scispace - formally typeset
Search or ask a question

Showing papers in "Natural Hazards in 2012"


Journal ArticleDOI
TL;DR: A short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models is presented in this paper.
Abstract: This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDAR-derived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed.

740 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used fuzzy logic and analytical hierarchy process (AHP) models to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran.
Abstract: The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70 % (55 landslides) for training the models and the remaining 30 % (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7 %) performed better than AHP (81.1 %) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.

732 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a Coastal City Flood Vulnerability Index (CCFVI) based on exposure, susceptibility and resilience to coastal flooding, which is applied to nine cities around the world, each with different kinds of exposure.
Abstract: Worldwide, there is a need to enhance our understanding of vulnerability and to develop methodologies and tools to assess vulnerability. One of the most important goals of assessing coastal flood vulnerability, in particular, is to create a readily understandable link between the theoretical concepts of flood vulnerability and the day-to-day decision-making process and to encapsulate this link in an easily accessible tool. This article focuses on developing a Coastal City Flood Vulnerability Index (CCFVI) based on exposure, susceptibility and resilience to coastal flooding. It is applied to nine cities around the world, each with different kinds of exposure. With the aid of this index, it is demonstrated which cities are most vulnerable to coastal flooding with regard to the system’s components, that is, hydro-geological, socio-economic and politico-administrative. The index gives a number from 0 to 1, indicating comparatively low or high coastal flood vulnerability, which shows which cities are most in need of further, more detailed investigation for decision-makers. Once its use to compare the vulnerability of a range of cities under current conditions has been demonstrated, it is used to study the impact of climate change on the vulnerability of these cities over a longer timescale. The results show that CCFVI provides a means of obtaining a broad overview of flood vulnerability and the effect of possible adaptation options. This, in turn, will allow for the direction of resources to more in-depth investigation of the most promising strategies.

538 citations


Journal ArticleDOI
TL;DR: The aim of this contribution is to give an outline of the challenges each step of a multi-hazard (risk) analysis poses and to present current studies and approaches that face these difficulties.
Abstract: Many areas of the world are prone to several natural hazards, and effective risk reduction is only possible if all relevant threats are considered and analyzed. However, in contrast to single-hazard analyses, the examination of multiple hazards poses a range of additional challenges due to the differing characteristics of processes. This refers to the assessment of the hazard level, as well as to the vulnerability toward distinct processes, and to the arising risk level. As comparability of the single-hazard results is strongly needed, an equivalent approach has to be chosen that allows to estimate the overall hazard and consequent risk level as well as to rank threats. In addition, the visualization of a range of natural hazards or risks is a challenging task since the high quantity of information has to be depicted in a way that allows for easy and clear interpretation. The aim of this contribution is to give an outline of the challenges each step of a multi-hazard (risk) analysis poses and to present current studies and approaches that face these difficulties.

488 citations


Journal ArticleDOI
Eric Tate1
TL;DR: Global sensitivity analyses are applied to internally validate the methods used in the most common social vulnerability index designs: deductive, hierarchical, and inductive to understand which decisions in the vulnerability index construction process have the greatest influence on the stability of output rankings.
Abstract: Social vulnerability indices have emerged over the past decade as quantitative measures of the social dimensions of natural hazards vulnerability. But how reliable are the index rankings? Validation of indices with external reference data has posed a persistent challenge in large part because social vulnerability is multidimensional and not directly observable. This article applies global sensitivity analyses to internally validate the methods used in the most common social vulnerability index designs: deductive, hierarchical, and inductive. Uncertainty analysis is performed to assess the robustness of index ranks when reasonable alternative index configurations are modeled. The hierarchical design was found to be the most accurate, while the inductive model was the most precise. Sensitivity analysis is employed to understand which decisions in the vulnerability index construction process have the greatest influence on the stability of output rankings. The deductive index ranks are found to be the most sensitive to the choice of transformation method, hierarchical models to the selection of weighting scheme, and inductive indices to the indicator set and scale of analysis. Specific recommendations for each stage of index construction are provided so that the next generation of social vulnerability indices can be developed with a greater degree of transparency, robustness, and reliability.

426 citations


Journal ArticleDOI
TL;DR: In this paper, the authors surveyed residents of a recently constructed subdivision in Stockton, California, to assess their awareness of their risk of flooding and found that despite the levels of education and income, they did not understand the risk of being flooded.
Abstract: Under the US National Flood Insurance Program, lands behind levees certified as protecting against the 100-year flood are considered to be out of the officially recognized “floodplain.” However, such lands are still vulnerable to flooding that exceeds the design capacity of the levees—known as residual risk. In the Sacramento-San Joaquin Delta of California, we encounter the curious situation that lands below sea level are considered not “floodplain” and open to residential and commercial development because they are “protected” by levees. Residents are not informed that they are at risk from floods, because officially they are not in the floodplain. We surveyed residents of a recently constructed subdivision in Stockton, California, to assess their awareness of their risk of flooding. Median household income in the development was $80,000, 70% of respondents had a 4-year university degree or higher, and the development was ethnically mixed. Despite the levels of education and income, they did not understand the risk of being flooded. Given that literature shows informed individuals are more likely to take preventative measures than uninformed individuals, our results have important implications for flood policy. Climate-change-induced sea-level rise exacerbates the problems posed by increasing urbanization and aging infrastructure, increasing the threat of catastrophic flooding in the California Delta and in flood-prone areas worldwide.

