scispace - formally typeset
Search or ask a question

Showing papers in "Nanotechnology in 2016"


Journal ArticleDOI
TL;DR: It is established that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM.
Abstract: Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

351 citations


Journal ArticleDOI
TL;DR: The fundamental principles of chiral metamaterials are discussed, various optical chiral materials realized by different nanofabrication approaches, and the applications and future prospects of this emerging field are discussed.
Abstract: Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmonic resonances to drive a wide range of physical and chemical processes in both linear and nonlinear regimes. In this review, we will discuss the fundamental principles of chiral metamaterials, various optical chiral metamaterials realized by different nanofabrication approaches, and the applications and future prospects of this emerging field.

268 citations


Journal ArticleDOI
TL;DR: This review of the recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed.
Abstract: Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties The production of TIs and TMDs by different methods is detailed The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene

264 citations


Journal ArticleDOI
TL;DR: A flexible, transparent, high-stability and ultra-broadband photodetector made using large-area and highly-crystalline WSe2 films that were prepared by pulsed-laser deposition (PLD) with great potential for practical applications in the wearable optoelectronic devices.
Abstract: Although two-dimensional (2D) materials have attracted considerable research interest for use in the development of innovative wearable optoelectronic systems, the integrated optoelectronic performance of 2D materials photodetectors, including flexibility, transparency, broadband response and stability in air, remains quite low to date. Here, we demonstrate a flexible, transparent, high-stability and ultra-broadband photodetector made using large-area and highly-crystalline WSe2 films that were prepared by pulsed-laser deposition (PLD). Benefiting from the 2D physics of WSe2 films, this device exhibits excellent average transparency of 72% in the visible range and superior photoresponse characteristics, including an ultra-broadband detection spectral range from 370 to 1064 nm, reversible photoresponsivity approaching 0.92 A W(-1), external quantum efficiency of up to 180% and a relatively fast response time of 0.9 s. The fabricated photodetector also demonstrates outstanding mechanical flexibility and durability in air. Also, because of the wide compatibility of the PLD-grown WSe2 film, we can fabricate various photodetectors on multiple flexible or rigid substrates, and all these devices will exhibit distinctive switching behavior and superior responsivity. These indicate a possible new strategy for the design and integration of flexible, transparent and broadband photodetectors based on large-area WSe2 films, with great potential for practical applications in the wearable optoelectronic devices.

257 citations


Journal ArticleDOI
TL;DR: An in situ chemical vapor deposition type approach is presented that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples withAverage areas >100 μm 2.
Abstract: Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples with average areas >100 μm2. Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus.

248 citations


Journal ArticleDOI
TL;DR: This work systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization and reports Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field.
Abstract: MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of [Formula: see text] X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.

202 citations


Journal ArticleDOI
TL;DR: MoTe2 has an appropriate bandgap for both visible and infrared light photodetection and the appreciable performance and detection over a broad spectral range make it a promising material for high-performancePhotodetectors.
Abstract: Two-dimensional materials are promising candidates for electronic and optoelectronic applications. MoTe2 has an appropriate bandgap for both visible and infrared light photodetection. Here we fabricate a high-performance photodetector based on few-layer MoTe2. Raman spectral properties have been studied for different thicknesses of MoTe2. The photodetector based on few-layer MoTe2 exhibits broad spectral range photodetection (0.6-1.55 μm) and a stable and fast photoresponse. The detectivity is calculated to be 3.1 × 10(9) cm Hz(1/2) W(-1) for 637 nm light and 1.3 × 10(9) cm Hz(1/2) W(-1) for 1060 nm light at a backgate voltage of 10 V. The mechanisms of photocurrent generation have been analyzed in detail, and it is considered that a photogating effect plays an important role in photodetection. The appreciable performance and detection over a broad spectral range make it a promising material for high-performance photodetectors.

186 citations


Journal ArticleDOI
TL;DR: This work investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states and the trade-offs between programming speed and programming error.
Abstract: Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.

