scispace - formally typeset
Search or ask a question
JournalISSN: 0883-7694

Mrs Bulletin 

Cambridge University Press
About: Mrs Bulletin is an academic journal published by Cambridge University Press. The journal publishes majorly in the area(s): Engineering & Computer science. It has an ISSN identifier of 0883-7694. Over the lifetime, 3916 publications have been published receiving 166440 citations. The journal is also known as: Materials Research Society bulletin.


Papers
More filters
Journal ArticleDOI
TL;DR: The MRS Medal was presented by William L. Johnson at the 1998 MRS Fall Meeting on December 2, 1998 as discussed by the authors, where Johnson received the honor for his development of bulk metallic glass-forming alloys, and the fundamental understanding of the thermodynamics and kinetics that control glass formation and crystallization of glassforming liquids.
Abstract: The following article is based on the MRS Medal talk presented by William L. Johnson at the 1998 MRS Fall Meeting on December 2, 1998. The MRS Medal is awarded for a specific outstanding recent discovery or advancement that has a major impact on the progress of a materials-related field. Johnson received the honor for his development of bulk metallic glass-forming alloys, the fundamental understanding of the thermodynamics and kinetics that control glass formation and crystallization of glass-forming liquids, and the application of these materials in engineering.The development of bulk glass-forming metallic alloys has led to interesting advances in the science of liquid metals. This article begins with brief remarks about the history and background of the field, then follows with a discussion of multicomponent glass-forming alloys and deep eutectics, the chemical constitution of these new alloys, and how they differ from metallic glasses of a decade ago or earlier. Recent studies of deeply undercooled liquid alloys and the insights made possible by their exceptional stability with respect to crystallization will then be discussed. Advances in this area will be illustrated by several examples. The article then describes some of the physical and specific mechanical properties of bulk metallic glasses (BMGs), and concludes with some interesting potential applications.The first liquid-metal alloy vitrified by cooling from the molten state to the glass transition was Au-Si, as reported by Duwez at Caltech in 1960. Duwez made this discovery as a result of developing rapid quenching techniques for chilling metallic liquids at very high rates of 105–106 K/s.

2,273 citations

Journal ArticleDOI
TL;DR: The main feature of this area of science and emerging technology is the rapid transport of atomic or ionic species within solids, and various phenomena, of both scientific and technological interest, that are related to it as discussed by the authors.
Abstract: This issue of the MRS BULLETIN contains three articles relating to the general field that has come to be known as Solid State Ionics. The central feature of this area of science and emerging technology is the rapid transport of atomic or ionic species within solids, and the various phenomena, of both scientific and technological interest, that are related to it.Attention to this area has grown greatly in recent years because of the rapidly increasing recognition of the possibility of a wide range of interesting technological applications. One example already widespread is the use of an oxygen-conducting solid electrolyte as the critical element in the oxygen sensors installed in the exhaust systems of almost all current automobiles to reduce deleterious emissions and improve the efficiency of the combustion process.Work is under way in a number of other directions, including static and dynamic chemical sensors, solid state electrochemical reactors, low impedance selective atomic filters, new concepts for the direct conversion of heat to electricity by the use of sodium- or hydrogen-transporting cycles, a novel method for the low cost electrolysis of water at intermediate temperatures, batteries that can store greatly increased amounts of energy, ion exchange materials, solid state laser hosts, high efficiency fuel cells, electrochromic materials and configurations for both optical displays and “smart windows,” advanced catalysts, atomic reservoirs and pumps, high temperature superconductors, and possibly solid state fusion hosts.Despite this recent attention, however, it is worth noting that interest in solids in which ionic species can move with unusual rapidity is actually not new at all. As early as 1839, Michael Faraday reported measurements on several materials that showed an unusual increase in electrical conductivity at elevated temperatures, contrary to that found in normal metals.

2,249 citations

Journal ArticleDOI
TL;DR: In this article, the physical properties of these materials are reviewed and compared, and a comparison of their properties can be found in Section 5.2.1] and Section 6.1.
Abstract: Transparent, electrically conductive films have been prepared from a wide variety of materials. These include semiconducting oxides of tin, indium, zinc, and cadmium, and metals such as silver, gold, and titanium nitride. In this article, the physical properties of these materials are reviewed and compared.

1,441 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that even smaller particles can be used either by working at lower temperatures or by taking advantage of the onset of quantum size effects, which can make nanomagnets candidates for the construction of quantum computers.
Abstract: Magnets are widely used in a large number of applications, and their market is larger than that of semiconductors. Information storage is certainly one of the most important uses of magnets, and the lower limit to the size of the memory elements is provided by the superparamagnetic size, below which information cannot be permanently stored because the magnetization freely fluctuates. This occurs at room temperature for particles in the range of 10–100 nm, owing to the nature of the material. However, even smaller particles can in principle be used either by working at lower temperatures or by taking advantage of the onset of quantum size effects, which can make nanomagnets candidates for the construction of quantum computers.

1,372 citations

Journal ArticleDOI
TL;DR: An overview of thermoelectric (TE) phenomena and materials is provided in this issue of MRS Bulletin this article, where several of the current applications and key parameters are defined and discussed.
Abstract: High-efficiency thermoelectric (TE) materials are important for power-generation devices that are designed to convert waste heat into electrical energy.They can also be used in solid-state refrigeration devices.The conversion of waste heat into electrical energy may play an important role in our current challenge to develop alternative energy technologies to reduce our dependence on fossil fuels and reduce greenhouse gas emissions. An overview of various TE phenomena and materials is provided in this issue of MRS Bulletin. Several of the current applications and key parameters are defined and discussed.Novel applications of TE materials include biothermal batteries to power heart pacemakers, enhanced performance of optoelectronics coupled with solid-state TE cooling, and power generation for deep-space probes via radioisotope TE generators.A number of different systems of potential TE materials are currently under investigation by various research groups around the world, and many of these materials are reviewed in the articles in this issue.These range from thin-film superlattice materials to large single-crystal or polycrystalline bulk materials, and from semiconductors and semimetals to ceramic oxides.The phonon-glass/electron-crystal approach to new TE materials is presented, along with the role of solid-state crystal chemistry.Research criteria for developing new materials are highlighted.

1,359 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202394
2022234
202195
2020119
2019114
2018132