scispace - formally typeset
Search or ask a question

Showing papers in "Nanoscale in 2019"


Journal ArticleDOI
TL;DR: This review organizes and introduces several common gas sensing mechanisms of metal oxide semiconductors in detail and classifies them into two categories, the scope and relationship of these mechanisms are clarified and some perspectives for future investigations on the gas sensing mechanism are discussed.
Abstract: In recent years, gas sensors have been increasingly used in industrial production and daily life. Metal oxide semiconductor gas sensing materials are favoured for their outstanding physical and chemical properties, low cost and simple preparation methods. However, the gas sensing mechanisms of metal oxide semiconductors have not been considered by researchers, resulting in omissions and errors in the interpretation of gas sensing mechanisms in many articles. This review organizes and introduces several common gas sensing mechanisms of metal oxide semiconductors in detail and classifies them into two categories. The scope and relationship of these mechanisms are clarified. In addition, this review selects four strategies for enhancing the gas sensing properties of metal oxide semiconductors and analyses the gas sensing mechanisms to highlight the importance of the gas sensing mechanism. Finally, some perspectives for future investigations on the gas sensing mechanisms of metal oxide semiconductors are discussed as well.

488 citations


Journal ArticleDOI
TL;DR: Four functional categories of antibacterial nanomaterials with a photothermal conversion effect are classified: carbon-based nanoconjugates of graphene derivatives or carbon nanotubes, noble metal nanom material mainly from gold and silver, metallic compound nanocomposites, and polymeric as well as other nanostructures.
Abstract: Nanomaterials and nanotechnologies have been expected to provide innovative platforms for addressing antibacterial challenges, with potential to even deal with bacterial infections involving drug-resistance. The current review summarizes recent progress over the last 3 years in the field of antibacterial nanomaterials with a photothermal conversion effect. We classify these photothermal nanomaterials into four functional categories: carbon-based nanoconjugates of graphene derivatives or carbon nanotubes, noble metal nanomaterials mainly from gold and silver, metallic compound nanocomposites such as copper sulfide and molybdenum sulfide, and polymeric as well as other nanostructures. Different categories can be assembled with each other to enhance the photothermal effects and the antibacterial activities. The review describes their fabrication processes, unique properties, antibacterial modes, and potential healthcare applications.

281 citations


Journal ArticleDOI
TL;DR: A great deal of confusion remains regarding the PL mechanism of CDs as well as their structural properties, so a summary and discussion of the QYs and PL lifetimes reported in recent years is presented.
Abstract: Carbon quantum dots (CDs) are a relatively new class of carbon nanomaterials which have been studied very much in the last fifteen years to improve their already favorable properties. The optical properties of CDs have drawn particular interest as they display the unusual trait of excitation-dependent emission, as well as high fluorescence quantum yields (QY), long photoluminescence (PL) decay lifetimes, and photostability. These qualities naturally lead researchers to apply CDs in the field of imaging (particularly bio-imaging) and sensing. Since the amount of publications regarding CDs has been growing nearly exponentially in the last ten years, many improvements have been made in the optical properties of CDs such as QY and PL lifetime. However, a great deal of confusion remains regarding the PL mechanism of CDs as well as their structural properties. Therefore, presented in this review is a summary and discussion of the QYs and PL lifetimes reported in recent years. The effect of method as well as precursor has been evaluated and discussed appropriately. The current theories regarding the PL mechanism of CDs are discussed, with special attention to the concept of surface state-controlled PL. With this knowledge, the improvement of preparation and applications of CDs related to their optical properties will be easily accomplished. Further improvements can be made to CDs through the understanding of their structural and optical properties.

270 citations


Journal ArticleDOI
TL;DR: Nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT are reviewed, addressing their structure related features, advantages and limitations.
Abstract: An urgent need for early detection and diagnosis of diseases continuously pushes the advancements of imaging modalities and contrast agents. Current challenges remain for fast and detailed imaging of tissue microstructures and lesion characterization that could be achieved via development of nontoxic contrast agents with longer circulation time. Nanoparticle technology offers this possibility. Here, we review nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT, addressing their structure related features, advantages and limitations. Furthermore, their applications in each imaging modality are also reviewed using commonly studied examples. Future research will investigate multifunctional nanoplatforms to address safety, efficacy and theranostic capabilities. Nanoparticles as imaging contrast agents have promise to greatly benefit clinical practice.

268 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the 2D/2D Ti3C2/g-C3N4 composites are promising photocatalysts thanks to the ultrathin MXenes as efficient co-catalysts for photoc atalytic hydrogen production.
Abstract: Photocatalytic hydrogen evolution from water has received enormous attention due to its ability to address a number of global environmental and energy-related issues. Here, we synthesize 2D/2D Ti3C2/g-C3N4 composites by electrostatic self-assembly technique and demonstrate their use as photocatalysts for hydrogen evolution under visible light irradiation. The optimized Ti3C2/g-C3N4 composite exhibited a 10 times higher photocatalytic hydrogen evolution performance (72.3 μmol h-1 gcat-1) than that of pristine g-C3N4 (7.1 μmol h-1 gcat-1). Such enhanced photocatalytic performance was due to the formation of 2D/2D heterojunctions in the Ti3C2/g-C3N4 composites. The intimate contact between the monolayer Ti3C2 and g-C3N4 nanosheets promotes the separation of photogenerated charge carriers at the Ti3C2/g-C3N4 interface. Furthermore, the ultrahigh conductivity of Ti3C2 and the Schottky junction formed between g-C3N4/MXene interfaces facilitate the photoinduced electron transfer and suppress the recombination with photogenerated holes. This work demonstrates that the 2D/2D Ti3C2/g-C3N4 composites are promising photocatalysts thanks to the ultrathin MXenes as efficient co-catalysts for photocatalytic hydrogen production.

