scispace - formally typeset
Search or ask a question
JournalISSN: 0276-1459

Multiphase Science and Technology 

Begell House
About: Multiphase Science and Technology is an academic journal published by Begell House. The journal publishes majorly in the area(s): Bubble & Two-phase flow. It has an ISSN identifier of 0276-1459. Over the lifetime, 358 publications have been published receiving 4316 citations.


Papers
More filters
Book ChapterDOI
TL;DR: In the absence of electromagnetic force fields, thermocapillary effects or concentration-capillary effects, countercurrent flow can be sustained only as a result of the difference in the gravitational force per unit volume on the gas and on the liquid as discussed by the authors.
Abstract: Countercurrent flow of a gas and a liquid in direct contact with each other is, of necessity, gravity dominated. That is, in the absence of electromagnetic force fields, thermocapillary effects, or concentration-capillary effects, countercurrent flow can be sustained only as a result of the difference in the gravitational force per unit volume on the gas and on the liquid. If the gas and liquid are simultaneously introduced into a porous medium or into a vertical or inclined pipe, the gas tends to rise relative to the liquid. If conditions allow complete separation, it is possible to maintain steady countercurrent flow in which the liquid discharges at the bottom while the gas flows out from the top. The countercurrent flow is opposed by interfacial friction between the phases, which always seems to increase monotonically as the relative countercurrent mean velocity of the phases increases. Hence, for a given geometry and liquid-gas pair, there is a maximum relative velocity that can be sustained in countercurrent flow. This point is known as the onset of flooding. Further increases in gas or liquid input ratas result in only partial delivery of the liquid out of the bottom. Eventually, if the gas velocity becomes sufficiently high, none of the liquid is delivered at the bottom, and fully cocurrent upward flow is established. If the liquid is being introduced from an upper plenum, none will penetrate into the pipe or porous medium when this second critical gas velocity is reached.

117 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202313
202222
20207
20199
201810
20171