147 citations


Journal ArticleDOI
TL;DR: This work performs a systematic study on the thermoelectric properties of monolayer ZrSe2 and HfSe2 using first-principles calculations combined with Boltzmann transport equations and finds that the figure of merits can be better optimized in n-type than in p-type.
Abstract: Monolayer transition-metal dichalcogenides (TMDCs) MX2 (M = Mo, W, Zr, Hf, etc; X = S, Se, Te) have become well-known in recent times for their promising applications in thermoelectrics and field effect transistors. In this work, we perform a systematic study on the thermoelectric properties of monolayer ZrSe2 and HfSe2 using first-principles calculations combined with Boltzmann transport equations. Our results point to a competitive thermoelectric figure of merit (close to 1 at optimal doping) in both monolayer ZrSe2 and HfSe2, which is markedly higher than previous explored monolayer TMDCs such as MoS2 and MoSe2. We also reveal that the higher figure of merits arise mainly from their low lattice thermal conductivity, and this is partly due to the strong coupling of acoustic modes with low frequency optical modes. It is found that the figure of merits can be better optimized in n-type than in p-type. In particular, the performance of HfSe2 is superior to ZrSe2 at a higher temperature. Our results suggest that monolayer ZrSe2 and HfSe2 with lower lattice thermal conductivity than usual monolayer TMDCs are promising candidates for thermoelectric applications.

145 citations


Journal ArticleDOI
TL;DR: A two-layer Ta/TaO x /TiO2/Ti cross-point synaptic array that emulates the high-density three-dimensional network architecture of human brains is demonstrated and improved linearity considerably enhances the fault tolerance of HNNs, thus improving the training accuracy.
Abstract: The implementation of highly anticipated hardware neural networks (HNNs) hinges largely on the successful development of a low-power, high-density, and reliable analog electronic synaptic array. In this study, we demonstrate a two-layer Ta/TaO x /TiO2/Ti cross-point synaptic array that emulates the high-density three-dimensional network architecture of human brains. Excellent uniformity and reproducibility among intralayer and interlayer cells were realized. Moreover, at least 50 analog synaptic weight states could be precisely controlled with minimal drifting during a cycling endurance test of 5000 training pulses at an operating voltage of 3 V. We also propose a new state-independent bipolar-pulse-training scheme to improve the linearity of weight updates. The improved linearity considerably enhances the fault tolerance of HNNs, thus improving the training accuracy.

140 citations


Journal ArticleDOI
TL;DR: This work develops a hyperspectral imaging technique that is very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconducting materials.
Abstract: The possibility of spatially resolving the optical properties of atomically thin materials is especially appealing as they can be modulated at the micro- and nanoscale by reducing their thickness, changing the doping level or applying a mechanical deformation. Therefore, optical spectroscopy techniques with high spatial resolution are necessary to get a deeper insight into the properties of two-dimensional (2D) materials. Here we study the optical absorption of single- and few-layer molybdenum disulfide (MoS2) in the spectral range from 1.24 eV to 3.22 eV (385 nm to 1000 nm) by developing a hyperspectral imaging technique that allows one to probe the optical properties with diffraction limited spatial resolution. We find hyperspectral imaging very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconductors. Moreover, this work opens the door to study the spatial variation of the optical properties of other 2D systems, including non-semiconducting materials where scanning photoluminescence cannot be employed.

Journal ArticleDOI
TL;DR: Exfoliated flakes of MoS2 with various thicknesses were successfully fabricated into field-effect transistors (FETs) to measure the thickness and temperature dependences of electrical mobility, and the promise of few-layer transition metal dichalcogenides as candidates for potential optoelectronic applications is indicated.
Abstract: Molybdenum disulfide (MoS2) is currently under intensive study because of its exceptional optical and electrical properties in few-layer form. However, how charge transport mechanisms vary with the number of layers in MoS2 flakes remains unclear. Here, exfoliated flakes of MoS2 with various thicknesses were successfully fabricated into field-effect transistors (FETs) to measure the thickness and temperature dependences of electrical mobility. For these MoS2 FETs, measurements at both 295 K and 77 K revealed the maximum mobility for layer thicknesses between 5 layers (~3.6 nm) and 10 layers (~7 nm), with ~70 cm2 V−1 s−1 measured for 5 layer devices at 295 K. Temperature-dependent mobility measurements revealed that the mobility rises with increasing temperature to a maximum. This maximum occurs at increasing temperature with increasing layer thickness, possibly due to strong Coulomb scattering from charge impurities or weakened electron–phonon interactions for thicker devices. Temperature-dependent conductivity measurements for different gate voltages revealed a metal-to-insulator transition for devices thinner than 10 layers, which may enable new memory and switching applications. This study advances the understanding of fundamental charge transport mechanisms in few-layer MoS2, and indicates the promise of few-layer transition metal dichalcogenides as candidates for potential optoelectronic applications.

