scispace - formally typeset
Search or ask a question

Showing papers in "Nano Letters in 2005"


Journal ArticleDOI
TL;DR: The results suggest that SPR scattering imaging or SPR absorption spectroscopy generated from antibody conjugated gold nanoparticles can be useful in molecular biosensor techniques for the diagnosis and investigation of oral epithelial living cancer cells in vivo and in vitro.
Abstract: Gold nanoparticles with unique optical properties may be useful as biosensors in living whole cells. Using a simple and inexpensive technique, we recorded surface plasmon resonance (SPR) scattering images and SPR absorption spectra from both colloidal gold nanoparticles and from gold nanoparticles conjugated to monoclonal anti-epidermal growth factor receptor (anti-EGFR) antibodies after incubation in cell cultures with a nonmalignant epithelial cell line (HaCaT) and two malignant oral epithelial cell lines (HOC 313 clone 8 and HSC 3). Colloidal gold nanoparticles are found in dispersed and aggregated forms within the cell cytoplasm and provide anatomic labeling information, but their uptake is nonspecific for malignant cells. The anti-EGFR antibody conjugated nanoparticles specifically and homogeneously bind to the surface of the cancer type cells with 600% greater affinity than to the noncancerous cells. This specific and homogeneous binding is found to give a relatively sharper SPR absorption band with...

1,864 citations


Journal ArticleDOI
TL;DR: Immunotargeted nanoshells are engineered to both scatter light in the NIR enabling optical molecular cancer imaging and to absorb light, allowing selective destruction of targeted carcinoma cells through photothermal therapy.
Abstract: Nanoshells are a novel class of optically tunable nanoparticles that consist of a dielectric core surrounded by a thin gold shell. Based on the relative dimensions of the shell thickness and core radius, nanoshells may be designed to scatter and/or absorb light over a broad spectral range including the near-infrared (NIR), a wavelength region that provides maximal penetration of light through tissue. The ability to control both wavelength-dependent scattering and absorption of nanoshells offers the opportunity to design nanoshells which provide, in a single nanoparticle, both diagnostic and therapeutic capabilities. Here, we demonstrate a novel nanoshell-based all-optical platform technology for integrating cancer imaging and therapy applications. Immunotargeted nanoshells are engineered to both scatter light in the NIR enabling optical molecular cancer imaging and to absorb light, allowing selective destruction of targeted carcinoma cells through photothermal therapy. In a proof of principle experiment, ...

1,756 citations


Journal ArticleDOI
TL;DR: It is found that the biexciton effect, which shifts the transition energy for absorption of a second photon, influences the early time transient absorption data and may contribute to a modulation observed when probing near the lowest interband transition.
Abstract: We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields of 300% indicate the creation, on average, of three excitons per absorbed photon for PbSe QDs at photon energies that are four times the QD energy gap. Results indicate that the threshold photon energy for MEG in QDs is twice the lowest exciton absorption energy. We find that the biexciton effect, which shifts the transition energy for absorption of a second photon, influences the early time transient absorption data and may contribute to a modulation observed when probing near the lowest interband transition. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs. We present experimental and theoretical values of the size-dependent interband transition energies for ...

1,605 citations


Journal ArticleDOI
TL;DR: The data suggest that in addition to the release of toxic Cd(2+) ions from the particles also their surface chemistry, in particular their stability toward aggregation, plays an important role for cytotoxic effects.
Abstract: Cytotoxicity of CdSe and CdSe/ZnS nanoparticles has been investigated for different surface modifications such as coating with mercaptopropionic acid, silanization, and polymer coating. For all cases, quantitative values for the onset of cytotoxic effects in serum-free culture media are given. These values are correlated with microscope images in which the uptake of the particles by the cells has been investigated. Our data suggest that in addition to the release of toxic Cd 2+ ions from the particles also their surface chemistry, in particular their stability toward aggregation, plays an important role for cytotoxic effects. Additional patch clamp experiments investigate effects of the particles on currents through ion channels.