266 citations


Journal ArticleDOI
TL;DR: This review highlights different strategies for effectively introducing oxygen vacancies in titanium oxide-based nanomaterials, as well as a discussion on the positions of oxygen vacancies inside the TiO2 band gap based on theoretical calculations.
Abstract: TiO2 and other titanium oxide-based nanomaterials have drawn immense attention from researchers in different scientific domains due to their fascinating multifunctional properties, relative abundance, environmental friendliness, and bio-compatibility. However, the physical and chemical properties of titanium oxide-based nanomaterials are found to be explicitly dependent on the presence of various crystal defects. Oxygen vacancies are the most common among them and have always been the subject of both theoretical and experimental research as they play a crucial role in tuning the inherent properties of titanium oxides. This review highlights different strategies for effectively introducing oxygen vacancies in titanium oxide-based nanomaterials, as well as a discussion on the positions of oxygen vacancies inside the TiO2 band gap based on theoretical calculations. Additionally, a detailed review of different experimental techniques that are extensively used for identifying oxygen vacancies in TiO2 nanostructures is also presented.

258 citations


Journal ArticleDOI
TL;DR: The latest progress of the emerging 2D materials beyond graphene for passively mode-locked fiber laser application is reviewed, classified into mono-elemental, dual- elemental and multi-elementals 2D material.
Abstract: Ultrafast fiber lasers have significant applications in ultra-precision manufacturing, medical diagnostics, medical treatment, precision measurement and astronomical detection, owing to their ultra-short pulse width and ultra-high peak-power. Since graphene was first explored as an optical saturable absorber for passively mode-locked lasers in 2009, many other 2D materials beyond graphene, including phosphorene, antimonene, bismuthene, transition metal dichalcogenides (TMDs), topological insulators (TIs), metal–organic frameworks (MOFs) and MXenes, have been successively explored, resulting in rapid development of novel 2D materials-based saturable absorbers. Herein, we review the latest progress of the emerging 2D materials beyond graphene for passively mode-locked fiber laser application. These 2D materials are classified into mono-elemental, dual-elemental and multi-elemental 2D materials. The atomic structure, band structure, nonlinear optical properties, and preparation methods of 2D materials are summarized. Diverse integration strategies for applying 2D materials into fiber laser systems are introduced, and the mode-locking performance of the 2D materials-based fiber lasers working at 1–3 μm are discussed. Finally, the perspectives and challenges facing 2D materials-based mode-locked fiber lasers are highlighted.

230 citations


Journal ArticleDOI
TL;DR: It was found that aqueous solutions of Ti3C2Tx MXene can be chemically stable for more than 39 weeks when the storage temperature (-80 °C) is sufficiently low to cease the oxidation processes, and if the Ti3 C2Tx flakes are dispersed in ethanol, the degradation process can be significantly delayed even at 5 °C.
Abstract: Two-dimensional (2D) transition metal carbides (MXenes) exhibit outstanding performances in many applications, such as energy storage, optoelectronics, and electrocatalysts. However, colloidal solutions of Ti3C2Tx MXene flakes deteriorate rapidly under ambient conditions due to the conversion of the titanium carbide to titanium dioxide. Here, we discuss the dominant factors influencing the rate of oxidation of Ti3C2Tx MXene flakes, and present guidelines for their storage with the aim of maintaining the intrinsic properties of the as-prepared material. The oxidation stability of the Ti3C2Tx flakes is dramatically improved in a system where water molecules and temperature were well-controlled. It was found that aqueous solutions of Ti3C2Tx MXene can be chemically stable for more than 39 weeks when the storage temperature (−80 °C) is sufficiently low to cease the oxidation processes. It was also found that if the Ti3C2Tx flakes are dispersed in ethanol, the degradation process can be significantly delayed even at 5 °C. Moreover, the oxidation stability of the Ti3C2Tx flakes is dramatically improved in both cases, even in the presence of oxygen-containing atmosphere. We demonstrate practical applications of our approach by employing Ti3C2Tx in a gas sensor showing that when oxidation is inhibited, the device can retain the original electrical properties after 5 weeks of storage.