Journal ArticleDOI
TL;DR: The results indicate that the CdS-MWCNT is a promising functional material for high temperature microwave absorption, benefiting from abundant interfacial polarization from the added C dS nanocrystals and the changeable dielectric property at elevated temperature.
Abstract: Tuning microwave absorption to meet the harsh requirement of thermal environments is a great challenge. Three kinds of nanowires, including multi-walled carbon nanotubes (MWCNTs) coated with CdS nanocrystals (CdS-MWCNTs), and MWCNTs coated with different-thickness CdS sheaths, have been synthesized through mild solution-process synthesis. The influence of CdS amount, external temperature, loading concentration and sample thickness on the absorption performance were studied. The composite loading with 6 vol.% CdS-MWCNTs shows the best absorption of −47 dB at 473 K with a thickness of 2.6 mm in the temperature range of 323–573 K and X band. The effective bandwidth covers the full X band in 323–473 K for RL ≤ −20 dB and reaches 2.0 GHz at 473 K for RL ≤ −20 dB. The enhanced absorption ability of CdS-MWCNTs arises from the effective impedance matching, benefiting from abundant interfacial polarization from the added CdS nanocrystals and the changeable dielectric property at elevated temperature. The results indicate that the CdS-MWCNT is a promising functional material for high temperature microwave absorption.

Journal ArticleDOI
TL;DR: This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances.
Abstract: Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge-discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications.

Journal ArticleDOI
TL;DR: The investigation of BP oxidation and the reaction mechanism based on the x-ray photoelectron spectroscopy data are reported and the electrical performance of BP FETs with atomic layer deposition (ALD) dielectric passivation or h-BN passivation formed in a glove-box environment are presented.
Abstract: Black phosphorus (BP), the bulk counterpart of monolayer phosphorene, is a relatively stable phosphorus allotrope at room temperature. However, monolayer phosphorene and ultra-thin BP layers degrade in ambient atmosphere. In this paper, we report the investigation of BP oxidation and discuss the reaction mechanism based on the x-ray photoelectron spectroscopy (XPS) data. The kinetics of BP oxidation was examined under various well-controlled conditions, namely in 5% O2/Ar, 2.3% H2O/Ar, and 5% O2 and 2.3% H2O/Ar. At room temperature, the BP surface is demonstrated not to be oxidized at a high oxidation rate in 5% O2/Ar nor in 2.3% H2O/Ar, according to XPS, with the thickness of the oxidized phosphorus layer <5 A for 5 h. On the other hand, in the O2/H2O mixture, a 30 A thickness oxide layer was detected already after 2 h of the treatment. This result points to a synergetic effect of water and oxygen in the BP oxidation. The oxidation effect was also studied in applications to the electrical measurements of BP field-effect transistors (FETs) with or without passivation. The electrical performance of BP FETs with atomic layer deposition (ALD) dielectric passivation or h-BN passivation formed in a glove-box environment are also presented.

Journal ArticleDOI
TL;DR: This study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphate and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.
Abstract: Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a chip-scale device suitable for simultaneous polarization and spectral measurements through use of six integrated plasmonic metasurfaces (IPMs), which diffract light with a given polarization state and spectral component into well-defined spatial domains.
Abstract: Plasmonic metasurfaces enable simultaneous control of the phase, momentum, amplitude and polarization of light and hence promise great utility in realization of compact photonic devices. In this paper, we demonstrate a novel chip-scale device suitable for simultaneous polarization and spectral measurements through use of six integrated plasmonic metasurfaces (IPMs), which diffract light with a given polarization state and spectral component into well-defined spatial domains. Full calibration and characterization of our device is presented, whereby good spectral resolution and polarization accuracy over a wavelength range of 500-700 nm is shown. Functionality of our device in a Muller matrix modality is demonstrated through determination of the polarization properties of a commercially available variable waveplate. Our proposed IPM is robust, compact and can be fabricated with a single photolithography step, promising many applications in polarization imaging, quantum communication and quantitative sensing.

