scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Systems Biology in 2015"


Journal ArticleDOI
TL;DR: Using polymer modelling, it is demonstrated that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.
Abstract: Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher-order organization remains elusive. Here, we investigate TAD higher-order interactions with Hi-C through neuronal differentiation and show that they form a hierarchy of domains-within-domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree-like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.

314 citations


Journal ArticleDOI
TL;DR: This paper studies gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry and finds that the proteome partitions into several coarse‐grained sectors, suggesting a principle for resource allocation in proteome economy of the cell.
Abstract: A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate. The growth rate-dependent components of the proteome fractions comprise about half of the proteome by mass, and their mutual dependencies can be characterized by a simple flux model involving only two effective parameters. The success and apparent generality of this model arises from tight coordination between proteome partition and metabolism, suggesting a principle for resource allocation in proteome economy of the cell. This strategy of global gene regulation should serve as a basis for future studies on gene expression and constructing synthetic biological circuits. Coarse graining may be an effective approach to derive predictive phenomenological models for other ‘omics’ studies.

303 citations


Journal ArticleDOI
TL;DR: The highly accurate and reproducible SWATH mass spectrometry technique is applied to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins and identified 13 cis‐SNPs significantly influencing the level of specific plasma proteins.
Abstract: The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2–7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis-SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood-based biomarker studies.

284 citations


Journal ArticleDOI
TL;DR: Investigating how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV‐R) and germ‐free (GF) mice revealed that the gut microbiome influences host amino acid and glutathione metabolism in mice.
Abstract: The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice.

265 citations


Journal ArticleDOI
TL;DR: This review discusses the strengths and weaknesses of individual assays, how to select a method appropriate for the problem being studied, and general guidelines for carrying out the necessary follow-up analyses of interactome mapping.
Abstract: Studying protein interaction networks of all proteins in an organism ("interactomes") remains one of the major challenges in modern biomedicine. Such information is crucial to understanding cellular pathways and developing effective therapies for the treatment of human diseases. Over the past two decades, diverse biochemical, genetic, and cell biological methods have been developed to map interactomes. In this review, we highlight basic principles of interactome mapping. Specifically, we discuss the strengths and weaknesses of individual assays, how to select a method appropriate for the problem being studied, and provide general guidelines for carrying out the necessary follow-up analyses. In addition, we discuss computational methods to predict, map, and visualize interactomes, and provide a summary of some of the most important interactome resources. We hope that this review serves as both a useful overview of the field and a guide to help more scientists actively employ these powerful approaches in their research.

206 citations


Journal ArticleDOI
TL;DR: This proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti‐fibrotic strategies.
Abstract: The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis of proteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies.

195 citations


Journal ArticleDOI
TL;DR: These measurements allowed us to establish a model for RNA processing involving co‐transcriptional degradation, providing quantitative description of the macromolecular coordination in gene expression in bacteria on a system‐wide level.
Abstract: An essential part of gene expression is the coordination of RNA synthesis and degradation, which occurs in the same cellular compartment in bacteria. Here, we report a genome-wide RNA degradation study in Escherichia coli using RNA-seq, and present evidence that the stereotypical exponential RNA decay curve obtained using initiation inhibitor, rifampicin, consists of two phases: residual RNA synthesis, a delay in the interruption of steady state that is dependent on distance relative to the mRNA’s 5 0 end, and the exponential decay. This gives a more accurate RNA lifetime and RNA polymerase elongation rate simultaneously genome-wide. Transcripts typically have a single RNA decay constant along all positions, which is distinct between different operons, indicating that RNA stability is unlikely determined by local sequences. These measurements allowed us to establish a model for RNA processing involving co-transcriptional degradation, providing quantitative description of the macromolecular coordination in gene expression in bacteria on a system-wide level.