224 citations


Journal ArticleDOI
TL;DR: This article, which focuses on BP and BP-analogue materials, will present their crystal structure, properties, synthesis methods and applications and the future opportunities and challenges of the materials are included.
Abstract: Black phosphorus (BP), a novel two-dimensional (2D) layered semiconductor material, has attracted tremendous attention since 2014 due to its prominent carrier mobility, thickness-dependent direct bandgap and in-plane anisotropic physical properties. BP has been considered as a promising material for many applications, such as in transistors, photonics, optoelectronics, sensors, batteries and catalysis. However, the development of BP was hampered by its instability under ambient conditions, as well as by the lack of methods to synthesize large-area and high quality 2D nanofilms. Recently, some BP-analogue materials such as binary phosphides (MPx), transition metal phosphorus trichalcogenides (MPX3), and 2D group V (pnictogens) and 2D group VI materials have attracted increasing interest for their unique and stable structures, and excellent physical and chemical properties. This article, which focuses on BP and BP-analogue materials, will present their crystal structure, properties, synthesis methods and applications. Also the similarity and difference between BP and BP-analogue materials will be discussed, and the presentation of the future opportunities and challenges of the materials are included at the end.

220 citations


Journal ArticleDOI
TL;DR: Recent progress in the practical applications of C-Dots is highlighted, with particular attention to the research in light-emitting devices, bioimaging and biodetection, catalysis, functional materials, and agriculture.
Abstract: Carbon dots (C-Dots), defined by characteristic sizes of <10 nm, have become a rising star in carbon nanomaterials. C-Dots possess many unique physiochemical and photochemical properties which make them a promising platform for imaging, environmental, catalytic, biological and energy-related applications. To date, C-Dots have been investigated extensively, and their related applications have developed rapidly. However, quantitative understanding of the physiochemical properties of C-Dots still remains a difficult challenge because of their complex structures. Here, we will highlight the recent progress in the practical applications of C-Dots, with particular attention to the research in light-emitting devices, bioimaging and biodetection, catalysis, functional materials, and agriculture.

211 citations


Journal ArticleDOI
TL;DR: The effects of polystyrene nanoplastics were marginal but could be a trigger for exacerbating the toxicity induced by other toxicants such as metal ions.
Abstract: As nano- and micro-sized plastics accumulate in the environment and the food chain of animals, including humans, it is imperative to assess the effects of nanoplastics in living organisms in a systematic manner, especially because of their ability to adsorb potential toxicants such as pollutants, heavy metals, and organic macromolecules that coexist in the environment. Using the zebrafish embryo as an animal model, we investigated the bioaccumulation and in vivo toxicity of polystyrene (PS) nanoplastics individually or in combination with the Au ion. We showed that smaller PS nanoplastics readily penetrated the chorion and developing embryos and accumulated throughout the whole body, mostly in lipid-rich regions such as in yolk lipids. We also showed that PS nanoplastics induced only marginal effects on the survival, hatching rate, developmental abnormalities, and cell death of zebrafish embryos but that these effects were synergistically exacerbated by the Au ion in a dose- and size-dependent manner. Such exacerbation of toxicity was well correlated with the production of reactive oxygen species and the pro-inflammatory responses synergized by the presence of PS, supporting the combined toxicity of PS and Au ions. The synergistic effect of PS on toxicity appeared to relate to mitochondrial damage as determined by ultrastructural analysis. Taken together, the effects of PS nanoplastics were marginal but could be a trigger for exacerbating the toxicity induced by other toxicants such as metal ions.

Journal ArticleDOI
TL;DR: A comprehensive assessment on the material selection, synthesis and catalytic characteristics of these catalysts offers a strategic guide to build a close connection between Ag nanocomposites and catalysis applications.
Abstract: Ag-Based nanocomposites, including supported Ag nanocomposites and bimetallic Ag nanocomposites, have been intensively investigated as highly efficient catalysts because of their high activity and stability, easy preparation, low cost, and low toxicity. Herein, we systematically summarize and comprehensively evaluate versatile synthetic strategies for the preparation of Ag-based nanocomposites, and outline their recent advances in catalytic oxidation, catalytic reduction, photocatalysis and electrocatalysis. In addition, the challenges and prospects related to Ag-based nanocomposites for various catalytic applications are also discussed. In light of the most recent advances in Ag-based nanocomposites for catalysis applications, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characteristics of these catalysts, which offers a strategic guide to build a close connection between Ag nanocomposites and catalysis applications.

Journal ArticleDOI
TL;DR: A comprehensive review of the recent progresses made in NVP fabrication has been presented, mainly including the strategies of developing NVP/carbon hybrid materials and elemental doping to improve the electronic conductivity of NVP cathodes and designing 3D porous architectures to enhance Na-ion transportation.
Abstract: Sodium-ion batteries (SIBs) are considered to be the most promising electrochemical energy storage devices for large-scale grid and electric vehicle applications due to the advantages of resource abundance and cost-effectiveness. The electrochemical performance of SIBs largely relies on the intrinsic chemical properties of the cathodic materials. Among the various cathodes, rhombohedral Na3V2(PO4)3 (NVP), a typical sodium super ionic conductor (NASICON) compound, is very popular owing to its high Na+ mobility and firm structural stability. However, the relatively low electronic conductivity makes the theoretical capacity of NVP cathodes unviable even at low rates, not to mention the high rate of charging/discharging. This is a major drawback of NVPs, limiting their future large-scale applications. Herein, a comprehensive review of the recent progresses made in NVP fabrication has been presented, mainly including the strategies of developing NVP/carbon hybrid materials and elemental doping to improve the electronic conductivity of NVP cathodes and designing 3D porous architectures to enhance Na-ion transportation. Moreover, the application of NVP cathodic materials in Na-ion full batteries is summarized, too. Finally, some remarks are made on the challenges and perspectives for the future development of NVP cathodes.