Journal ArticleDOI
TL;DR: This work has successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth.
Abstract: 3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

Journal ArticleDOI
Peitao Liu1, Yonggang Liu1, Weichun Ye1, Ji Ma, Daqiang Gao1 
TL;DR: The obtained outstanding photocatalytic performance of N-doped MoS2 nanoflowers provides potential applications in water pollution treatment, as well as other related fields.
Abstract: In this paper, the photocatalytic performance and reusability of N-doped MoS2 nanoflowers with the specific surface area of 114.2 m(2) g(-1) was evaluated by discoloring of RhB under visible light irradiation. Results indicated that the 20 mg fabricated catalyst could completely degrade 50 ml of 30 mg l(-1) RhB in 70 min with excellent recycling and structural stability. The optimized N-doped MoS2 nanoflowers showed a reaction rate constant (k) as high as 0.06928 min(-1) which was 26.4 times that of bare MoS2 nanosheets (k = 0.00262). In addition, it was about seven times that of P25 (k = 0.01) (Hou et al 2015 Sci. Rep. 5 15228). The obtained outstanding photocatalytic performance of N-doped MoS2 nanoflowers provides potential applications in water pollution treatment, as well as other related fields.

Journal ArticleDOI
TL;DR: In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface to provide insight into the surface engineering of future Ti bone implants that are harmonized between themacrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Abstract: Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

Journal ArticleDOI
TL;DR: The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.
Abstract: In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.

Journal ArticleDOI
TL;DR: Blue emitting CsPbBr3 nanocrystals of any shape need to be improved further, as PL was unstable and irreproducible for samples with λ max ∼ 460 nm, exhibiting multiple features in the PL.
Abstract: Green photoluminescence (PL) from CsPbBr3 nanocubes (∼11 nm edge-length) exhibits a high quantum yield (>80%), narrow spectral width (∼85 meV), and high reproducibility, along with a high molar extinction coefficient (3.5 × 10(6) M(-1) cm(-1)) for lowest energy excitonic absorption. In order to obtain these combinations of excellent properties for blue (PL peak maximum, λ max 80%) was also maintained, but the spectral width increased and became asymmetric for blue emitting CsPbBr3 nanocubes. Furthermore, PL was unstable and irreproducible for samples with λ max ∼ 460 nm, exhibiting multiple features in the PL. These problems arise because smaller (<7 nm) CsPbBr3 nanocubes have a tendency to form nanoplatelets and nanorods, eventually yielding inhomogeneity in the shape and size of blue-emitting nanocrystals. Reaction conditions were then modified achieving nanoplatelets, with strong quantum confinement along the thickness of the platelets, yielding blue emission. But inhomogeneity in the thickness of the nanoplatelets again broadens the PL compared to green-emitting CsPbBr3 nanocubes. Therefore, unlike high quality green emitting CsPbBr3 nanocubes, blue emitting CsPbBr3 nanocrystals of any shape need to be improved further.

Journal ArticleDOI
TL;DR: It is found that at high scanning speeds and high repetition rate PLAL the ablation process is stable in crystallite size and decoupled from shielding and liquid effects that conventionally occur during low-speed PLAL.
Abstract: The synthesis of catalysis-relevant nanoparticles such as platinum and gold is demonstrated with productivities of 4 g h(-1) for pulsed laser ablation in liquids (PLAL). The major drawback of low productivity of PLAL is overcome by utilizing a novel ultrafast high-repetition rate laser system combined with a polygon scanner that reaches scanning speeds up to 500 m s(-1). This high scanning speed is exploited to spatially bypass the laser-induced cavitation bubbles at MHz-repetition rates resulting in an increase of the applicable, ablation-effective, repetition rate for PLAL by two orders of magnitude. The particle size, morphology and oxidation state of fully automated synthesized colloids are analyzed while the ablation mechanisms are studied for different laser fluences, repetition rates, interpulse distances, ablation times, volumetric flow rates and focus positions. It is found that at high scanning speeds and high repetition rate PLAL the ablation process is stable in crystallite size and decoupled from shielding and liquid effects that conventionally occur during low-speed PLAL.

Journal ArticleDOI
TL;DR: The present results provide a simple and effective route to tune the electronic properties of GeS monolayer over a wide range and also facilitate the design ofGeS-based two-dimensional devices.
Abstract: Experimentally, GeS nanosheets have been successfully synthesized using vapor deposition processes and the one-pot strategy. Quite recently, GeS monolayer, the isoelectronic counterpart of phosphorene, has attracted much attention due to promising properties. By means of comprehensive first-principles calculations, we studied the stability and electronic properties of GeS monolayer. Especially, electric field and in-plane strain were used to tailor its electronic band gap. Upon applying electric field, the band gap of GeS monolayer greatly reduces and a semiconductor–metal transition happens under the application of a certain external electric field. Our calculations reveal that the band gaps of GeS monolayer are rather sensitive to the external electric field. On the other hand, for GeS under external strain, quite interestingly, we found that the band gap presents an approximately linear increase not only under compression strain but also under tensile strain from −10% to 10%. For biaxial compressive and tensile strains, the band gap follows the same trend as that of the uniaxial in the zigzag x direction. The present results provide a simple and effective route to tune the electronic properties of GeS monolayer over a wide range and also facilitate the design of GeS-based two-dimensional devices.