186 citations


Journal ArticleDOI
TL;DR: A new combination of network component analysis and model selection is used to simultaneously estimate transcription factor activities and learn a substantially expanded transcriptional regulatory network for this bacterium, significantly increasing the understanding of various cell processes, such as spore formation.
Abstract: Organisms from all domains of life use gene regulation networks to control cell growth, identity, function, and responses to environmental challenges. Although accurate global regulatory models would provide critical evolutionary and functional insights, they remain incomplete, even for the best studied organisms. Efforts to build comprehensive networks are confounded by challenges including network scale, degree of connectivity, complexity of organism–environment interactions, and difficulty of estimating the activity of regulatory factors. Taking advantage of the large number of known regulatory interactions in Bacillus subtilis and two transcriptomics datasets (including one with 38 separate experiments collected specifically for this study), we use a new combination of network component analysis and model selection to simultaneously estimate transcription factor activities and learn a substantially expanded transcriptional regulatory network for this bacterium. In total, we predict 2,258 novel regulatory interactions and recall 74% of the previously known interactions. We obtained experimental support for 391 (out of 635 evaluated) novel regulatory edges (62% accuracy), thus significantly increasing our understanding of various cell processes, such as spore formation.

180 citations


Journal ArticleDOI
TL;DR: It is reported that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied, and an important role of protein synthesis in cell division control is revealed.
Abstract: Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of "useless" proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ~8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control.

175 citations


Journal ArticleDOI
TL;DR: The challenges that genome‐scale modeling of cancer metabolism has been facing are discussed and several recent studies demonstrating the first strides that have been done are surveyed, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers.
Abstract: Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field.

170 citations


Journal ArticleDOI
TL;DR: Using a biosensor to measure ERK activation dynamics in single living cells reveals that sustained EGF/NGF application leads to a heterogeneous mix of transient and sustained ERKactivation dynamics in distinct cells of the population, different than the population average.
Abstract: Transient versus sustained ERK MAP kinase (MAPK) activation dynamics induce proliferation versus differentiation in response to epidermal (EGF) or nerve (NGF) growth factors in PC-12 cells. Duration of ERK activation has therefore been proposed to specify cell fate decisions. Using a biosensor to measure ERK activation dynamics in single living cells reveals that sustained EGF/NGF application leads to a heterogeneous mix of transient and sustained ERK activation dynamics in distinct cells of the population, different than the population average. EGF biases toward transient, while NGF biases toward sustained ERK activation responses. In contrast, pulsed growth factor application can repeatedly and homogeneously trigger ERK activity transients across the cell population. These datasets enable mathematical modeling to reveal salient features inherent to the MAPK network. Ultimately, this predicts pulsed growth factor stimulation regimes that can bypass the typical feedback activation to rewire the system toward cell differentiation irrespective of growth factor identity.

Journal ArticleDOI
TL;DR: A phenomenological model of the threshold is identified that can predict fractional killing of cells exposed to natural and synthetic agonists alone or in combination with sensitizing drugs such as bortezomib, providing new insight into the control of cell fate by opposing pro‐death and pro‐survival proteins.
Abstract: When cells are exposed to death ligands such as TRAIL, a fraction undergoes apoptosis and a fraction survives; if surviving cells are re-exposed to TRAIL, fractional killing is once again observed. Therapeutic antibodies directed against TRAIL receptors also cause fractional killing, even at saturating concentrations, limiting their effectiveness. Fractional killing arises from cell-to-cell fluctuations in protein levels (extrinsic noise), but how this results in a clean bifurcation between life and death remains unclear. In this paper, we identify a threshold in the rate and timing of initiator caspase activation that distinguishes cells that live from those that die; by mapping this threshold, we can predict fractional killing of cells exposed to natural and synthetic agonists alone or in combination with sensitizing drugs such as bortezomib. A phenomenological model of the threshold also quantifies the contributions of two resistance genes (c-FLIP and Bcl-2), providing new insight into the control of cell fate by opposing pro-death and pro-survival proteins and suggesting new criteria for evaluating the efficacy of therapeutic TRAIL receptor agonists.

