scispace - formally typeset
Search or ask a question

Showing papers in "Nature Biotechnology in 2011"


Journal ArticleDOI
TL;DR: The Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available, providing a unified solution for transcriptome reconstruction in any sample.
Abstract: Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.

15,665 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an approach for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

10,798 citations


Journal ArticleDOI
TL;DR: It is shown that exosomes—endogenous nano-vesicles that transport RNAs and proteins—can deliver short interfering (si)RNA to the brain in mice, and the therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA and protein knockdown of BACE1, a therapeutic target in Alzheimer's disease, in wild-type mice.
Abstract: To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic delivery technologies must be developed. Here we show that exosomes-endogenous nano-vesicles that transport RNAs and proteins-can deliver short interfering (si)RNA to the brain in mice. To reduce immunogenicity, we used self-derived dendritic cells for exosome production. Targeting was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous siRNA by electroporation. Intravenously injected RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease, in wild-type mice.

3,442 citations


Journal ArticleDOI
TL;DR: This study identifies TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and uses them to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%.
Abstract: Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.

2,172 citations


Journal ArticleDOI
TL;DR: Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily.
Abstract: We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.

1,686 citations


Journal ArticleDOI
TL;DR: In this article, the authors used transcription activator-like effector nucleases (TALENs) for site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases.
Abstract: Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

1,159 citations


Journal ArticleDOI
TL;DR: The utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes is established and it is suggested that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients.
Abstract: Noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer-associated ncRNA transcripts (PCATs) by ab initio assembly of high-throughput sequencing of polyA(+) RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the Polycomb Repressive Complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1-repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.

953 citations


Journal ArticleDOI
TL;DR: This method uses the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC, a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types.
Abstract: In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC-containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level-dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.

940 citations


Journal ArticleDOI
TL;DR: This work presents a versatile computational approach, spanning-tree progression analysis of density-normalized events (SPADE), which facilitates the analysis of cellular heterogeneity, the identification of cell types and comparison of functional markers in response to perturbations.
Abstract: The ability to analyze multiple single-cell parameters is critical for understanding cellular heterogeneity. Despite recent advances in measurement technology, methods for analyzing high-dimensional single-cell data are often subjective, labor intensive and require prior knowledge of the biological system. To objectively uncover cellular heterogeneity from single-cell measurements, we present a versatile computational approach, spanning-tree progression analysis of density-normalized events (SPADE). We applied SPADE to flow cytometry data of mouse bone marrow and to mass cytometry data of human bone marrow. In both cases, SPADE organized cells in a hierarchy of related phenotypes that partially recapitulated well-described patterns of hematopoiesis. We demonstrate that SPADE is robust to measurement noise and to the choice of cellular markers. SPADE facilitates the analysis of cellular heterogeneity, the identification of cell types and comparison of functional markers in response to perturbations.

930 citations


Journal ArticleDOI
TL;DR: 17 TALEs are synthesized that are customized to recognize specific DNA-binding sites, and it is demonstrated that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.
Abstract: The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator-like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.

920 citations


Journal ArticleDOI
TL;DR: In a mouse model of a lethal congenital lung disease caused by a lack of surfactant protein B (SP-B), twice weekly local application of an aerosol of modified SP-B mRNA to the lung restored 71% of the wild-type SP- B expression, and treated mice survived until the predetermined end of the study after 28 days.
Abstract: Current viral vectors for gene therapy are associated with serious safety concerns, including leukemogenesis, and nonviral vectors are limited by low gene transfer efficiency. Here we investigate the therapeutic utility of chemically modified mRNA as an alternative to DNA-based gene therapy. A combination of nucleotide modifications abrogates mRNA interaction with Toll-like receptor (TLR)3, TLR7, TLR8 and retinoid-inducible gene I (RIG-I), resulting in low immunogenicity and higher stability in mice. A single intramuscular injection of modified murine erythropoietin mRNA raises the average hematocrit in mice from 51.5% to 64.2% after 28 days. In a mouse model of a lethal congenital lung disease caused by a lack of surfactant protein B (SP-B), twice weekly local application of an aerosol of modified SP-B mRNA to the lung restored 71% of the wild-type SP-B expression, and treated mice survived until the predetermined end of the study after 28 days.

Journal ArticleDOI
TL;DR: Quantitative analysis revealed complex and often unexpected interactions between protein kinases and kinase inhibitors, with a wide spectrum of promiscuity, revealing how large-scale profiling can identify multitargeted inhibitors of specific, diverse kinases.
Abstract: Small-molecule protein kinase inhibitors are widely used to elucidate cellular signaling pathways and are promising therapeutic agents. Owing to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments that use these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we used functional assays to profile the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases. Quantitative analysis revealed complex and often unexpected interactions between protein kinases and kinase inhibitors, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can identify multitargeted inhibitors of specific, diverse kinases. The results have implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments involving kinase inhibitors.

Journal ArticleDOI
TL;DR: A draft genomic sequence of the CHO-K1 ancestral cell line is presented and it is discussed how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.
Abstract: Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns. Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.