Journal ArticleDOI
TL;DR: It is imperative to take close control of the interface in these nanostructured composites, which thus would lead to the desired synergistic effects and cyclic stability with the efficient diffusion of electrolyte ions and electrons.
Abstract: Polyaniline (PANi)/graphene nanocomposites have attracted tremendous interest because of their great potential in electrochemical energy storage applications, especially supercapacitors. We herein focus on the composite synthesis, device fabrication and particularly various techniques for the improvement of electrochemical performance. It is imperative to take close control of the interface in these nanostructured composites, which thus would lead to the desired synergistic effects and cyclic stability with the efficient diffusion of electrolyte ions and electrons. Challenges and perspectives are discussed for the development of highly efficient PANi/graphene electrodes for supercapacitors.

Journal ArticleDOI
TL;DR: The lattice thermal conductivities of single-layer MoS2 and MoSe2 are evaluated using classical molecular dynamics methods and predicted thermal properties of both materials are in very good agreement with earlier first-principles calculations.
Abstract: The isolation of single- to few-layer transition metal dichalcogenides opens new directions in the application of two-dimensional materials to nanoelectronics. The characterization of thermal transport in these new low-dimensional materials is needed for their efficient implementation, either for general overheating issues or specific applications in thermoelectric devices. In this study, the lattice thermal conductivities of single-layer MoS2 and MoSe2 are evaluated using classical molecular dynamics methods. The interactions between atoms are defined by Stillinger-Weber-type empirical potentials that are developed to represent the structural, mechanical, and vibrational properties of the given materials. In the parameterization of the potentials, a stochastic optimization algorithm, namely particle swarm optimization, is utilized. The final parameter sets produce quite consistent results with density functional theory in terms of lattice parameters, bond distances, elastic constants, and vibrational properties of both single-layer MoS2 and MoSe2. The predicted thermal properties of both materials are in very good agreement with earlier first-principles calculations. The discrepancies between the calculations and experimental measurements are most probably caused by the pristine nature of the structures in our simulations.

Journal ArticleDOI
TL;DR: In this work, natural red blood cell membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake and it is demonstrated that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle 'stealth'.
Abstract: Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle 'stealth'. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.

Journal ArticleDOI
TL;DR: The repeatability and stability of the sensor have been investigated and found to be excellent, and the hysteresis in the sensors was also explored.
Abstract: WS2 nanosheets have been synthesized by ultrasonication in a binary mixture of acetone and 2-propanol, with a volume ratio of 80:20. Hansen solubility parameters were taken into consideration as part of the process. These nanosheets have been characterized by electron microscopy, atomic force microscopy, and x-ray diffraction, along with spectroscopy such as ultraviolet-visible spectroscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy. The nanosheets were further used as a sensing material to fabricate a humidity sensor on interdigitated aluminum electrodes, realized over Si/SiO2 substrate using a conventional photolithography technique. The response for our sensor varied from 11.9 for 40% RH to as high as 37.5 for 80% RH. Response and recovery time were found to be 13 ± 2 s and 17 ± 2 s respectively. The suspended nanosheets were also treated with UV light in a nitrogen environment. The response for UV treated nanosheets shows better linearity, however its response decreases in the presence of humidity. This is due to a decrease in oxygen content of the UV treated sample. Furthermore, the effect of sonication time has been investigated, and it was found that samples with 10 h sonication are better than others due to their high surface-to-volume ratio. The repeatability and stability of the sensor have been investigated and found to be excellent. The hysteresis in the sensors was also explored. The mechanism of humidity sensing has been discussed in detail.

Journal ArticleDOI
TL;DR: This work presents the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells and shows the selective drug delivery potential of the MNPs.
Abstract: Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

Journal ArticleDOI
TL;DR: This work demonstrates a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness, and opens up a way to accurate and precise measurements of surface displacement.
Abstract: Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.