Journal ArticleDOI
TL;DR: In the genome‐reduced bacterium Mycoplasma pneumoniae, it is found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components, followed by conventional OrFs (49%).
Abstract: Identifying all essential genomic components is critical for the assembly of minimal artificial life. In the genome-reduced bacterium Mycoplasma pneumoniae, we found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components (53%), followed by conventional ORFs (49%). Essentiality of smORFs may be explained by their function as members of protein and/or DNA/RNA complexes. In larger proteins, essentiality applied to individual domains and not entire proteins, a notion we could confirm by expression of truncated domains. The fraction of essential non-coding RNAs (ncRNAs) non-overlapping with essential genes is 5% higher than of non-transcribed regions (0.9%), pointing to the important functions of the former. We found that the minimal essential genome is comprised of 33% (269,410 bp) of the M. pneumoniae genome. Our data highlight an unexpected hidden layer of smORFs with essential functions, as well as non-coding regions, thus changing the focus when aiming to define the minimal essential genome.

Journal ArticleDOI
TL;DR: This work developed an integrative method termed “complex alterations after selection and transformation (CAST),” enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively parallel sequencing.
Abstract: A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular in hyperploid cells. Analysis of primary medulloblastoma cancer genomes verified the link between hyperploidy and chromothripsis in vivo. CAST provides the foundation for mechanistic dissection of complex DNA rearrangement processes.

Journal ArticleDOI
TL;DR: Experimental evidence is provided that epigenetic regulation in the olfactory system selects a single OR by suppressing a few transiently expressed ORs in a single cell during development by directly testing the "one‐neuron‐one‐receptor" rule.
Abstract: In mammals, each olfactory sensory neuron randomly expresses one, and only one, olfactory receptor (OR)—a phenomenon called the “one-neuron-one-receptor” rule. Although extensively studied, this rule was never proven for all ~1,000 OR genes in one cell at once, and little is known about its dynamics. Here, we directly tested this rule by single-cell transcriptomic sequencing of 178 cells from the main olfactory epithelium of adult and newborn mice. To our surprise, a subset of cells expressed multiple ORs. Most of these cells were developmentally immature. Our results illustrated how the “one-neuron-one-receptor” rule may have been established: At first, a single neuron temporarily expressed multiple ORs—seemingly violating the rule—and then all but one OR were eliminated. This work provided experimental evidence that epigenetic regulation in the olfactory system selects a single OR by suppressing a few transiently expressed ORs in a single cell during development.

Journal ArticleDOI
TL;DR: Mechanical factors such as cell shape and the microenvironment can influence NF‐κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues.
Abstract: Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues.

Journal ArticleDOI
TL;DR: This model reveals that growth‐dependent susceptibility is controlled by a single parameter characterizing the ‘reversibility’ of ribosome‐targeting antibiotic transport and binding, which provides a spectrum classification of antibiotic growth-dependent efficacy that appears to correspond at its extremes to existing binary classification schemes.
Abstract: Bacterial growth environment strongly influences the efficacy of antibiotic treatment, with slow growth often being associated with decreased susceptibility. Yet in many cases, the connection between antibiotic susceptibility and pathogen physiology remains unclear. We show that for ribosome-targeting antibiotics acting on Escherichia coli, a complex interplay exists between physiology and antibiotic action; for some antibiotics within this class, faster growth indeed increases susceptibility, but for other antibiotics, the opposite is true. Remarkably, these observations can be explained by a simple mathematical model that combines drug transport and binding with physiological constraints. Our model reveals that growth-dependent susceptibility is controlled by a single parameter characterizing the ‘reversibility’ of ribosome-targeting antibiotic transport and binding. This parameter provides a spectrum classification of antibiotic growth-dependent efficacy that appears to correspond at its extremes to existing binary classification schemes. In these limits, the model predicts universal, parameter-free limiting forms for growth inhibition curves. The model also leads to nontrivial predictions for the drug susceptibility of a translation mutant strain of E. coli, which we verify experimentally. Drug action and bacterial metabolism are mechanistically complex; nevertheless, this study illustrates how coarse-grained models can be used to integrate pathogen physiology into drug design and treatment strategies.