1,581 citations


Journal ArticleDOI
TL;DR: Both the improved crystalline nature of films and increased but controlled demixing between the two constitutes therein after annealing explains the considerable increase of the power conversion efficiency observed in these devices.
Abstract: Transmission electron microscopy and electron diffraction are used to study the changes in morphology of composite films of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM) in bulk heterojunction solar cells. Thermal annealing produces and stabilizes a nanoscale interpenetrating network with crystalline order for both components. P3HT forms long, thin conducting nanowires in a rather homogeneous, nanocrystalline PCBM film. Both the improved crystalline nature of films and increased but controlled demixing between the two constitutes therein after annealing explains the considerable increase of the power conversion efficiency observed in these devices.

1,552 citations


Journal ArticleDOI
TL;DR: A method for growing vertical ZnO nanowire arrays on arbitrary substrates using either gas-phase or solution-phase approaches is presented and the nanorod arrays made in solution have a rod diameter, length, density, and orientation desirable for use in ordered Nanorod-polymer solar cells.
Abstract: A method for growing vertical ZnO nanowire arrays on arbitrary substrates using either gas-phase or solution-phase approaches is presented. A ∼10 nm-thick layer of textured ZnO nanocrystals with their c axes normal to the substrate is formed by the decomposition of zinc acetate at 200−350 °C to provide nucleation sites for vertical nanowire growth. The nanorod arrays made in solution have a rod diameter, length, density, and orientation desirable for use in ordered nanorod−polymer solar cells.

1,437 citations


Journal ArticleDOI
TL;DR: In this work, dark-field microscopy is used to observe a new plasmon resonance effect for a single silver nanocube in which the plAsmon line shape has two distinct peaks when the particles are located on a glass substrate.
Abstract: In this work, we use dark-field microscopy to observe a new plasmon resonance effect for a single silver nanocube in which the plasmon line shape has two distinct peaks when the particles are located on a glass substrate. The dependence of the resonance on nanocube size and shape is characterized, and it is found that the bluer peak has a higher figure of merit for chemical sensing applications than that for other particle shapes that have been studied previously. Comparison of the measured results with finite difference time domain (FDTD) electrodynamics calculations enables us to confirm the accuracy of our spectral assignments.

1,370 citations


Journal ArticleDOI
TL;DR: Pd-functionalized nanostructures exhibited a dramatic improvement in sensitivity toward oxygen and hydrogen due to the enhanced catalytic dissociation of the molecular adsorbate on the Pd nanoparticle surfaces and the subsequent diffusion of the resultant atomic species to the oxide surface.
Abstract: The sensing ability of individual SnO2 nanowires and nanobelts configured as gas sensors was measured before and after functionalization with Pd catalyst particles. In situ deposition of Pd in the same reaction chamber in which the sensing measurements were carried out ensured that the observed modification in behavior was due to the Pd functionalization rather than the variation in properties from one nanowire to another. Changes in the conductance in the early stages of metal deposition (i.e., before metal percolation) indicated that the Pd nanoparticles on the nanowire surface created Schottky barrier-type junctions resulting in the formation of electron depletion regions within the nanowire, constricting the effective conduction channel and reducing the conductance. Pd-functionalized nanostructures exhibited a dramatic improvement in sensitivity toward oxygen and hydrogen due to the enhanced catalytic dissociation of the molecular adsorbate on the Pd nanoparticle surfaces and the subsequent diffusion ...

1,307 citations


Journal ArticleDOI
TL;DR: The electromagnetic interference (EMI) shielding effectiveness measurements indicated that a novel carbon nanotube-polystyrene foam composite can be used as very effective, lightweight shielding materials.
Abstract: A novel carbon nanotube-polystyrene foam composite has been fabricated successfully. The electromagnetic interference (EMI) shielding effectiveness measurements indicated that such foam composites can be used as very effective, lightweight shielding materials. The correlation between the shielding effectiveness and electrical conductivity and the EMI shielding mechanism of such foam composites are also discussed.

