scispace - formally typeset
Search or ask a question

Showing papers in "Nanoscale Research Letters in 2016"


Journal ArticleDOI
TL;DR: The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.
Abstract: Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

895 citations


Journal ArticleDOI
TL;DR: The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.
Abstract: Interest in “green nanotechnology” in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

331 citations


Journal ArticleDOI
TL;DR: A simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully and two characteristic absorption peaks were observed at 556 and 423 cm−1, which proved the existence of Fe3O 4 in the prepared nanoparticles.
Abstract: In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii (K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm−1, which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

306 citations


Journal ArticleDOI
TL;DR: This review focuses on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly.
Abstract: Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry, SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the growth of pathogenic fungi, and on other potential applications.

238 citations


Journal ArticleDOI
TL;DR: The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.
Abstract: Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2–18 GHz. The value of the maximum RL was −45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

179 citations


Journal ArticleDOI
TL;DR: The constructed “green” nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.
Abstract: Considering the environment protection, “green” materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots’ excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed “green” nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

179 citations


Journal ArticleDOI
TL;DR: This review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO and covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices.
Abstract: In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

176 citations


Journal ArticleDOI
TL;DR: This review has discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals, and their size- and shape-dependent specific and selective therapeutic properties.
Abstract: Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

154 citations


Journal ArticleDOI
TL;DR: Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties and Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY).
Abstract: Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C–N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe3+ ion made these CDs a luminescent probe for selective detection of Fe3+ ion.

142 citations


Journal ArticleDOI
TL;DR: The development of QD nano-carrier systems for drugs has become a hotspot in the fields of nano-drug research in recent years and the advantages and applications are reviewed.
Abstract: Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields.

131 citations


Journal ArticleDOI
TL;DR: This work reviewed current progress on electrode fabrication in application of CDI and discussed in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon.
Abstract: As a promising desalination technology, capacitive deionization (CDI) have shown practicality and cost-effectiveness in brackish water treatment. Developing more efficient electrode materials is the key to improving salt removal performance. This work reviewed current progress on electrode fabrication in application of CDI. Fundamental principal (e.g. EDL theory and adsorption isotherms) and process factors (e.g. pore distribution, potential, salt type and concentration) of CDI performance were presented first. It was then followed by in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon. Finally, polyaniline as conductive polymer and its potential application as CDI electrode-enhancing materials were also discussed.

Journal ArticleDOI
TL;DR: Enhanced antibacterial effects were observed in the case of Aloe vera plant protected AgNP than the routinely synthesized antibiotic drugs, and this method can be one of the easier ways to synthesis anisotropic AgNP.
Abstract: Biogenic synthesis of silver nanoparticles (AgNP) was performed at room temperature using Aloe vera plant extract in the presence of ammoniacal silver nitrate as a metal salt precursor. The formation of AgNP was monitored by UV-visible spectroscopy at different time intervals. The shape and size of the synthesized particle were visualized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. These results were confirmed by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses and further supported by surface-enhanced Raman spectroscopy/Raman scattering (SERS) study. UV-visible spectrum has shown a sharp peak at 420 nm and further evidenced by FTIR peak profile (at 1587.6, 1386.4, and 1076 cm−1 with corresponding compounds). The main band position with SERS was noticed at 1594 cm−1 (C–C stretching vibration). When samples were heated under microwave radiation, AgNP with octahedron shapes with 5–50 nm were found and this method can be one of the easier ways to synthesis anisotropic AgNP, in which the plant extract plays a vital role to regulate the size and shape of the nanoparticles. Enhanced antibacterial effects (two- to fourfold) were observed in the case of Aloe vera plant protected AgNP than the routinely synthesized antibiotic drugs. Shape and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract

Journal ArticleDOI
TL;DR: It is demonstrated that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications.
Abstract: A novel ternary Punica granatum L-Cu/Cu2O/CuO/ZnO nanocomposite was successfully synthesised via green route. In this work, we demonstrate that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications. The prepared nanocomposite was characterised by both microscopic and spectroscopic techniques. High-resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) techniques revealed different transitional phases with an average nanocrystallite size of 29–20 mm. It was observed that the nanocomposites changed from amorphous-slightly crystalline Cu/Cu2O to polycrystalline Cu/Cu2O/CuO/ZnO at different calcination temperatures (room temperature-RT- 600 °C). The Cu/Cu2O/ZnO/CuO metal oxides proved to be highly crystalline and showed irregularly distributed particles with different sizes. Meanwhile, Fourier transform infrared (FTIR) spectroscopy confirmed the purity while together with ultraviolet-visible (UV-Vis) spectroscopy proved the proposed mechanism of the synthesised nanocomposite. UV-Vis showed improved catalytic activity of the prepared metal oxides, evident by narrow band gap energy. The redox and electrochemical properties of the prepared nanocomposite were achieved by cyclic voltammetry (CV), electrochemical impedance (EIS) and galvanostatic charge-discharge (GCD). The maximum specific capacitance (C s) was calculated to be 241 F g−1 at 50 mV s−1 for Cu/Cu2O/CuO/ZnO nanoplatelets structured electrode. Moreover, all the CuO nanostructures reveal better power performance, excellent rate as well as long term cycling stability. Such a study will encourages a new design for a wide spectrum of materials for smart electronic device applications.

Journal ArticleDOI
TL;DR: Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants that lead to improved plant growth and yields.
Abstract: Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

Journal ArticleDOI
TL;DR: In this paper, the effect of nano-Fe3O4 as an admixture (from 1 to 5% in mass of the cement) on the mechanical and microstructural properties of cementitious composites has been characterised.
Abstract: In the last decade, nanotechnology has been gathering a spectacular amount of attention in the field of building materials. The incorporation of nanosized particles in a small amount to the building materials can influence their properties significantly. And it can contribute to the creation of novel and sustainable structures. In this work, the effect of nano-Fe3O4 as an admixture (from 1 to 5 wt.% in mass of the cement) on the mechanical and microstructural properties of cementitious composites has been characterised. The study showed that Fe3O4 nanoparticles acted as a filler which improved the microstructure of a cementitious composite and reduced its total porosity, thus increasing the density of the composite. The presence of nanomagnetite did not affect the main hydration products and the rate of cement hydration. In addition, the samples containing nanomagnetite exhibited compressive strength improvement (up to 20 %). The study showed that 3 wt.% of nano-Fe3O4 in the cementitious composite was the optimal amount to improve both its mechanical and microstructural properties.

Journal ArticleDOI
TL;DR: The results showed that the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications and exhibited enhanced response properties, and the optimal GO amount was achieved.
Abstract: ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10–50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

Journal ArticleDOI
TL;DR: This review has attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscope, x-ray diffraction, energy-dispersive x-rays, dynamic light scattering and application in cutting-edge areas.
Abstract: Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas.

Journal ArticleDOI
TL;DR: The results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis, and a simple chemical method for preparing AgNPs with superior anticancer activity has been showed.
Abstract: Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

Journal ArticleDOI
TL;DR: The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases, and their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.
Abstract: Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.

Journal ArticleDOI
TL;DR: In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented and a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.
Abstract: Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires’ suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

Journal ArticleDOI
TL;DR: The various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics, are reviewed.
Abstract: The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics.