Journal ArticleDOI
TL;DR: This study performs proteomics analyses of soluble and chromatin‐associated complexes of 56 transcription factors, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family, and found that most TFs form very distinct protein complexes on and off chromatin.
Abstract: The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein–protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein–protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein–protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs.

Journal ArticleDOI
TL;DR: Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome‐wide in mammals, as revealed by single‐cell RNA‐seq.
Abstract: Mammalian transcription occurs stochastically in short bursts interspersed by silent intervals showing a refractory period. However, the underlying processes and consequences on fluctuations in gene products are poorly understood. Here, we use single allele time-lapse recordings in mouse cells to identify minimal models of promoter cycles, which inform on the number and durations of rate-limiting steps responsible for refractory periods. The structure of promoter cycles is gene specific and independent of genomic location. Typically, five rate-limiting steps underlie the silent periods of endogenous promoters, while minimal synthetic promoters exhibit only one. Strikingly, endogenous or synthetic promoters with TATA boxes show simplified two-state promoter cycles. Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome-wide in mammals, as revealed by single-cell RNA-seq. These findings have implications for basic transcription biology and shed light on interpreting single-cell RNA-counting experiments.

Journal ArticleDOI
TL;DR: The power of multilayered proteomic analyses for discovering novel BCR signaling components is illustrated by demonstrating that BCR‐induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo‐lysosomal compartments.
Abstract: B-cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry-based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor-proximal signaling components, many of which are co-regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR-induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo-lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC-mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR-induced NF-κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.

Journal ArticleDOI
TL;DR: It is shown that genomic locations displaying higher expression noise are associated with more repressed chromatin, thereby indicating the contribution of the chromatin environment in regulating expression noise.
Abstract: While gene expression noise has been shown to drive dramatic phenotypic variations, the molecular basis for this variability in mammalian systems is not well understood. Gene expression has been shown to be regulated by promoter architecture and the associated chromatin environment. However, the exact contribution of these two factors in regulating expression noise has not been explored. Using a dual-reporter lentiviral model system, we deconvolved the influence of the promoter sequence to systematically study the contribution of the chromatin environment at different genomic locations in regulating expression noise. By integrating a large-scale analysis to quantify mRNA levels by smFISH and protein levels by flow cytometry in single cells, we found that mean expression and noise are uncorrelated across genomic locations. Furthermore, we showed that this independence could be explained by the orthogonal control of mean expression by the transcript burst size and noise by the burst frequency. Finally, we showed that genomic locations displaying higher expression noise are associated with more repressed chromatin, thereby indicating the contribution of the chromatin environment in regulating expression noise.

Journal ArticleDOI
TL;DR: This work model two of the best‐understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth and integrates these two pathways with the clock model, highlighting the molecular mechanisms that coordinate plant development across changing conditions.
Abstract: Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to CYCLING DOF FACTOR 1 (CDF1) and FLAVINBINDING, KELCH REPEAT, F-BOX 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT .I n hypocotyl growth, the model described clock-regulated transcription of PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions.