Journal ArticleDOI
TL;DR: The progress, challenges and future directions of blue perovskite light-emitting diodes are reported on to facilitate their further development.
Abstract: Metal halide perovskites have excellent optical and electrical properties and can be easily processed via low-cost solution-based techniques like blade-coating and inkjet printing, promising a bright future for various optoelectronic applications. Recently, encouraging progress has been made in perovskite light-emitting diodes (PeLEDs). Green, red, and near-infrared PeLEDs have achieved high external quantum efficiencies of more than 20%. However, as historically blue electroluminescence remains challenging in all previous LED technologies, we are witnessing a similar case with the development of blue PeLEDs, an essential part of displays and solid-state lighting, which lag far behind those of their counterparts. Herein, we review the recent progress of blue PeLEDs and discuss the main challenges including colour instability, poor photoluminescence efficiency and emission quenching by interlayers. Future directions are provided to facilitate the development of efficient blue PeLEDs.

Journal ArticleDOI
TL;DR: A near-infrared (NIR) photothermal immunoassay for the qualitative or quantitative detection of prostate-specific antigen (PSA) using titanium carbide (Ti3C2) MXene quantum dot (QD)-encapsulated liposomes with high photothermal efficiency is designed and opens new opportunities for protein point-of-care (POC) testing and biosecurity diagnostics.
Abstract: Methods based on the photothermal effect (a common phenomenon in nature) have been widely applied in different fields; however, their application in bioanalysis has lagged behind. Herein, we designed a near-infrared (NIR) photothermal immunoassay for the qualitative or quantitative detection of prostate-specific antigen (PSA) using titanium carbide (Ti3C2) MXene quantum dot (QD)-encapsulated liposomes with high photothermal efficiency. This system involves a sandwich-type immunoreaction and photothermal measurements. Ti3C2 MXene QDs were utilized as innovative photothermal signal beacons and were encapsulated in liposomes for the labeling of the secondary antibody. The assay was carried out by coupling a low-cost microplate with a homemade 3D printed device. Under NIR-laser irradiation, the Ti3C2 MXene QDs converted the light energy into heat, and a shift in temperature corresponding with the analyte concentration was obtained on a handheld thermometer. Under optimal conditions, the Ti3C2 MXene QD-based photothermal immunoassay exhibited a dynamic linear range from 1.0 ng mL-1 to 50 ng mL-1 with a limit of detection of 0.4 ng mL-1 for PSA detection. Also, we constructed portable equipment using a portable near-infrared imaging camera to collect visual thermal data for the semi-quantitative analysis of the target PSA within 3 min. The specificity, reproducibility and accuracy of the photothermal immunoassay were acceptable. Importantly, our strategy opens new opportunities for protein point-of-care (POC) testing and biosecurity diagnostics.

Journal ArticleDOI
TL;DR: The performance limit of the monolayer (ML) Bi2O2Se metal oxide semiconductor field-effect transistors (MOSFETs) is predicted by using ab initio quantum transport simulation at the sub-10 nm gate length to allow the continuation of Moore's law down to 2-3 nm.
Abstract: A successful two-dimensional (2D) semiconductor successor of silicon for high-performance logic in the post-silicon era should have both excellent performance and air stability. However, air-stable 2D semiconductors with high performance were quite elusive until the air-stable Bi2O2Se with high electron mobility was fabricated very recently (J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. Liu, Y. Chen, B. Yan and H. Peng, Nat. Nanotechnol., 2017, 12, 530). Herein, we predict the performance limit of the monolayer (ML) Bi2O2Se metal oxide semiconductor field-effect transistors (MOSFETs) by using ab initio quantum transport simulation at the sub-10 nm gate length. The on-current, delay time, and power-delay product of the optimized n- and p-type ML Bi2O2Se MOSFETs can reach or nearly reach the high performance requirements of the International Technology Roadmap for Semiconductors (ITRS) until the gate lengths are scaled down to 2 and 3 nm, respectively. The large on-currents of the n- and p-type ML Bi2O2Se MOSFETs are attributed to either the large effective carrier velocity (n-type) or the large density of states near the valence band maximum and special shape of the band structure (p-type). A new avenue is thus opened for the continuation of Moore's law down to 2–3 nm by utilizing ML Bi2O2Se as the channel.

