance of early-onset cases in males, high comorbidity with a wide range of disorders, and reliable associations between disorder severity and key outcomes may have implications for how OCD is classified in DSM-V.

1,971 citations

Journal ArticleDOI
TL;DR: W Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity.
Abstract: Autism spectrum disorders (ASDs) represent a formidable challenge for psychiatry and neuroscience because of their high prevalence, lifelong nature, complexity and substantial heterogeneity. Facing these obstacles requires large-scale multidisciplinary efforts. Although the field of genetics has pioneered data sharing for these reasons, neuroimaging had not kept pace. In response, we introduce the Autism Brain Imaging Data Exchange (ABIDE)-a grassroots consortium aggregating and openly sharing 1112 existing resting-state functional magnetic resonance imaging (R-fMRI) data sets with corresponding structural MRI and phenotypic information from 539 individuals with ASDs and 573 age-matched typical controls (TCs; 7-64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we present this resource and demonstrate its suitability for advancing knowledge of ASD neurobiology based on analyses of 360 male subjects with ASDs and 403 male age-matched TCs. We focused on whole-brain intrinsic functional connectivity and also survey a range of voxel-wise measures of intrinsic functional brain architecture. Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity. Exploratory analyses using an array of regional metrics of intrinsic brain function converged on common loci of dysfunction in ASDs (mid- and posterior insula and posterior cingulate cortex), and highlighted less commonly explored regions such as the thalamus. The survey of the ABIDE R-fMRI data sets provides unprecedented demonstrations of both replication and novel discovery. By pooling multiple international data sets, ABIDE is expected to accelerate the pace of discovery setting the stage for the next generation of ASD studies.

1,939 citations

Journal ArticleDOI
TL;DR: This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry.
Abstract: This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence. The morphological correlates of schizophrenia are subtle, and range from a slight reduction in brain size to localized alterations in the morphology and molecular composition of specific neuronal, synaptic, and glial populations in the hippocampus, dorsolateral prefrontal cortex, and dorsal thalamus. These findings have fostered the view of schizophrenia as a disorder of connectivity and of the synapse. Although attractive, such concepts are vague, and differentiating primary events from epiphenomena has been difficult. A way forward is provided by the recent identification of several putative susceptibility genes (including neuregulin, dysbindin, COMT, DISC1, RGS4, GRM3, and G72). We discuss the evidence for these and other genes, along with what is known of their expression profiles and biological roles in brain and how these may be altered in schizophrenia. The evidence for several of the genes is now strong. However, for none, with the likely exception of COMT, has a causative allele or the mechanism by which it predisposes to schizophrenia been identified. Nevertheless, we speculate that the genes may all converge functionally upon schizophrenia risk via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry. NMDA receptor-mediated glutamate transmission may be especially implicated, though there are also direct and indirect links to dopamine and GABA signalling. Hence, there is a correspondence between the putative roles of the genes at the molecular and synaptic levels and the existing understanding of the disorder at the neural systems level. Characterization of a core molecular pathway and a 'genetic cytoarchitecture' would be a profound advance in understanding schizophrenia, and may have equally significant therapeutic implications.

1,879 citations

Journal ArticleDOI
TL;DR: It is demonstrated that CNS neurotransmission can be profoundly disturbed by the absence of anormal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.
Abstract: Bacterial colonisation of the intestine has a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Regulation of the microbiome-gut-brain axis is essential for maintaining homeostasis, including that of the CNS. However, there is a paucity of data pertaining to the influence of microbiome on the serotonergic system. Germ-free (GF) animals represent an effective preclinical tool to investigate such phenomena. Here we show that male GF animals have a significant elevation in the hippocampal concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, its main metabolite, compared with conventionally colonised control animals. Moreover, this alteration is sex specific in contrast with the immunological and neuroendocrine effects which are evident in both sexes. Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which the microbiota can influence CNS serotonergic neurotransmission. Interestingly, colonisation of the GF animals post weaning is insufficient to reverse the CNS neurochemical consequences in adulthood of an absent microbiota in early life despite the peripheral availability of tryptophan being restored to baseline values. In addition, reduced anxiety in GF animals is also normalised following restoration of the intestinal microbiota. These results demonstrate that CNS neurotransmission can be profoundly disturbed by the absence of a normal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.

1,346 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023242
2022530
2021728
2020316
2019152
2018257