255 citations


Journal ArticleDOI
TL;DR: The results of a sociological research in four communities exposed to flood risk in the Eastern Italian Alps revealed the complexity of residents’ perspectives, attitudes, behaviours and decisions about risk-related issues.
Abstract: The low risk awareness of the residents living in flood-prone areas is usually considered among the main causes of their low preparedness, which in turns generates inadequate response to natural disasters. In this paper, we challenge this assumption by reporting on the results of a sociological research in four communities exposed to flood risk in the Eastern Italian Alps. The research design included semi-structured interviews and focus groups with key local stakeholders and a standardized questionnaire submitted to 400 residents. Results revealed that residents felt both slightly worried about flood risk and slightly prepared to face an event. Considerable differences were found between the evaluations of individual subjects as opposed to overall communities. There was also a clear discrepancy between the actual adoption of household preparatory measures and the willingness to take self-protection actions. Overall, the risk awareness was significantly higher among those residents who had been personally affected by a flood in the past, were living in isolated (vs. urban) communities, in the most risky areas or had a lower level of trust in local authorities. The improvement of residents’ knowledge about their environment and the residual risk seemed to be crucial to increase risk awareness, and the same was true for the strengthening of local support networks to foster preparedness. The link between risk awareness and preparedness was not at all straightforward. Results revealed instead the complexity of residents’ perspectives, attitudes, behaviours and decisions about risk-related issues.

236 citations


Journal ArticleDOI
TL;DR: In this article, the authors put forward some basic principles for multi-risk assessment, and considered a real application to make different hazards comparable, and highlighted when and how possible interactions among different threats may become important.
Abstract: The assessment of the impact of different catastrophic events in a given area requires innovative approaches that allow risks comparison and that account for all the possible risk interactions. In the common practice, the risk evaluation related to different sources is generally done through independent analyses, adopting disparate procedures and time--space resolutions. Such a strategy of risks evaluation has some evident major drawbacks as, for example, it is difficult (if not impossible) to compare the risk of different origins, and the implicit assumption of independence of the risk sources leads to neglect possible interactions among threats and/or cascade effects. The latter may amplify the overall risk, and potentially the multi-risk index could be higher than the simple aggregation of single-risk indexes calculated considering each source as independent from the others. In this paper, we put forward some basic principles for multi-risk assessment, and we consider a real application to Casalnuovo municipality (Southern Italy), in which we face the problem to make different hazards comparable, and we highlight when and how possible interactions among different threats may become important.

227 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined and compared the methodologies being developed in assessing social vulnerability to natural disasters and found that coastal counties with more vulnerability in terms of social achieved status are positively associated with disaster damages, while variations in the development of the index using deductive and inductive measurement approaches produce different outcomes.
Abstract: The purpose of this study is to examine and compare the methodologies being developed in assessing social vulnerability to natural disasters. Existing vulnerability literature shows that two methods have been used in developing social vulnerability indexes: (1) a deductive approach based on a theoretical understanding of relationships and (2) an inductive approach based on statistical relationships (Adger et al. in New indicators of vulnerability and adaptive capacity. Tyndall Centre for Climate Change Research, Norwich, 2004). Two techniques were also utilized in aggregating social vulnerability indicators: (1) a deductive approach using standardization techniques such as z scores or linear scaling (Wu et al. in Clim Res 22:255–270, 2002; Chakraborty et al. in Nat Hazards Rev 6(1):23–33, 2005) and (2) an inductive approach using data-reduction techniques such as factor analysis (Clark et al. in Mitig Adapt Strateg Glob Change 3(1):59–82, 1998; Cutter et al. Soc Sci Quart 84(2):242–261, 2003). This study empirically compares deductive and inductive index development and indicator aggregation methods in assessing social vulnerability to natural disasters in the Gulf of Mexico and Atlantic coastal areas. The aggregated social vulnerability index is used to examine a relationship with disaster losses in the Gulf of Mexico and Atlantic coastal areas. The results show that coastal counties with more vulnerability in terms of social achieved status are positively associated with disaster damages, while variations in the development of the index using deductive and inductive measurement approaches produce different outcomes.