Journal ArticleDOI
TL;DR: For the first time, photoelectronic and spatio-temporal four-dimensional (4D) hybrid integration was successfully demonstrated by the synergic interplay between photonic and electric stimuli within a single MoS2 synapse.
Abstract: The hardware implementation of neuromorphic computing has attracted growing interest as a promising candidate for confronting the bottleneck of traditional von Neumann computers. However, most previous reports are focusd on emulating the synaptic behaviors by a mono-mode using an electric-driving or photo-driving approach, resulting in a big challenge to synchronously handle the natural photoelectric information. Herein, we report a multifunctional photoelectronic hybrid-integrated synaptic device based on the electric-double-layer (EDL) MoS2 phototransistor. Interestingly, the electric MoS2 synapse exhibits a potentiation filtering effect, while the photonic counterpart can implement both potentiation and depression filtering effects. Most importantly, for the first time, photoelectronic and spatio-temporal four-dimensional (4D) hybrid integration was successfully demonstrated by the synergic interplay between photonic and electric stimuli within a single MoS2 synapse. An energy band model is proposed to further understand such a photoelectronic and spatio-temporal 4D hybrid coupling mechanism. These results might provide an alternative solution for the size-scaling and intellectualization campaign of the post-Moore era, and for more sophisticated photoelectronic hybrid computing in the emerging neuromorphic nanoelectronics.

Journal ArticleDOI
TL;DR: A cost-effective phosphorus-doped Co-Fe-B material with chain-like structure is reported as an efficient and novel bifunctional electrocatalyst for the OER and HER, and was produced via a facile water-bath synthesis and subsequent phosphorization.
Abstract: Design of cost-effective bifunctional electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for developing hydrogen energy for the future. Herein, a cost-effective phosphorus-doped Co–Fe–B material with chain-like structure (denoted as Co1–Fe1–B–P) is reported as an efficient and novel bifunctional electrocatalyst for the OER and HER, and was produced via a facile water-bath synthesis and subsequent phosphorization. For the OER, the as-prepared Co1–Fe1–B–P nanochains require an extremely low overpotential of about 225 mV at 10 mA cm−2 and possess a small Tafel slope of 40 mV dec−1 in alkaline media. Impressively, the HER properties of Co1–Fe1–B–P nanochains are superior to those of P-free Co–Fe–B in terms of overpotential at 10 mA cm−2 (173 mV vs. 239 mV) and kinetic Tafel slope (96 mV dec−1vs. 105 mV dec−1). The synergetic effect between Co–Fe–B and doped-P is mainly responsible for the satisfactory bifunctional performance, while the one-dimensional (1D) chain-like structure endows Co1–Fe1–B–P with abundant catalytically active sites that enhance the atom utilization efficiency. Moreover, the developed Co1–Fe1–B–P nanochains can be simultaneously utilized as both the cathode and anode for overall water-splitting, which requires a cell voltage of only 1.68 V to deliver 10 mA cm−2. This work provides a feasible and promising protocol to realize metal borides as efficient electrocatalysts in energy-related applications.

Journal ArticleDOI
TL;DR: This review focuses on the recent progress in the fuel cell technology based on 2D materials, including graphene, transition metal dichalcogenides, black phosphorus, MXenes, metal-organic frameworks, and metal oxide nanosheets, and their fuel cell mechanisms.
Abstract: Two-dimensional (2D) materials have a wide platform in research and expanding nano- and atomic-level applications. This study is motivated by the well-established 2D catalysts, which demonstrate high efficiency, selectivity and sustainability exceeding that of classical noble metal catalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and/or hydrogen evolution reaction (HER). Nowadays, the hydrogen evolution reaction (HER) in water electrolysis is crucial for the cost-efficient production of a pure hydrogen fuel. We will also discuss another important point related to electrochemical carbon dioxide and nitrogen reduction (ECR and N2RR) in detail. In this review, we mainly focused on the recent progress in the fuel cell technology based on 2D materials, including graphene, transition metal dichalcogenides, black phosphorus, MXenes, metal-organic frameworks, and metal oxide nanosheets. First, the basic attributes of the 2D materials were described, and their fuel cell mechanisms were also summarized. Finally, some effective methods for enhancing the performance of the fuel cells based on 2D materials were also discussed, and the opportunities and challenges of 2D material-based fuel cells at the commercial level were also provided. This review can provide new avenues for 2D materials with properties suitable for fuel cell technology development and related fields.

Journal ArticleDOI
TL;DR: One-dimensional ANFs were designed as the intermolecular cross-linker between d-Ti3C2Tx flakes and MXene and exhibited excellent mechanical properties and superior electrical conductivity and showed potential application prospects as an advanced composite in sensitive electronic products.
Abstract: MXenes, new two-dimensional compounds with hydrophilic surfaces and high metallic conductivity, have attracted significant interest in the electromagnetic interference shielding field in recent years. Nevertheless, poor mechanical properties and brittle nature are bottlenecks for their commercial application. Herein, one-dimensional ANFs were designed as the intermolecular cross-linker between d-Ti3C2Tx flakes and MXene (d-Ti3C2Tx)/aramid nanofiber (ANF) composite paper with a multi-layered structure was fabricated via the vacuum-assisted filtration approach. Further investigation revealed that the ANFs and MXene displayed good combination by hydrogen bonding, and MXene/ANF composite papers exhibited excellent mechanical properties and superior electrical conductivity. The MXene/ANF composite paper possessed a favorable shielding effectiveness (SE) which reached ∼28 dB in 8.2-12.4 GHz (X band) with an ultra-thin thickness ∼17 μm and showed potential application prospects as an advanced composite in sensitive electronic products.