Journal ArticleDOI
TL;DR: This work demonstrates and evaluates the methods employed to synthesize silver nanoparticle-containing nanofibers and their potential applications, including promising candidates for biomaterials, photovoltaic materials, and catalysts.
Abstract: Silver-containing nanofibers are of great interest recently because of the dual benefits from silver particles and nanofibers. Silver nanoparticles are extensively used for biomedical applications due to the antibacterial and antiviral properties. In addition, silver nanoparticles can excite resonance effect of light trapping when pairing with dielectric materials, such as polymer. Comparing to the traditional fabrics, polymer nanofibers can provide larger number of reaction sites and higher permeability contributed to their high surface-to-volume ratio and high porosity. By embedding the silver nanoparticles into polymer nanofiber matrix, the composite is promising candidates for biomaterials, photovoltaic materials, and catalysts. This work demonstrates and evaluates the methods employed to synthesize silver nanoparticle-containing nanofibers and their potential applications.

Journal ArticleDOI
TL;DR: In this article, the structural, electronic, and magnetic properties of substitutional 3D transition metal impurities in two-dimensional black and blue phosphorenes are analyzed. And the results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and green phosphorene.
Abstract: We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund’s rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe, and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn, and Fe impurities show DMS properties, with Ni impurity showing half-metal properties, whereas Sc- and Co-doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to nonmagnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes. PACS numbers: 73.22.-f, 75.50.Pp, 75.75. + a

Journal ArticleDOI
TL;DR: The first-principles calculations indicate that V and Mn are promising candidates for engineering and manipulating the magnetism of the 2D TMDs.
Abstract: Manipulating electronic and magnetic properties of two-dimensional (2D) transitional-metal dichalcogenides (TMDs) MX2 by doping has raised a lot of attention recently. By performing the first-principles calculations, we have investigated the structural, electronic, and magnetic properties of transitional metal (TM)-doped MoS2 at low and high impurity concentrations. Our calculation result indicates that the five elements of V-, Mn-, Fe-, Co-, and Cu-doped monolayer MoS2 at low impurity concentration all give rise to the good diluted magnetic semiconductors. By studying various configurations with different TM-TM separations, we found that the impurity atoms prefer to stay together in the nearest neighboring (NN) configuration, in which the doped TM atoms are FM coupling except for Fe doping at 12 % concentration. For V, Mn, and Fe doping, the total magnetic moment is smaller than the local magnetic moment of the dopants because the induced spins on the nearby host atoms are antiparallel to that of the doped atoms. In contrast, Co and Cu doping both give the higher total magnetic moment. Especially, Cu doping induces strong ferromagnetism relative to the local spins. However, the atomic structures of Co- and Cu-doped MoS2 deviate from the original prismatic configuration, and the magnetic moments of the doped systems decrease at 12 % impurity concentration although both elements give higher magnetic moments at 8 % impurity concentration. Our calculations indicate that V and Mn are promising candidates for engineering and manipulating the magnetism of the 2D TMDs.

Journal ArticleDOI
TL;DR: Red propolis Extract loaded in nanoparticles has shown to be potential candidates as intermediate products for preparation of various pharmaceutical dosage forms containing red propolis extract in the therapy against negligible diseases such as leishmaniasis.
Abstract: The ever-increasing demand for natural products and biotechnology derived from bees and ultra-modernization of various analytical devices has facilitated the rational and planned development of biotechnology products with a focus on human health to treat chronic and neglected diseases. The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and evaluate the cytotoxic activity of “multiple-constituent extract in co-delivery system” for antileishmanial therapies. The polymeric nanoparticles loaded with red propolis extract were prepared with a combination of poly-e-caprolactone and pluronic using nanoprecipitation method and characterized by different analytical techniques, antioxidant and leishmanicidal assay. The red propolis nanoparticles in aqueous medium presented particle size (200–280 nm) in nanometric scale and zeta analysis (−20 to −26 mV) revealed stability of the nanoparticles without aggregation phenomenon during 1 month. After freeze-drying method using cryoprotectant (sodium starch glycolate), it was possible to observe particles with smooth and spherical shape and apparent size of 200 to 400 nm. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis revealed the encapsulation of the flavonoids from the red propolis extract into the polymeric matrix. Ultra performance liquid chromatography coupled with diode array detector (UPLC-DAD) identified the flavonoids liquiritigenin, pinobanksin, isoliquiritigenin, formononetin and biochanin A in ethanolic extract of propolis (EEP) and nanoparticles of red propolis extract (NRPE). The efficiency of encapsulation was determinate, and median values (75.0 %) were calculated using UPLC-DAD. 2,2-Diphenyl-1-picryhydrazyl method showed antioxidant activity to EEP and red propolis nanoparticles. Compared to negative control, EEP and NRPE exhibited leishmanicidal activity with an IC50 value of ≅38.0 μg/mL and 31.3 μg/mL, 47.2 μg/mL, 154.2μg/mL and 193.2 μg/mL for NRPE A1, NRPE A2, NRPE A3 and NRPE A4, respectively. Nanoparticles loaded with red propolis extract in co-delivery system and EEP presented cytotoxic activity on Leishmania (V.) braziliensis. Red propolis extract loaded in nanoparticles has shown to be potential candidates as intermediate products for preparation of various pharmaceutical dosage forms containing red propolis extract in the therapy against negligible diseases such as leishmaniasis.