226 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a high-resolution digital terrain model (DTMs) to detect the divergence/convergence of areas related to unchannelized/channelized processes with better detail than a coarse DTM.
Abstract: In recent years, new remote-sensed technologies, such as airborne and terrestrial laser scanner, have improved the detail and the quality of topographic information, providing topographical high-resolution and high-quality data over larger areas better than other technologies. A new generation of high-resolution (≤3 m) digital terrain models (DTMs) is now available for different areas and is widely used by researchers, offering new opportunities for the scientific community. These data call for the development of a new generation of methodologies for an objective extraction of geomorphic features, such as channel heads, channel networks, bank geometry, debris-flow channel, debris-flow deposits, scree slope, landslide and erosion scars, etc. A high-resolution DTM is able to detect the divergence/convergence of areas related to unchannelized/channelized processes with better detail than a coarse DTM. In this work, we tested the performance of new methodologies for an objective extraction of geomorphic features related to shallow landsliding processes (landslide crowns), and bank erosion in a complex mountainous terrain. Giving a procedure that automatically recognizes these geomorphic features can offer a strategic tool to map natural hazard and to ease the planning and the assessment of alpine regions. The methodologies proposed are based on the detection of thresholds derived by the statistical analysis of variability of landform curvature. The study was conducted on an area located in the Eastern Italian Alps, where an accurate field survey on shallow landsliding, erosive channelized processes, and a high-quality set of both terrestrial and airborne laser scanner elevation data is available. The analysis was conducted using a high-resolution DTM and different smoothing factors for landform curvature calculation in order to test the most suitable scale of curvature calculation for the recognition of the selected features. The results revealed that (1) curvature calculation is strongly scale-dependent, and an appropriate scale for derivation of the local geometry has to be selected according to the scale of the features to be detected; (2) such approach is useful to automatically detect and highlight the location of shallow slope failures and bank erosion, and it can assist the interpreter/operator to correctly recognize and delineate such phenomena. These results highlight opportunities but also challenges in fully automated methodologies for geomorphic feature extraction and recognition.

179 citations


Journal ArticleDOI
TL;DR: In this article, the preservation potential and post-depositional changes of the onshore tsunami deposits in the coastal plain setting, under conditions of a tropical climate with high seasonal rainfall, were assessed by reinvestigating trenches located along 13 shore-perpendicular transects.
Abstract: The Indian Ocean tsunami flooded the coastal zone of the Andaman Sea and left tsunami deposits with a thickness of a few millimetres to tens of centimetres over a roughly one-kilometre-wide tsunami inundation zone. The preservation potential and the post-depositional changes of the onshore tsunami deposits in the coastal plain setting, under conditions of a tropical climate with high seasonal rainfall, were assessed by reinvestigating trenches located along 13 shore-perpendicular transects; the trenches were documented shortly after the tsunami and after 1, 2, 3 and 4 years. The tsunami deposits were found preserved after 4 years at only half of the studied sites. In about 30% of the sites, the tsunami deposits were not preserved due to human activity; in a further 20% of the sites, the thin tsunami deposits were eroded or not recognised due to new soil formation. The most significant changes took place during the first rainy season when the relief of the tsunami deposits was levelled; moderate sediment redeposition took place, and fine surface sediments were washed away, which frequently left a residual layer of coarse sand and gravel. The fast recovery of new plant cover stabilised the tsunami deposits and protected them against further remobilisation during the subsequent years. After five rainy seasons, tsunami deposits with a thickness of at least a few centimetres were relatively well preserved; however, their internal structures were often significantly blurred by roots and animal bioturbation. Moreover, soil formation within the deposits caused alterations, and in the case of thin layers, it was not possible to recognise them anymore. Tsunami boulders were only slightly weathered but not moved. Among the various factors influencing the preservation potential, the thickness of the original tsunami deposits is the most important. A comparison between the first post-tsunami survey and the preserved record suggests that tsunamis with a run-up smaller than three metres are not likely to be preserved; for larger tsunamis, only about 50% of their inundation area is likely to be presented by the preserved extent of the tsunami deposits. Any modelling of paleotsunamis from their deposits must take into account post-depositional changes.

Journal ArticleDOI
TL;DR: In this paper, an intensity index was created as the product of maximum expected flow depth d and the square of the maximum flow velocity v to determine building damage, and the intensity index can be applied directly to estimate the likely insurance loss or associated loss of life.
Abstract: Quantitative risk assessments (QRAs) for landslide hazards are increasingly being executed to determine an unmitigated level of risk and compare it with risk tolerance criteria set by the local or federal jurisdiction. This approach allows urban planning with a scientific underpinning and provides the tools for emergency preparedness. Debris-flow QRAs require estimates of the hazard probability, spatial and temporal probability of impact (hazard assessment) and vulnerability of the elements at risk. The vulnerability term is perhaps the most difficult to estimate confidently because (a) human death in debris flows is most commonly associated with building damage or collapse and is thus an indirect consequence and (b) the type and scale of building damage is very difficult to predict. To determine building damage, an intensity index (I DF) was created as the product of maximum expected flow depth d and the square of the maximum flow velocity v (I DF = dv 2). The I DF surrogates impact force and thus correlates with building damage. Four classes of building damage were considered ranging from nuisance flood/sedimentation damage to complete destruction. Sixty-six well-documented case studies in which damage, flow depth and flow velocity were recorded or could be estimated were selected through a search of the global literature, and I DF was plotted on a log scale against the associated damage. As expected, the individual damage classes overlap but are distinctly different in their respective distributions and group centroids. To apply this vulnerability model, flow velocity and flow depth need to be estimated for a given building location and I DF calculated. Using the existing database, a damage probability (P DF) can then be computed. P DF can be applied directly to estimate the likely insurance loss or associated loss of life. The model presented here should be updated with more case studies and is therefore made openly available to international researchers who can access it at http://chis.nrcan.gc.ca/QRA-EQR/index-eng.php .