Journal ArticleDOI
TL;DR: A significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3−/− mice, which demonstrate an exaggerated pressor response to angiotensin II infusion.
Abstract: Genome-wide association studies (GWAS) have identified numerous loci associated with blood pressure (BP). The molecular mechanisms underlying BP regulation, however, remain unclear. We investigated BP-associated molecular mechanisms by integrating BP GWAS with whole blood mRNA expression profiles in 3,679 individuals, using network approaches. BP transcriptomic signatures at the single-gene and the coexpression network module levels were identified. Four coexpression modules were identified as potentially causal based on genetic inference because expressionrelated SNPs for their corresponding genes demonstrated enrichment for BP GWAS signals. Genes from the four modules were further projected onto predefined molecular interaction networks, revealing key drivers. Gene subnetworks entailing molecular interactions between key drivers and BP-related genes were uncovered. As proof-of-concept, we validated SH2B3, one of the top key drivers, using Sh2b3 / mice. We found that a significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3 / mice, which demonstrate an exaggerated pressor response to angiotensin II infusion. Our findings may help to identify novel targets for the prevention or treatment of hypertension.

Journal ArticleDOI
TL;DR: The results highlight the value of integrative proteomics in deducing protein function and establish IFIX as an antiviral DNA sensor important for mounting immune responses.
Abstract: The human PYHIN proteins, AIM2, IFI16, IFIX, and MNDA, are critical regulators of immune response, transcription, apoptosis, and cell cycle. However, their protein interactions and underlying mechanisms remain largely uncharacterized. Here, we provide the interaction network for all PYHIN proteins and define a function in sensing of viral DNA for the previously uncharacterized IFIX protein. By designing a cell-based inducible system and integrating microscopy, immunoaffinity capture, quantitative mass spectrometry, and bioinformatics, we identify over 300 PYHIN interactions reflective of diverse functions, including DNA damage response, transcription regulation, intracellular signaling, and antiviral response. In view of the IFIX interaction with antiviral factors, including nuclear PML bodies, we further characterize IFIX and demonstrate its function in restricting herpesvirus replication. We discover that IFIX detects viral DNA in both the nucleus and cytoplasm, binding foreign DNA via its HIN domain in a sequence-non-specific manner. Furthermore, IFIX contributes to the induction of interferon response. Our results highlight the value of integrative proteomics in deducing protein function and establish IFIX as an antiviral DNA sensor important for mounting immune responses.

Journal ArticleDOI
TL;DR: It is shown that this cAMP‐Crp signaling system responds to the total carbon‐uptake flux when substrates are co‐utilized and a mathematical formula is derived that accurately predicts the resulting growth rate, based only on the growth rates on individual substrates.
Abstract: When bacteria are cultured in medium with multiple carbon substrates, they frequently consume these substrates simultaneously. Building on recent advances in the understanding of metabolic coordination exhibited by Escherichia coli cells through cAMP-Crp signaling, we show that this signaling system responds to the total carbon-uptake flux when substrates are co-utilized and derive a mathematical formula that accurately predicts the resulting growth rate, based only on the growth rates on individual substrates.

Journal ArticleDOI
TL;DR: This work discusses how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms, and proposes a framework involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions.
Abstract: During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.

Journal ArticleDOI
TL;DR: Overall, these findings reveal how the timing and mechanisms of stress response network evolution depend on the environment.
Abstract: Stress response genes and their regulators form networks that underlie drug resistance. These networks often have an inherent tradeoff: their expression is costly in the absence of stress, but beneficial in stress. They can quickly emerge in the genomes of infectious microbes and cancer cells, protecting them from treatment. Yet, the evolution of stress resistance networks is not well understood. Here, we use a two-component synthetic gene circuit integrated into the budding yeast genome to model experimentally the adaptation of a stress response module and its host genome in three different scenarios. In agreement with computational predictions, we find that: (i) intra-module mutations target and eliminate the module if it confers only cost without any benefit to the cell; (ii) intra- and extra-module mutations jointly activate the module if it is potentially beneficial and confers no cost; and (iii) a few specific mutations repeatedly fine-tune the module's noisy response if it has excessive costs and/or insufficient benefits. Overall, these findings reveal how the timing and mechanisms of stress response network evolution depend on the environment.