1,152 citations


Journal ArticleDOI
Heng Yu1, Min Chen2, Philip M. Rice2, Shan X. Wang2, R. L. White2, Shouheng Sun2 
TL;DR: The dumbbell is formed through epitaxial growth of iron oxide on the Au seeds, and the growth can be affected by the polarity of the solvent, as the use of diphenyl ether results in flower-like Au-Fe(3)O(4) nanoparticles.
Abstract: Dumbbell-like Au−Fe3O4 nanoparticles are synthesized using decomposition of Fe(CO)5 on the surface of the Au nanoparticles followed by oxidation in 1-octadecene solvent. The size of the particles is tuned from 2 to 8 nm for Au and 4 nm to 20 nm for Fe3O4. The particles show the characteristic surface plasmon absorption of Au and the magnetic properties of Fe3O4 that are affected by the interactions between Au and Fe3O4. The dumbbell is formed through epitaxial growth of iron oxide on the Au seeds, and the growth can be affected by the polarity of the solvent, as the use of diphenyl ether results in flower-like Au−Fe3O4 nanoparticles.

1,144 citations


Journal ArticleDOI
TL;DR: It is found that suitably fabricated nanoshells can provide SERS enhancements comparable to nanosphere dimers, and the observed intensities correlate with the integrated quartic local electromagnetic field calculated for each specific nanostructure geometry.
Abstract: Surface-enhanced Raman scattering (SERS) intensities for individual Au nanospheres, nanoshells, and nanosphere and nanoshell dimers coated with nonresonant molecules are measured, where the precise nanoscale geometry of each monomer and dimer is identified through in situ atomic force microscopy. The observed intensities correlate with the integrated quartic local electromagnetic field calculated for each specific nanostructure geometry. In this study, we find that suitably fabricated nanoshells can provide SERS enhancements comparable to nanosphere dimers.

Journal ArticleDOI
TL;DR: It is demonstrated that the wall thickness and length of the nanotubes can be controlled via anodization bath temperature and this hydrogen generation rate is the highest reported for a titania-based photoelectrochemical cell.
Abstract: In this study highly ordered titania nanotube arrays of variable wall thickness are used to photocleave water under ultraviolet irradiation. We demonstrate that the wall thickness and length of the nanotubes can be controlled via anodization bath temperature. We find that the nanotube wall thickness is a key parameter influencing the magnitude of the photoanodic response and the overall efficiency of the water-splitting reaction. For 22 nm inner pore diameter nanotube arrays, those fabricated in a 5 °C anodization bath, 224 nm length and 34 nm wall thickness produced a photoanodic response that was thrice that of a nanotube array fabricated in a 50 °C anodization bath, 120 nm length and 9 nm wall-thickness. At high anodic polarization, above 1 V, the quantum efficiency under 337 nm illumination was greater than 90%. For the 5 °C anodization bath samples (22 nm pore-diameter, 34 nm wall thickness), upon 320−400 nm illumination at an intensity of 100 mW/cm2, hydrogen gas was generated at the power−time norm...

Journal ArticleDOI
TL;DR: By controlling the molar ratio between Ag and HAuCl4, the gold nanocages could be tuned to display surface plasmon resonance peaks around 800 nm, a wavelength commonly used in optical coherence tomography (OCT) imaging.
Abstract: Gold nanocages of <40 nm in dimension have been synthesized using the galvanic replacement reaction between Ag nanocubes and HAuCl4 in an aqueous solution. By controlling the molar ratio between Ag and HAuCl4, the gold nanocages could be tuned to display surface plasmon resonance peaks around 800 nm, a wavelength commonly used in optical coherence tomography (OCT) imaging. OCT measurements on phantom samples indicate that these gold nanocages have a moderate scattering cross-section of ∼8.10 × 10-16 m2 but a very large absorption cross-section of ∼7.26 × 10-15 m2, suggesting their potential use as a new class of contrast agents for optical imaging. When bioconjugated with antibodies, the gold nanocages have also been demonstrated for specific targeting of breast cancer cells.