Journal ArticleDOI
TL;DR: The results suggested that Exo-cur featured highly effective BBB-crossing via receptor-mediated transcytosis to access brain tissues and inhibited Tau phosphorylation, holding great potential in improving targeted drug delivery and the recovery of neuronal function in AD therapy.
Abstract: Alzheimer's disease (AD) is the progressive development of fatal neurodegenerative diseases. Owing to the unclearness of the pathogenesis of AD and the failure of the drug to cross the blood–brain barrier (BBB), there is currently a lack of effective diagnostic and therapeutic approaches in the treatment of AD. The aim of this study was to design exosomes (Exo) as a specifically designed carrier able to carry curcumin (cur) to prevent neuronal death in vitro and in vivo to alleviate the AD symptoms. Our results demonstrated that Exo improved the solubility and bioavailability of cur and increased drug penetration across the BBB by specific active targeting between Exo, inheriting the lymphocyte function-associated antigen 1 (LFA-1) and endothelial intercellular adhesion molecule 1 (ICAM-1). Exosomes derived from curcumin-treated (primed) cells (Exo-cur) can better prevent the death of neurons in vitro and in vivo to relieve the symptoms of AD by inhibiting phosphorylation of the Tau protein through activating the AKT/GSK-3β pathway. Our results suggested that Exo-cur featured highly effective BBB-crossing via receptor-mediated transcytosis to access brain tissues and inhibited Tau phosphorylation, holding great potential in improving targeted drug delivery and the recovery of neuronal function in AD therapy.

Journal ArticleDOI
TL;DR: Not only did triple conjugated C-DT increase the cytotoxic to brain tumor cell lines, but also the two-drug combination in C- DT displayed a synergistic effect.
Abstract: Most of the dual nano drug delivery systems fail to enter malignant brain tumors due to a lack of proper targeting systems and the size increase of the nanoparticles after drug conjugation. Therefore, a triple conjugated system was developed with carbon dots (C-dots), which have an average particle size of 1.5-1.7 nm. C-dots were conjugated with transferrin (the targeted ligand) and two anti-cancer drugs, epirubicin and temozolomide, to build the triple conjugated system in which the average particle size was increased only up to 3.5 nm. In vitro studies were performed with glioblastoma brain tumor cell lines SJGBM2, CHLA266, CHLA200 (pediatric) and U87 (adult). The efficacy of the triple conjugated system (dual drug conjugation along with transferrin) was compared to those of dual conjugated systems (single drug conjugation along with transferrin), non-transferrin C-dots-drugs, and free drug combinations. Transferrin conjugated samples displayed the lowest cell viability even at a lower concentration. Among the transferrin conjugated samples, the triple conjugated system (C-dots-trans-temo-epi (C-DT)) was more strongly cytotoxic to brain tumor cell lines than dual conjugated systems (C-dots-trans-temo (C-TT) and C-dots-trans-epi (C-ET)). C-DT increased the cytotoxicity to 86% in SJGBM2 at 0.01 μM while C-ET and C-TT reduced it only to 33 and 8%, respectively. Not only did triple conjugated C-DT increase the cytotoxicity, but also the two-drug combination in C-DT displayed a synergistic effect.

Journal ArticleDOI
TL;DR: This review introduces the latest and most representative investigations on the fabrication of 2D monoelemental Xenes, 2D transition-metal dichalcogenides, and other important emerging 2D materials such as organic framework (MOF) nanosheets and MXenes through electrochemical exfoliation.
Abstract: Unlike zero-dimensional quantum dots, one-dimensional nanowires/nanorods, and three-dimensional networks or even their bulk counterparts, the charge carriers in two-dimensional (2D) materials are confined along the thickness while being allowed to move along the plane. They have distinct characteristics like strong quantum confinement, tunable thickness, and high specific surface area, which makes them a promising candidate in a wide range of applications such as electronics, topological spintronic devices, energy storage, energy conversion, sensors, biomedicine, catalysis, and so on. After the discovery of the extraordinary properties of graphene, other graphene-like 2D materials have attracted a great deal of attention. Like graphene, to realize their potential applications, high efficiency and low cost industrial scale methods should be developed to produce high-quality 2D materials. The electrochemical methods usually performed under mild conditions are convenient, controllable, and suitable for mass production. In this review, we introduce the latest and most representative investigations on the fabrication of 2D monoelemental Xenes, 2D transition-metal dichalcogenides, and other important emerging 2D materials such as organic framework (MOF) nanosheets and MXenes through electrochemical exfoliation. The electrochemical exfoliation conditions of the bulk layered materials are discussed. The numerous factors which will affect the quality of the exfoliated 2D materials, the possible exfoliating mechanism and potential applications are summarized and discussed in detail. A summary of the discussion together with perspectives and challenges for the future of this emerging field is also provided in the last section.