Journal ArticleDOI
TL;DR: The concept of vulnerability is used today by various disciplines, and hence it is embedded in multiple disciplinary theories underpinning either a technical or a social origin of the concept and resulting in a range of paradigms for either a qualitative or quantitative assessment of vulnerability.
Abstract: Negative consequences of natural hazards are the result of both the frequency and intensity of the hazard and the vulnerability of the society or element at risk exposed. Therefore, vulnerability assessment is an essential step to reduce these consequences and consequently natural hazard risk. The assessment of vulnerability requires an ability to both identify and understand the susceptibility of elements at risk and—in a broader sense—of the society to these hazards. The concept of vulnerability is used today by various disciplines, and hence, it is embedded in multiple disciplinary theories underpinning either a technical or a social origin of the concept and resulting in a range of paradigms for either a qualitative or quantitative assessment of vulnerability. However, efforts to reduce the exposure to hazards and to create disaster-resilient communities require intersections among these theories (e.g. Hufschmidt and Glade 2010), since human activity cannot be seen independently from the environmental settings and vice versa. Acknowledging different roots of disciplinary paradigms, methods determining structural, economic, institutional or social vulnerability should be inter-woven in order to enhance our understanding of vulnerability and to adopt to ongoing global change processes. Current approaches in vulnerability research are driven by a divide between social scientists and natural scientists, even if recently some attempts have been made within to

Journal ArticleDOI
TL;DR: In this paper, the use of bio-ecological systems theory as a framework to analyse resilience at diverse scales is discussed, where the authors explore resilience to natural disasters in the context of climatic change as building resilience is seen as a way to mitigate impacts of natural disasters.
Abstract: This paper advocates the use of Bronfenbrenner’s bioecological theory as a framework to analyse resilience at diverse scales. Bronfenbrenner’s bioecological theory can be employed to (a) benchmark social resilience, (b) target the priority interventions required and (c) measure progress arising from these interventions to enhance resilience to natural disasters. First, the paper explores resilience to natural disasters in the context of climatic change as building resilience is seen as a way to mitigate impacts of natural disasters. Second, concepts of resilience are systematically examined and documented, outlining resilience as a trait and resilience as a process. Third, issues arising in relation to the measurement of resilience are discussed. Fourth, Bronfenbrenner’s bioecological systems theory is described and proffered to model and assess resilience at different scales. Fifth, studies are described which have supported the use of the bioecological systems theory for the study of resilience. Sixth, an example of the use of Bronfenbrenner’s theory is offered and the paper concludes with suggestions for future research using Bronfenbrenner’s theory.

Journal ArticleDOI
TL;DR: In this paper, the authors used a symbolic interactionism perspective to explore the earthquake preparedness process through a series of qualitative interviews with householders in three New Zealand urban locations, and found that the relative influence of cognitive, emotive and societal factors on the preparation process was explored and the interactions between these identified.
Abstract: One way to reduce the risk from earthquakes is for individuals to undertake preparations for earthquakes at home. Common preparation measures include gathering together survival items, undertaking mitigation actions, developing a household emergency plan, gaining survival skills or participating in wider social preparedness actions. While current earthquake education programmes advocate that people undertake a variety of these activities, actual household preparedness remains at modest levels. Effective earthquake education is inhibited by an incomplete understanding of how the preparedness process works. Previous research has focused on understanding the influence individual cognitive processes have on the earthquake preparedness process but has been limited in identifying other influences posed by the wider social contextual environment. This project used a symbolic interactionism perspective to explore the earthquake preparedness process through a series of qualitative interviews with householders in three New Zealand urban locations. It investigated earthquake information that individuals are exposed to, how people make meaning of this information and how this relates to undertaking actual preparedness measures. During the study, the relative influence of cognitive, emotive and societal factors on the preparedness process was explored and the interactions between these identified. A model of the preparedness process based on the interviews was developed and is presented in this paper.