Journal ArticleDOI
Fang Qian1, Silvija Gradečak1, Yat Li1, C.-Y. Wen1, Charles M. Lieber1 
TL;DR: The ability to synthesize rationally III-nitride core/multishell nanowire radial heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.
Abstract: We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emission wavelength. Cross-sectional transmission electron microscopy studies reveal that the core/multishell nanowires are dislocation-free single crystals with a triangular morphology. Energy-dispersive X-ray spectroscopy clearly shows shells with distinct chemical compositions, and quantitatively confirms that the thickness and composition of individual shells can be well controlled during synthesis. Electrical measurements show that the p-AlGaN/p-GaN shell structure yields reproducible hole conduction, and electroluminescence measurements demonstrate that in forward bias the core/multishell nanowires function as light-emitting diodes, with tunable emission from 365 to 600 nm and high quantum efficiencies. The ability to synthesize rationally III-nitride core/multishell nanowire heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.

Journal ArticleDOI
TL;DR: These nanoparticles are monodisperse in solution, 20 times brighter, and more photostable than their constituent fluorophore, and are amenable to specific labeling of biological macromolecules for bioimaging experiments.
Abstract: A class of highly fluorescent and photostable core−shell nanoparticles from a modified Stober synthesis in the size range of 20−30 nm is described. These nanoparticles are monodisperse in solution, 20 times brighter, and more photostable than their constituent fluorophore, and are amenable to specific labeling of biological macromolecules for bioimaging experiments. The photophysical characteristics of the encapsulated fluorophores differ from their solution properties. This raises the possibility of tuning nanoparticle structure toward enhanced radiative properties, making them an attractive material platform for a diverse range of applications.

Journal ArticleDOI
TL;DR: A nonvolatile plastic digital memory device based on nanofibers of the conjugated polymer polyaniline decorated with gold nanoparticles is reported, combining two exciting research areas--nanoparticles and conducting polymers--to form a novel materials system with unique functionality.
Abstract: A nonvolatile plastic digital memory device based on nanofibers of the conjugated polymer polyaniline decorated with gold nanoparticles is reported. The device has a simple structure consisting of the plastic composite film sandwiched between two electrodes. An external bias is used to program the ON and OFF states of the device that are separated by a 3-orders-of-magnitude difference in conductivity. ON−OFF switching times of less than 25 ns are observed by electrical pulse measurements. The devices possess prolonged retention times of several days after they have been programmed. Write−read−erase cycles are also demonstrated. The switching mechanism is attributed to an electric-field-induced charge transfer from the polyaniline nanofibers to the gold nanoparticles. The active polymer layer is created by growing nanometer size gold particles within 30-nm-diameter polyaniline nanofibers using a redox reaction with chloroauric acid. This device combines two exciting research areasnanoparticles and conducti...

Journal ArticleDOI
Choongho Yu1, Li Shi1, Zhen Yao1, Deyu Li1, Arunava Majumdar1 
TL;DR: It is observed that the thermal conductance of a 2.76-microm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductances of a 1-nm-diameter SWCNT without showing signatures of phonon-phonon Umklapp scattering for temperatures between 110 and 300 K.
Abstract: We have observed experimentally that the thermal conductance of a 2.76-μm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductance of a 1-nm-diameter SWCNT without showing signatures of phonon−phonon Umklapp scattering for temperatures between 110 and 300 K. Although the observed thermopower of the SWCNT can be attributed to a linear diffusion contribution and a constant phonon drag effect, there could be an additional contact effect.

Journal ArticleDOI
TL;DR: For the first time, nanoceria is shown to confer radioprotection to a normal human breast line but not to a human breast tumor line, MCF-7.
Abstract: The ability of engineered cerium oxide nanoparticles to confer radioprotection was examined. Human normal and tumor cells were treated with nanoceria and irradiated, and cell survival was measured. Treatment of normal cells conferred almost 99% protection from radiation-induced cell death, whereas the same concentration showed almost no protection of tumor cells. For the first time, nanoceria is shown to confer radioprotection to a normal human breast line but not to a human breast tumor line, MCF-7.