Journal ArticleDOI
TL;DR: Shielding performance analysis of different layer thicknesses shows that electron transport has an important contribution to the EMI shielding performance, and the polarization induced by defects and terminal atoms plays an important role in the E MI shielding performance.
Abstract: Environmentally friendly materials that exhibit high-performance electromagnetic interference (EMI) shielding are extremely necessary. Herein, we fabricated ultrathin Ti3C2Tx (U-Ti3C2Tx) MXene nanosheets (NS) by atomic-layer tailoring the layer thickness of Ti3C2Tx MXene. The U-Ti3C2Tx NS composites with highly efficient EMI shielding effectiveness can reduce secondary reflection, demonstrating its environmentally friendly performance. The U-Ti3C2Tx NS composite with 80 wt% loading exhibits an EMI shielding effectiveness of 58.1 dB at a thickness of 1 mm. Shielding performance analysis of different layer thicknesses shows that electron transport has an important contribution to the EMI shielding performance. Furthermore, the polarization induced by defects and terminal atoms plays an important role in the EMI shielding performance. Based on the electromagnetic (EM) wave response mechanism, a novel approach to effectively tune the EMI attenuation and shielding effectiveness can be achieved by adjusting the local conductive network. These findings will offer an effective strategy for designing environmentally friendly 2D materials with high-performance EMI shielding.

Journal ArticleDOI
TL;DR: Benefiting from these merits, the Bi2MoO6/OV-BiOBr heterojunctions exhibit improved photocatalytic performance for N2 conversion to ammonia without any noble metal co-catalysts and sacrificial reagents under ambient conditions.
Abstract: N2 fixation is one of the most important chemical reactions in the ecosystem of our planet. However, the industrial Haber-Bosch ammonia synthesis process is restricted by harsh reaction conditions (350-550 °C, 150-350 atm) and undesirable environmental effects (a large amount of CO2 emission). Photocatalytic N2 fixation is promising for achieving sustainable ammonia synthesis under ambient conditions with lower energy input and less environmental issues. However, the known photocatalysts for N2 reduction under mild conditions still face the great challenge of very low energy conversion efficiency. Herein, we report a facile solution-phase method to prepare the heterojunctions based on n-type Bi2MoO6 nanorods and oxygen-vacancy-rich p-type BiOBr nanosheets (Bi2MoO6/OV-BiOBr). Originating from the formation of p-n junctions and suitable bandgap configuration, the Bi2MoO6/OV-BiOBr heterojunctions exhibit effective light utilization and photogenerated electron-hole separation properties. Moreover, it is confirmed that the oxygen vacancies on BiOBr nanosheets are propitious to the adsorption and activation of N2 molecules. Benefiting from these merits, the Bi2MoO6/OV-BiOBr heterojunctions exhibit improved photocatalytic performance for N2 conversion to ammonia without any noble metal co-catalysts and sacrificial reagents under ambient conditions.

Journal ArticleDOI
Xiao Li1, Lei Wang1, Wenbin You1, Linshen Xing1, Xuefeng Yu1, Yuesheng Li1, Renchao Che1 
TL;DR: This unique structure has the polarization, conduction loss and strong dissipation capability resulting from the high density of accumulated charges trapped by the flake gap, confirmed by the analysis of electromagnetic parameters and electronic holography.
Abstract: Pure dielectric microwave absorbers with strong attenuation capability and wide-band response become a challenge for efficient electromagnetic wave energy absorption. Herein, a series of ZnCo2O4 hierarchical structures with superior absorption performance have been achieved by tuning their surface architectures from ball-, hydrangea- to cabbage-, and pineapple-like morphologies. A facile one-step synthesis strategy using a self-assembly process with ZnCo2O4 crystalline flakes as structural units was proposed. The deionized water solution and urea addition were found to critically determine the formation of our unique cabbage-like ZnCo2O4 self-assembled morphology. The wide band and distinct absorption was dominantly contributed from dielectric ZnCo2O4 flakes, which could be furthermore adjusted by the above-mentioned morphologies. Due to its abundant void volume stacked by flakes, the cabbage-like ZnCo2O4 demonstrated the best absorption performance where the RLmax reached -36.33 dB at 9.5 GHz with an efficient bandwidth of 5.11 GHz (RL < -10 dB, 11.17-16.28 GHz). Adjusting the simulating thickness from 1 to 5 mm, the bandwidths range from 5.8 to 18 GHz. This unique structure has the polarization, conduction loss and strong dissipation capability resulting from the high density of accumulated charges trapped by the flake gap, confirmed by the analysis of electromagnetic parameters and electronic holography. It is expected that the self-assembled ZnCo2O4 microsphere might shed new light on the design of novel microwave absorption materials.

Journal ArticleDOI
TL;DR: A novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process may open a new avenue for the fabrication of next-generation stretchable textile-based strain sensors.
Abstract: Here, we report a novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process. The MWCNT/TPU fiber showed the highest tensile strength and ultra-high sensitivity with a gauge factor (GF) of approximately 2800 in the strain range of 5–100%. Due to its high strain sensitivity of conductivity, this CNT-reinforced composite fiber was able to be used to monitor the weight and shape of an object based on the 2D mapping of resistance changes. Moreover, the composite fiber was able to be stitched onto a highly stretchable elastic bandage using a sewing machine to produce a wearable strain sensor for the detection of diverse human motions. We also demonstrated the detection of finger motion by fabricating a smart glove at the joints. Due to its scalable production process, high stretchability and ultrasensitivity, the MWCNT/TPU fiber may open a new avenue for the fabrication of next-generation stretchable textile-based strain sensors.