Journal ArticleDOI
TL;DR: In this article, the authors apply a GIS-based approach to quantify potential changes in storm surge risk due to sea level rise on Long Island, New York, by combining hazard exposure and community vulnerability to spatially characterize risk for both present and future sea level conditions.
Abstract: Sea level rise threatens to increase the impacts of future storms and hurricanes on coastal communities. However, many coastal hazard mitigation plans do not consider sea level rise when assessing storm surge risk. Here we apply a GIS-based approach to quantify potential changes in storm surge risk due to sea level rise on Long Island, New York. We demonstrate a method for combining hazard exposure and community vulnerability to spatially characterize risk for both present and future sea level conditions using commonly available national data sets. Our results show that sea level rise will likely increase risk in many coastal areas and will potentially create risk where it was not before. We find that even modest and probable sea level rise (.5 m by 2080) vastly increases the numbers of people (47% increase) and property loss (73% increase) impacted by storm surge. In addition, the resulting maps of hazard exposure and community vulnerability provide a clear and useful example of the visual representation of the spatial distribution of the components of risk that can be helpful for developing targeted hazard mitigation and climate change adaptation strategies. Our results suggest that coastal agencies tasked with managing storm surge risk must consider the effects of sea level rise if they are to ensure safe and sustainable coastal communities in the future.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the parameter effects in preparing landslide susceptibility maps with a data-driven approach and to adapt this approach to analytical hierarchy process (AHP) for assessing the landslide susceptibility.
Abstract: This study aimed to investigate the parameter effects in preparing landslide susceptibility maps with a data-driven approach and to adapt this approach to analytical hierarchy process (AHP). For this purpose, at the first stage, landslide inventory of an area located in the Western Black Sea region of Turkey covering approximately 567 km2 was prepared, and a total of 101 landslides were mapped. In order to assess the landslide susceptibility, a total of 13 parameters were considered as the input parameters: slope, aspect, plan curvature, topographical elevation, vegetation cover index, land use, distance to drainage, distance to roads, distance to structural elements, distance to ridges, stream power index, sediment transport capacity index, and wetness index. AHP was selected as the major assessment methodology since the adapted approach and AHP work in data pairs. Adapted to AHP, a similarity relation–based approach, namely landslide relation indicator (LRI) for parameter selection method, was also proposed. AHP and parametric effect analyses were performed by the proposed approach, and seven landslide susceptibility maps were produced. Among these maps, the best performance was gathered from the landslide susceptibility map produced by 9 parameter combinations using area under curve (AUC) approach. For this map, the AUC value was calculated as 0.797, while the others ranged between 0.686 and 0.771. According to this map, 38.3 % of the study area was classified as having very low, 8.5 % as low, 15.0 % as moderate, 20.3 % as high, and 17.9 % as very high landslide susceptibility, respectively. Based on the overall assessments, the proposed approach in this study was concluded as objective and applicable and yielded reasonable results.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a coastal vulnerability index for the Chennai coast using eight relative risk variables to know the high and low vulnerable areas, areas of inundation due to future SLR, and land loss due to coastal erosion.
Abstract: The study area is 56-km coastal zone of Chennai district of the Tamil Nadu state, southeast coast of India. The coastline, which includes tourist resorts, ports, hotels, fishing villages, and towns, has experienced threats from many disasters such as storms, cyclones, floods, tsunami, and erosion. This was one of the worst affected area during 2004 Indian Ocean tsunami and during 2008 Nisha cyclone. The present study aims to develop a Coastal Vulnerability Index for the Chennai coast using eight relative risk variables to know the high and low vulnerable areas, areas of inundation due to future SLR, and land loss due to coastal erosion. Both conventional and remotely sensed data were used and analyzed with the aid of the remote sensing and geographic information system tools. Zones of vulnerability to coastal natural hazards of different magnitude (high, medium, and low) are identified and shown on a map. Coastal regional elevation, near-shore bathymetry, and socio-economic conditions have been considered as additional important variables. This study revealed that 11.01 km of the coastline has low vulnerability, 16.66 km has medium vulnerability, and 27.79 km is highly vulnerable in the study area, showing the majority of coastline is prone to erosion. The map prepared for the Chennai coast can be used by the state and district administration involved in the disaster mitigation and management plan and also as a tool in planning a new facility and for insurance purpose.

Journal ArticleDOI
TL;DR: In this paper, a study has been carried out to analyze and report the river bank erosion hazard due to morphometric change of the Ganga River (also called Ganges in English) in the upstream of Farakka Barrage up to Rajmahal.
Abstract: This study has been carried out to analyze and report the river bank erosion hazard due to morphometric change of the Ganga River (also called Ganges in English) in the upstream of Farakka Barrage up to Rajmahal. Morphometric parameters, such as, Sinuosity, Braidedness Index, and percentage of the island area to the total river reach area were measured for the year of 1955, 1977, 1990, 2001, 2003, and 2005 from LANDSAT and IRS satellite images. The analysis shows that there is a drastic increase in all of those parameters over the period of time. This study has found that bank failure is because of certain factors like soil stratification of the river bank, presence of hard rocky area (Rajmahal), high load of sediment and difficulty of dredging and construction of Farakka Barrage as an obstruction to the natural river flow. For the increasing sinuosity, the river has been engulfing the large areas of left bank every year. The victims are mostly Manikchak and Kaliachak-II blocks of Malda district, with a loss of around 1,670 ha agricultural land since 1977. Temporal shift measurements for the river reach between Farakka and Rajmahal has been done with help of 22 cross-sections in this reach. Erosion impact area has also been estimated to emphasize the devastating nature of the hazard.