Journal ArticleDOI
TL;DR: A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles in this article, where the role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles.
Abstract: The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable “colloidal” suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.

Journal ArticleDOI
TL;DR: The results demonstrate that the SiO2/ MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases.
Abstract: Hybrid nano-materials offer potential scope for an increasing numerous novel applications when engineered to deliver availably functional properties. In the present study, the SiO2/MoS2 hybrid nanoparticles with different mass ratios were employed as lubricant additives in the base oil, and their tribological properties were evaluated using a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. The results demonstrate that the SiO2/MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases. The optimal SiO2/MoS2 mixing ratio and the concentration of SiO2/MoS2 hybrid nanoparticles in the base oil are 0.25:0.75 and 1.00–1.25 wt%, respectively. The excellent lubrication properties of the SiO2/MoS2 hybrid nanoparticles are attributed to the physical synergistic lubricating actions of nano-SiO2 and nano-MoS2 during the rubbing process.

Journal ArticleDOI
TL;DR: The findings confirm the bactericidal properties and explored a potential anticancer application of AgNPs for prostate cancer therapy and further research should be focused on the comprehensive study of molecular mechanism and in vivo effects on the prostate cancer.
Abstract: Metal nanoparticles, particularly silver nanoparticles (AgNPs), are developing more important roles as diagnostic and therapeutic agents for cancers with the improvement of eco-friendly synthesis methods. This study demonstrates the biosynthesis, antibacterial activity, and anticancer effects of silver nanoparticles using Dimocarpus Longan Lour. peel aqueous extract. The AgNPs were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscope (FTIR). The bactericidal properties of the synthesized AgNPs were observed via the agar dilution method and the growth inhibition test. The cytotoxicity effect was explored on human prostate cancer PC-3 cells in vitro by trypan blue assay. The expressions of phosphorylated stat 3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. The longan peel extract acted as a strong reducing and stabilizing agent during the synthesis. Water-soluble AgNPs of size 9–32 nm was gathered with a face-centered cubic structure. The AgNPs had potent bactericidal activities against gram-positive and gram-negative bacteria with a dose-related effect. AgNPs also showed dose-dependent cytotoxicity against PC-3 cells through a decrease of stat 3, bcl-2, and survivin, as well as an increase in caspase-3. These findings confirm the bactericidal properties and explored a potential anticancer application of AgNPs for prostate cancer therapy. Further research should be focused on the comprehensive study of molecular mechanism and in vivo effects on the prostate cancer.

Journal ArticleDOI
TL;DR: The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported and the light emission from the CNDs is most efficient due to ablation at 355 nm.
Abstract: The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

Journal ArticleDOI
TL;DR: The hemolytic and antibacterial activity of ZnO NPs are determined and they showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains.
Abstract: Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera (M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40–45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction –k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.