Journal ArticleDOI
TL;DR: The integrated intensity ratios of D and G bands (ID/IG) increase as the size of the GQDs approaches 2 nm and rapidly decrease for larger graphene structures, and close agreement suggests the ID/IG ratio as a size diagnostic for other nanographenes.
Abstract: Graphene quantum dots (GQDs) have attracted significant interest as synthetically tunable optoelectronic and photonic materials that can also serve as model systems for understanding size-dependent behaviors of related graphene structures such as nanoribbons. We present a Raman spectroscopy study of bottom-up synthesized GQDs with lateral dimensions between 0.97 to 1.62 nm, well-defined (armchair) edge type, and fully benzenoid structures. For a better understanding of observed size-dependent trends, the study is extended to larger graphene structures including nano-graphene platelets (>25 nm) and large-area graphene. Raman spectra of GQDs reveal the presence of D and G bands, as well as higher order modes (2D, D + G, and 2G). The D and G band frequencies and intensity were found to increase as GQD size increases, while higher order modes (2D, D + G, and 2G) also increased in intensity and became more well-defined. The integrated intensity ratios of D and G bands (ID/IG) increase as the size of the GQDs approaches 2 nm and rapidly decrease for larger graphene structures. We present a quantitative comparison of ID/IG ratios for the GQDs and for defects introduced into large area graphenes through ion bombardment, for which inter-defect distances are comparable to the sizes of GQDs studied here. Close agreement suggests the ID/IG ratio as a size diagnostic for other nanographenes. Finally, we show that Raman spectroscopy is also a good diagnostic tool for monitoring the formation of bottom-up synthesized GQDs.

Journal ArticleDOI
TL;DR: This work for the first time introduced carbon quantum dots (CQDs) as an additive for the stabilization of MAPbI3via passivation of the grain boundaries of the perovskite, inducing a lower trap-state density and better optoelectronic properties.
Abstract: Organic-inorganic hybrid perovskites are prone to defect formation due to iodine and methylamine ion/defect migration, leading to the formation of lots of defects at the perovskite surface and grain boundaries. Passivation of the defects is an effective method to improve the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). To achieve stable passivation, the interaction between the perovskite and additive materials should be taken into consideration. In this work, we for the first time introduced carbon quantum dots (CQDs) as an additive for the stabilization of MAPbI3via passivation of the grain boundaries of the perovskite. Because the carboxylic groups, hydroxyl groups and amino-groups on the edge of CQDs can bond with the uncoordinated Pb in MAPbI3, strong and stable interactions between the perovskite and CQDs can be generated, inducing a lower trap-state density and better optoelectronic properties. The typical PCE of the PSCs based on CQD modified MAPbI3 films increases from 17.59% to 18.81% and the PCE of the optimized champion PSCs reaches 19.38%. Furthermore, the hydrophobic CQD molecules can block the contact between water and MAPbI3, and even if the CQD modified perovskite is kept under ambient atmosphere without controlling the humidity for 4 months, the MAPbI3 film still retained its original black color.

Journal ArticleDOI
TL;DR: This work highlights the approaches to overcome the drawbacks of WO3 photoanodes, including the manipulation of nanostructured WO1 photoanode to decrease the nanoparticle size to promote hole migration to the WO2/electrolyte interface which benefits the charge separation and controlling the crystal phase via annealing to reduce defects.
Abstract: Hydrogen production from photoelectrochemical (PEC) water splitting using semiconductor photocatalysts has attracted great attention to realize clean and renewable energy from solar energy. The visible light response of WO3 with a long hole diffusion length (∼150 nm) and good electron mobility (∼12 cm2 V-1 s-1) makes it suitable as the photoanode. However, WO3 suffers from issues including rapid recombination of photoexcited electron-hole pairs, photo-corrosion during the photocatalytic process due to the formation of peroxo-species, sluggish kinetics of photogenerated holes, and slow charge transfer at the semiconductor/electrolyte interface. This work highlights the approaches to overcome these drawbacks of WO3 photoanodes, including: (i) the manipulation of nanostructured WO3 photoanodes to decrease the nanoparticle size to promote hole migration to the WO3/electrolyte interface which benefits the charge separation; (ii) doping or introducing oxygen vacancies to improve electrical conductivity; exposing high energy crystal surfaces to promote the consumption of photogenerated holes on the high-active crystal face, thereby suppressing the recombination of photogenerated electrons and holes; (iii) decorating with co-catalysts to reduce the overpotential which inhibits the formation of peroxo-species; (iv) other methods such as coupling with narrow band semiconductors to accelerate the charge separation and controlling the crystal phase via annealing to reduce defects. These approaches are reviewed with detailed examples.