Journal ArticleDOI
TL;DR: A review of bloom occurrences in Indian waters from 1908 to 2009 points out that a total of 101 cases have been reported as discussed by the authors, of which 39 causative species responsible for blooms, of which Noctiluca scintillans and Trichodesmium erythraeum are the most common.
Abstract: Algal blooms have been documented along the west and east coasts of India. A review of bloom occurrences in Indian waters from 1908 to 2009 points out that a total of 101 cases have been reported. A comparison of the bloom cases reported before and after the 1950s reveals that there is an increase in the number of bloom occurrences. The reports of algal blooms indicate their predominance along the west coast of India especially the southern part. Majority of the blooms reported along the west coast of India are caused by dinoflagellates, whereas diatom blooms prevail along the east coast. There have been 39 causative species responsible for blooms, of which Noctiluca scintillans and Trichodesmium erythraeum are the most common. Reporting of massive fish mortality in Indian waters has been associated with the blooming of Cochlodinium polykrikoides, Karenia brevis, Karenia mikimotoi, N. scintillans, T. erythraeum, Trichodesmiumthiebautii and Chattonella marina. Most of the blooms occurred during withdrawal of the south-west monsoon and pre-monsoon period. In Indian waters, this process is mainly influenced by seasonal upwelling and monsoonal forcing that causes high riverine discharge resulting in nutrient-enriched waters that provides a competitive edge for blooming of phytoplankton species.

Journal ArticleDOI
TL;DR: The merits and demerits of the new vulnerability and resilience assessment framework tool are discussed, and the results of the application to Sondrio indicate where data is currently missing, suggesting the kind of data, which will need to be gathered in future to achieve more complete assessments.
Abstract: Vulnerability studies have evolved significantly in recent decades. Although not overly theoretical compared with some other fields of science, some important conceptual progress has been made. At the practical level, vulnerability indicators have been used either at a generic level or for particular hazard contexts. However, these indicators are often predictably too narrow in their coverage of aspects of vulnerability. An important need remains to produce more conceptually informed vulnerability indicators or parameters and more satisfactory operational tools to assess weaknesses and resilience in coping with natural risks. In this paper, we present the methodology developed in the context of a recently concluded EU funded project, ENSURE (Enhancing resilience of communities and territories facing natural and na-tech hazards). The resulting vulnerability and resilience assessment framework tool adopts a systemic approach embedding and integrating as much as possible the multifaceted and articulated nature of concepts such as vulnerability and resilience. The tool guides evaluators towards a comprehensive and context-related understanding of strengths and fragilities of a given territory and community with respect to natural extremes. In this paper, both the framework tool and its application to Sondrio in Italy, which is exposed to flash floods, are presented and discussed. The merits and demerits of the new tool are discussed, and the results of the application to Sondrio indicate where data are currently missing, suggesting the kind of data, which will need to be gathered in future to achieve more complete assessments. The results also suggest vulnerability reduction policies and actions and further ways of revising the existing framework tool in the future.

Journal ArticleDOI
TL;DR: In this paper, a landslide susceptibility map is prepared on the basis of field observations and available data of geology, land use, topography and hydrology, and the results show that about 30% of the area is highly susceptible to landsliding.
Abstract: Mountainous areas in Nepal are prone to landslides, resulting in an enormous loss of life and property every year. As a first step towards mitigating or controlling such problems, it is necessary to prepare landslide susceptibility maps. Various methodologies have been proposed for landslide susceptibility mapping. This study applies the weight of evidence method to the Tinau watershed in west Nepal. A landslide susceptibility map is prepared on the basis of field observations and available data of geology, land use, topography and hydrology. Predicted susceptibility levels are found to be in good agreement with the locations of past landslides. The results show that about 30 % of the area is highly susceptible to landsliding. The present results provide useful information to the authorities concerning the landslide susceptibility zones and possible improvements for disaster management activities and sustainable development.

Journal ArticleDOI
TL;DR: In this paper, an assessment of flood hazard by developing a flood hazard map for mid-eastern Dhaka (37.16 km2) was carried out by 1D hydrodynamic simulation on the basis of digital elevation model (DEM) data from Shuttle Radar Topography Mission and the hydrologic field-observed data for 32 years (1972-2004).
Abstract: Floods are regular feature in rapidly urbanizing Dhaka, the capital city of Bangladesh. It is observed that about 60% of the eastern Dhaka regularly goes under water every year in monsoon due to lack of flood protection. Experience gathered from past devastating floods shows that, besides structural approach, non-structural approach such as flood hazard map and risk map is effective tools for reducing flood damages. In this paper, assessment of flood hazard by developing a flood hazard map for mid-eastern Dhaka (37.16 km2) was carried out by 1D hydrodynamic simulation on the basis of digital elevation model (DEM) data from Shuttle Radar Topography Mission and the hydrologic field-observed data for 32 years (1972–2004). As the topography of the area has been considerably changed due to rapid land-filling by land developers which was observed in recent satellite image (DigitalGlobe image; Date of imagery: 7th March 2007), the acquired DEM data were modified to represent the current topography. The inundation simulation was conducted using hydrodynamic program HEC-RAS for flood of 100-year return period. The simulation has revealed that the maximum depth is 7.55 m at the southeastern part of that area and affected area is more than 50%. A flood hazard map was prepared according to the simulation result using the software ArcGIS. Finally, to assess the flood risk of that area, a risk map was prepared where risk was defined as the product of hazard (i.e., depth of inundation) and vulnerability (i.e., the exposure of people or assets to flood). These two maps should be helpful in raising awareness of inhabitants and in assigning priority for land development and for emergency preparedness including aid and relief operations in high-risk areas in the future.