Journal ArticleDOI
TL;DR: The findings demonstrate the breadth and diversity of adaptive responses to RAF/MEK inhibition and a means to identify which steps in a signaling cascade are most predictive of phenotypic response.
Abstract: Drugs that inhibit RAF/MEK signaling, such as vemurafenib, elicit profound but often temporary anti-tumor responses in patients with BRAFV600E melanoma. Adaptive responses to RAF/MEK inhibition occur on a timescale of hours to days, involve homeostatic responses that reactivate MAP kinase signaling and compensatory mitogenic pathways, and attenuate the anti-tumor effects of RAF/MEK inhibitors. We profile adaptive responses across a panel of melanoma cell lines using multiplex biochemical measurement, single-cell assays, and statistical modeling and show that adaptation involves at least six signaling cascades that act to reduce drug potency (IC50) and maximal effect (i.e., Emax ≪ 1). Among these cascades, we identify a role for JNK/c-Jun signaling in vemurafenib adaptation and show that RAF and JNK inhibitors synergize in cell killing. This arises because JNK inhibition prevents a subset of cells in a cycling population from becoming quiescent upon vemurafenib treatment, thereby reducing drug Emax. Our findings demonstrate the breadth and diversity of adaptive responses to RAF/MEK inhibition and a means to identify which steps in a signaling cascade are most predictive of phenotypic response.

Journal ArticleDOI
TL;DR: A systematic approach based on precise quantification of the individual and joint effects of antibiotics on growth of genome‐wide Escherichia coli gene deletion strains found that drug interactions between antibiotics representing the main modes of action are highly robust to genetic perturbation.
Abstract: Drug combinations are increasingly important in disease treatments, for combating drug resistance, and for elucidating fundamental relationships in cell physiology. When drugs are combined, their individual effects on cells may be amplified or weakened. Such drug interactions are crucial for treatment efficacy, but their underlying mechanisms remain largely unknown. To uncover the causes of drug interactions, we developed a systematic approach based on precise quantification of the individual and joint effects of antibiotics on growth of genome-wide Escherichia coli gene deletion strains. We found that drug interactions between antibiotics representing the main modes of action are highly robust to genetic perturbation. This robustness is encapsulated in a general principle of bacterial growth, which enables the quantitative prediction of mutant growth rates under drug combinations. Rare violations of this principle exposed recurring cellular functions controlling drug interactions. In particular, we found that polysaccharide and ATP synthesis control multiple drug interactions with previously unexplained mechanisms, and small molecule adjuvants targeting these functions synthetically reshape drug interactions in predictable ways. These results provide a new conceptual framework for the design of multidrug combinations and suggest that there are universal mechanisms at the heart of most drug interactions.

Journal ArticleDOI
TL;DR: The proposed synthetic growth switch is a promising tool for gaining a better understanding of bacterial physiology and for applications in synthetic biology and biotechnology.
Abstract: The ability to control growth is essential for fundamental studies of bacterial physiology and biotechnological applications. We have engineered an Escherichia coli strain in which the transcription of a key component of the gene expression machinery, RNA polymerase, is under the control of an inducible promoter. By changing the inducer concentration in the medium, we can adjust the RNA polymerase concentration and thereby switch bacterial growth between zero and the maximal growth rate supported by the medium. We show that our synthetic growth switch functions in a medium-independent and reversible way, and we provide evidence that the switching phenotype arises from the ultrasensitive response of the growth rate to the concentration of RNA polymerase. We present an application of the growth switch in which both the wild-type E. coli strain and our modified strain are endowed with the capacity to produce glycerol when growing on glucose. Cells in which growth has been switched off continue to be metabolically active and harness the energy gain to produce glycerol at a twofold higher yield than in cells with natural control of RNA polymerase expression. Remarkably, without any further optimization, the improved yield is close to the theoretical maximum computed from a flux balance model of E. coli metabolism. The proposed synthetic growth switch is a promising tool for gaining a better understanding of bacterial physiology and for applications in synthetic biology and biotechnology.