Journal ArticleDOI
TL;DR: The fluorescence quantum yield of Cy5 molecules attached to gold nanoparticles via ss DNA spacers via ssDNA spacers is measured for Cy5-nanoparticle distances between 2 and 16 nm to show distance dependent quantum efficiency.
Abstract: The fluorescence quantum yield of Cy5 molecules attached to gold nanoparticles via ssDNA spacers is measured for Cy5-nanoparticle distances between 2 and 16 nm. Different numbers of ssDNA per nanoparticle allow to fine-tune the distance. The change of the radiative and nonradiative molecular decay rates with distance is determined using time-resolved photoluminescence spectroscopy. Remarkably, the distance dependent quantum efficiency is almost exclusively governed by the radiative rate.

Journal ArticleDOI
TL;DR: A theoretical model where hydrodynamic drag on the ection of the polymer outside the pore is the dominant force counteracting the electrical driving force is presented, and a power-law scaling with an exponent of 1.22 is derived in good agreement with the data.
Abstract: We report experiments and modeling of translocation of double-strand DNA through a siliconoxide nanopore. Long DNA molecules with different lengths ranging from 6500 to 97000 base pairs have been electrophoretically driven through a 10 nm pore. We observe a power-law scaling of the translocation time with the length, with an exponent of 1.27. This nonlinear scaling is strikingly different from the well-studied linear behavior observed in similar experiments performed on protein pores. We present a theoretical model where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the electrical driving force. We show that this applies to our experiments, and we derive a power-law scaling with an exponent of 1.22, in good agreement with the data.

Journal ArticleDOI
TL;DR: It is shown that a large data set of more than 100 devices can be consistently accounted by a model that relates the on-current of a CNFET to a tunneling barrier whose height is determined by the nanotube diameter and the nature of the source/drain metal contacts.
Abstract: Single-wall carbon nanotube field-effect transistors (CNFETs) have been shown to behave as Schottky barrier (SB) devices. It is not clear, however, what factors control the SB size. Here we present the first statistical analysis of this issue. We show that a large data set of more than 100 devices can be consistently accounted by a model that relates the on-current of a CNFET to a tunneling barrier whose height is determined by the nanotube diameter and the nature of the source/drain metal contacts. Our study permits identification of the desired combination of tube diameter and type of metal that provides the optimum performance of a CNFET.

Journal ArticleDOI
TL;DR: By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices to enable their practical integration into devices.
Abstract: Silicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor−liquid−solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from ∼0.1−1.8 wires/μm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and eco...

Journal ArticleDOI
TL;DR: A scaleable single-step synthesis process for luminescent silicon nanocrystals based on a low-pressure nonthermal plasma is reported, paving the way for a simple, high-yield synthesis approach to this field.
Abstract: Light emission from silicon based on quantum confinement in nanoscale structures has sparked intense research into this field ever since its discovery about 15 years ago A barrier to the widespread utilization of luminescent silicon nanocrystals in such diverse application areas as optoelectronics, solid-state lighting for general illumination, or fluorescent agents for biological applications has been the lack of a simple, high-yield synthesis approach Here we report a scaleable single-step synthesis process for luminescent silicon nanocrystals based on a low-pressure nonthermal plasma

Journal ArticleDOI
TL;DR: The results illustrate the efficacy of field-effect control in nanofluidics, which could have broad implications on integrated nanof LU circuits for manipulation of ions and biomolecules in sub-femtoliter volumes.
Abstract: We report a nanofluidic transistor based on a metal-oxide-solution (MOSol) system that is similar to a metal-oxide-semiconductor field-effect transistor (MOSFET). Using a combination of fluorescence and electrical measurements, we demonstrate that gate voltage modulates the concentration of ions and molecules in the channel and controls the ionic conductance. Our results illustrate the efficacy of field-effect control in nanofluidics, which could have broad implications on integrated nanofluidic circuits for manipulation of ions and biomolecules in sub-femtoliter volumes.