Journal ArticleDOI
TL;DR: In this article, six combinations of physical parameterization schemes (2 PBL Schemes, YSU and MYJ, and 3 convection schemes, KF, BM, and GD) of the WRF-ARW model are employed to obtain the optimum combination for the prediction of tropical cyclones over North Indian Ocean.
Abstract: The convection and planetary boundary layer (PBL) processes play significant role in the genesis and intensification of tropical cyclones (TCs). Several convection and PBL parameterization schemes incorporate these processes in the numerical weather prediction models. Therefore, a systematic intercomparison of performance of parameterization schemes is essential to customize a model. In this context, six combinations of physical parameterization schemes (2 PBL Schemes, YSU and MYJ, and 3 convection schemes, KF, BM, and GD) of WRF-ARW model are employed to obtain the optimum combination for the prediction of TCs over North Indian Ocean. Five cyclones are studied for sensitivity experiments and the out-coming combination is tested on real-time prediction of TCs during 2008. The tracks are also compared with those provided by the operational centers like NCEP, ECMWF, UKMO, NCMRWF, and IMD. It is found that the combination of YSU PBL scheme with KF convection scheme (YKF) provides a better prediction of intensity, track, and rainfall consistently. The average RMSE of intensity (13 hPa in CSLP and 11 m s−1 in 10-m wind), mean track, and landfall errors is found to be least with YKF combination. The equitable threat score (ETS) of YKF combination is more than 0.2 for the prediction of 24-h accumulated rainfall up to 125 mm. The vertical structural characteristics of cyclone inner core also recommend the YKF combination for Indian seas cyclones. In the real-time prediction of 2008 TCs, the 72-, 48-, and 24-h mean track errors are 172, 129, and 155 km and the mean landfall errors are 125, 73, and 66 km, respectively. Compared with the track of leading operational agencies, the WRF model is competing in 24 h (116 km error) and 72 h (166 km) but superior in 48-h (119 km) track forecast.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the factors related to the development of land subsidence during the process of urbanisation in Shanghai during the past 30 years, including additional load during and after structure construction, the cut-off and/or partial cutoff effect of underground structures in aquifers, the decrease in the groundwater level due to leakage of underground structure and the reduction in recharge of groundwater from the surroundings.
Abstract: Since 1980, land subsidence has accelerated and groundwater levels have decreased in the centre of Shanghai, although the net withdrawn volume of groundwater has not increased. Theoretical analysis of the monitored data shows that the decrease in the groundwater level is the primary reason for the observed land subsidence. Meanwhile, the net withdrawn volume of groundwater in the urban centre of Shanghai has not increased during this period. Many underground structures have been constructed in the multi-aquifer-aquitard system of Shanghai since 1980. This paper discusses the factors related to the development of land subsidence during the process of urbanisation in Shanghai during the past 30 years. These factors include additional load during and after structure construction, the cut-off and/or partial cut-off effect of underground structures in aquifers, the decrease in the groundwater level due to leakage of underground structures and the reduction in recharge of groundwater from the surroundings.

Journal ArticleDOI
TL;DR: There has been a lively debate since the 1980s on distinguishing between paleo-tsunami deposits and paleocyclone deposits using sedimentological criteria as discussed by the authors, and many sedimentary features are considered to be reliable criteria for recognizing potential pyrite-cyclone-induced deposits.
Abstract: There has been a lively debate since the 1980s on distinguishing between paleo-tsunami deposits and paleo-cyclone deposits using sedimentological criteria. Tsunami waves not only cause erosion and deposition during inundation of coastlines in subaerial environments, but also trigger backwash flows in submarine environments. These incoming waves and outgoing flows emplace sediment in a wide range of environments, which include coastal lake, beach, marsh, lagoon, bay, open shelf, slope and basin. Holocene deposits of tsunami-related processes from these environments exhibit a multitude of physical, biological and geochemical features. These features include basal erosional surfaces, anomalously coarse sand layers, imbricated boulders, chaotic bedding, rip-up mud clasts, normal grading, inverse grading, landward-fining trend, horizontal planar laminae, cross-stratification, hummocky cross-stratification, massive sand rich in marine fossils, sand with high K, Mg and Na elemental concentrations and sand injections. These sedimentological features imply extreme variability in processes that include erosion, bed load (traction), lower flow regime currents, upper-flow regime currents, oscillatory flows, combined flows, bidirectional currents, mass emplacement, freezing en masse, settling from suspension and sand injection. The notion that a ‘tsunami’ event represents a single (unique) depositional process is a myth. Although many sedimentary features are considered to be reliable criteria for recognizing potential paleo-tsunami deposits, similar features are also common in cyclone-induced deposits. At present, paleo-tsunami deposits cannot be distinguished from paleo-cyclone deposits using sedimentological features alone, without historical information. The future success of distinguishing paleo-tsunami deposits depends on the development of criteria based on systematic synthesis of copious modern examples worldwide and on the precise application of basic principles of process sedimentology.

Journal ArticleDOI
TL;DR: In this article, a methodology for the development of a vulnerability curve as a function of the intensity of the process and the degree of loss is presented, which can be used for other types of hazards in the future.
Abstract: Alpine hazards such as debris flow, floods, snow avalanches, rock falls, and landslides pose a significant threat to local communities. The assessment of the vulnerability of the built environment to these hazards in the context of risk analysis is a topic that is growing in importance due to global environmental change impacts as well as socio-economic changes. Hence, the vulnerability is essential for the development of efficient risk reduction strategies. In this contribution, a methodology for the development of a vulnerability curve as a function of the intensity of the process and the degree of loss is presented. After some modifications, this methodology can also be used for other types of hazards in the future. The curve can be a valuable tool in the hands of local authorities, emergency and disaster planners since it can assist decision making and cost–benefit analysis of structural protection measures by assessing the potential cost of future events. The developed methodology is applied in two villages (Gand and Ennewasser) located in Martell valley, South Tyrol, Italy. In the case study area, buildings and infrastructure suffered significant damages following a debris flow event in August 1987. The event caused extensive damage and was very well documented. The documented data were used to create a vulnerability curve that shows the degree of loss corresponding to different process intensities. The resulting curve can be later used in order to assess the potential economic loss of future events. Although the validation process demonstrated the reliability of the results, a new damage assessment documentation is being recommended and presented. This documentation might improve the quality of the data and the reliability of the curve. The presented research has been developed in the European FP7 project MOVE (Methods for the Improvement of Vulnerability Assessment in Europe).

Journal ArticleDOI
TL;DR: In this paper, the authors show that the number of fatalities in recent disastrous earthquakes were underestimated by the world seismic hazard maps by approximately two to three orders of magnitude, which cannot be used to estimate the risk to which the population is exposed due to large earthquakes.
Abstract: Seismic hazard maps are constructed by extrapolating from the frequency of small earthquakes, the annual probability of large, infrequent, earthquakes. Combining the potential contribution from all seismically active volumes, one calculates the peak ground acceleration with a probability to be exceeded by 10 % in 50 years at any given point. The consequential risk, the losses to be expected, derives from the damage the calculated shaking causes to buildings, and the impact on occupants due to collapsing structures. We show that the numbers of fatalities in recent disastrous earthquakes were underestimated by the world seismic hazard maps by approximately two to three orders of magnitude. Thus, seismic hazard maps based on the standard method cannot be used to estimate the risk to which the population is exposed due to large earthquakes.

Journal ArticleDOI
TL;DR: It is demonstrated that the ash cloud was unexpectedly disruptive because it was spatially coherent rather than uniformly random and the combination of their geographical distribution and their network architectures jeopardises their inherent hazard tolerance.
Abstract: The 2010 eruption of the Eyjafjallajokull volcano had a devastating effect on the European air traffic network, preventing air travel throughout most of Europe for 6 days (Oroian in ProEnvironment 3:5–8, 2010). The severity of the disruption was surprising as previous research suggests that this type of network should be tolerant to random hazard (Albert et al. in Nature 406(6794):378–382, 2000; Strogatz in Nature 410(6825):268–276, 2001). The source of this hazard tolerance lies in the degree distribution of the network which, for many real-world networks, has been shown to follow a power law (Albert et al. in Nature 401(6749):130–131, 1999; Albert et al. in Nature 406(6794):378–382, 2000). In this paper, we demonstrate that the ash cloud was unexpectedly disruptive because it was spatially coherent rather than uniformly random. We analyse the spatial dependence in air traffic networks and demonstrate how the combination of their geographical distribution and their network architectures jeopardises their inherent hazard tolerance.

Journal ArticleDOI
TL;DR: The findings suggest the existence of a vast range of challenges, most of which are typical for many spatial vulnerability assessments, which may help similar interdisciplinary projects in identifying potential gaps and possibilities for improvement.
Abstract: The main purpose of this paper is to document the challenges within spatial risk and vulnerability assessments in order to instigate an open discussion about oppor- tunities for improvements in approaches to disaster risk. This descriptive paper identifies challenges to quality and acceptance and is based on a case study of a social vulnerability index of river floods in Germany. The findings suggest the existence of a vast range of challenges, most of which are typical for many spatial vulnerability assessments. Some of these challenges are obvious while others, such as the stigmatisation of 'the vulnerable' in vulnerability maps, are probably less often the subject of debate in the context of quan- titative assessments. The discussion of challenges regarding data, methodology, concept and evaluation of vulnerability assessment may help similar interdisciplinary projects in identifying potential gaps and possibilities for improvement. Moreover, the acceptance of the outcomes of spatial risk assessments by the public will benefit from their critical and open-minded documentation.