Journal ArticleDOI
TL;DR: It is demonstrated that the growth of neuronal circuits on a CNT grid is accompanied by a significant increase in network activity, and the increase in the efficacy of neural signal transmission may be related to the specific properties of CNT materials, such as the high electrical conductivity.
Abstract: We demonstrate the possibility of using carbon nanotubes (CNTs) as potential devices able to improve neural signal transfer while supporting dendrite elongation and cell adhesion. The results strongly suggest that the growth of neuronal circuits on a CNT grid is accompanied by a significant increase in network activity. The increase in the efficacy of neural signal transmission may be related to the specific properties of CNT materials, such as the high electrical conductivity.

Journal ArticleDOI
TL;DR: A robust procedure for preparing superhydrophobic hybrid films on which the advancing contact angle for water is about 165 degrees and the roll-off angle of a 10-muL water droplet is 3 +/- 1 degrees is reported.
Abstract: We report a robust procedure for preparing superhydrophobic hybrid films on which the advancing contact angle for water is about 165° and the roll-off angle of a 10-μL water droplet is 3 ± 1°. Dual-size surface roughness, which mimics the surface topology of self-cleaning plant leaves, originates from well-defined silica-based raspberry-like particles that are covalently bonded to an epoxy-based polymer matrix. The roughened surface is chemically modified with a layer of poly(dimethylsiloxane) (PDMS). The robustness and simplicity of this procedure may make widespread applications of so-prepared superhydrophobic films possible.

Journal ArticleDOI
TL;DR: The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates.
Abstract: The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates. The high-density nanoparticle thin film is accomplished by self-assembling through the Langmuir-Blodgett (LB) technique on a water surface and transferring the particle monolayer to a temperature-responsive polymer membrane. The temperature-responsive polymer membrane allows producing a dynamic surface enhanced Raman scattering substrate. The plasmon peak of the silver nanoparticle film red shifts up to 110 nm with increasing temperature. The high-density particle film serves as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), and the scattering signal enhancement factor can be dynamically tuned by the thermally activated SERS substrate. The SERS spectra of Rhodamine 6G on a high-density silver particle film at various temperatures is characterized to demonstrate the tunable plasmon coupling between high-density nanoparticles.

Journal ArticleDOI
TL;DR: The calculations reveal that reported femtomolar detection limits for biomolecular assays are very likely an analyte transport limitation, not a signal transduction limitation.
Abstract: We examine through analytical calculations and finite element simulations how the detection efficiency of disk and wire-like biosensors in unmixed fluids varies with size from the micrometer to nanometer scales. Specifically, we determine the total flux of DNA-like analyte molecules on a sensor as a function of time and flow rate for a sensor incorporated into a microfluidic system. In all cases, sensor size and shape profoundly affect the total analyte flux. The calculations reveal that reported femtomolar detection limits for biomolecular assays are very likely an analyte transport limitation, not a signal transduction limitation. We conclude that without directed transport of biomolecules, individual nanoscale sensors will be limited to picomolar-order sensitivity for practical time scales.

Journal ArticleDOI
TL;DR: It has been found that surfaces representing acidic and alkaline conditions have a significant influence on both the shape of the nanocrystals and the anatase-to-rutile transition size.
Abstract: The effects of surface chemistry on the morphology and phase stability of titanium dioxide nanoparticles have been investigated using a thermodynamic model based on surface free energies and surface tensions obtained from first principles calculations. It has been found that surfaces representing acidic and alkaline conditions have a significant influence on both the shape of the nanocrystals and the anatase-to-rutile transition size. The latter introduces the possibility of inducing phase transitions by changing the surface chemistry.

Journal ArticleDOI
TL;DR: To endow enhanced tumor specificity and endosome disruption property on the carrier, a multifunctional polymeric micelle was investigated, causing the enhanced release of doxorubicin from the carrier in early endosomal pH.
Abstract: To endow enhanced tumor specificity and endosome disruption property on the carrier, a multifunctional polymeric micelle was investigated. The micelle exposes the cell interacting ligand (biotin) on the surface under slightly acidic environmental conditions of various solid tumors and is internalized by biotin receptor-mediated endocytosis in a short time period. The micelle also showed pH-dependent dissociation, causing the enhanced release of doxorubicin from the carrier in early endosomal pH. The dissociated micellar components subsequently disrupt endosomal membrane.