Journal ArticleDOI
TL;DR: The use of TALENs is reported to disrupt both of the two endogenous zebrafish genes the authors targeted and show that the mutations are transmitted through the germ line, confirming that TALens could induce DSBs and activate the DNA repair pathway through nonhomologous endjoining in vivo.
Abstract: 699 To the Editor: Studies of targeted gene modifications are of great interest in basic research as well as for clinical and agricultural applications1. In the February issue of Nature Biotechnology, two articles reported genomic modifications using transcription activator-like (TAL) effectors2,3. Using fusion proteins, each comprising a TAL effector DNA binding domain and a FokI cleavage domain, Miller et al.2 reported that TAL effector nucleases (TALENs) successfully disrupted target genes in cultured human cells. Zhang et al.3 showed that TAL effectors can be used to regulate endogenous gene transcription. Compared with zinc-finger proteins4,5, TAL effectors permit more predictable and specific binding to target DNA6, and therefore allow researchers to engineer genomes precisely without the need for laborious screening to identify a DNA binding domain with the requisite specificity. TALENs can induce DNA double-stranded breaks (DSBs) in yeast7. Gene targeting using TALENs has also been achieved in nematodes8 and human pluripotent cells9. However, it has not, to our knowledge, yet been demonstrated in a vertebrate organism. Here we report the use of TALENs to disrupt both of the two endogenous zebrafish genes we targeted and show that the mutations are transmitted through the germ line. The complexity of constructing customized, sequence-specific TAL effectors restricts broad application of TALEN to genome engineering. Recently, several strategies for constructing TAL effector repeats using type IIS endonucleases have been reported3,10–14. As an alternative approach, we constructed sequence-specific TAL effector repeats using a method called unit assembly, which involves the isocaudamer restriction enzymes, NheI and SpeI (Supplementary Fig. 1). This method involves four basic single-unit vectors, which recognize the individual nucleotides A, T, C and G (Supplementary Table 1 and Supplementary Sequences). Simple double-restriction-enzyme digestion (NheI + HindIII or SpeI + HindIII), followed by ligation, yields a collection of double-unit elements that each recognize two tandem nucleotides (Supplementary Fig. 1). Having prepared all 16 possible combinations of double units, we used these elements for subsequent construction of TAL effector repeats by serial cycles of digestion and ligation. To construct the TALEN expression vectors, we subcloned the TAL effector repeats into a vector containing the FokI cleavage domain and other necessary components, including the 5′ terminal sequence, the last 0.5 unit encoding the repeat variable di-residue (RVD) NG and the 3′ terminal sequence of pthA from Xanthomonas axonopodis pv. citri (Supplementary Fig. 2 and Supplementary Methods). We selected tnikb (GenBank gene: 556959), which encodes TRAF2 and NCK interacting kinase, as an endogenous gene to test whether customized TALENs can modify the zebrafish (Danio rerio) germ line. The site we chose to target is located at the junction of intron 1 and exon 2, with 15 bp and 16 bp of DNA on the left and the right binding sites, respectively. These are separated by a 15-bp spacer DNA containing a BamHI site (Fig. 1a and Supplementary Fig. 3). To detect mutations, we PCR amplified a 353-bp DNA fragment. Complete digestion with BamHI produced two fragments of 258 bp and 95 bp, as shown in control embryos (Fig. 1). By contrast, there was an apparently intact DNA fragment in embryos injected with mRNA encoding TALENs (Fig. 1) and sequencing results confirmed that indels were induced at the target site (Supplementary Fig. 4). These results confirmed that TALENs could induce DSBs and activate the DNA repair pathway through nonhomologous endjoining in vivo. The NK RVD has been reported to bind to G more specifically than NN does2,15. We constructed a pair of alternative TALENs that binds to the same target site of tnikb by replacing the NN RVD with NK (Supplementary Fig. 3). Survival rates were similar for embryos injected with mRNAs encoding either NNor NKcontaining TALENs (Fig. 1b). However, Heritable gene targeting in zebrafish using customized TALENs

Journal ArticleDOI
TL;DR: An optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes prevent their accumulation in sites of inflammation.
Abstract: Excessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes-but not the noninflammatory subset-depend on the chemokine receptor CCR2 for localization to injured tissue. Here we present an optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes. Efficient degradation of CCR2 mRNA in monocytes prevents their accumulation in sites of inflammation. Specifically, the treatment attenuates their number in atherosclerotic plaques, reduces infarct size after coronary artery occlusion, prolongs normoglycemia in diabetic mice after pancreatic islet transplantation, and results in reduced tumor volumes and lower numbers of tumor-associated macrophages.

Journal ArticleDOI
TL;DR: It is demonstrated that the transcriptional diversity of cancer tissues is largely explained by in vivo multilineage differentiation and not only by clonal genetic heterogeneity.
Abstract: Cancer is often viewed as a caricature of normal developmental processes, but the extent to which its cellular heterogeneity truly recapitulates multilineage differentiation processes of normal tissues remains unknown. Here we implement single-cell PCR gene-expression analysis to dissect the cellular composition of primary human normal colon and colon cancer epithelia. We show that human colon cancer tissues contain distinct cell populations whose transcriptional identities mirror those of the different cellular lineages of normal colon. By creating monoclonal tumor xenografts from injection of a single (n = 1) cell, we demonstrate that the transcriptional diversity of cancer tissues is largely explained by in vivo multilineage differentiation and not only by clonal genetic heterogeneity. Finally, we show that the different gene-expression programs linked to multilineage differentiation are strongly associated with patient survival. We develop two-gene classifier systems (KRT20 versus CA1, MS4A12, CD177, SLC26A3) that predict clinical outcomes with hazard ratios superior to those of pathological grade and comparable to those of microarray-derived multigene expression signatures.

Journal ArticleDOI
TL;DR: It is demonstrated that astrocytes derived from postmortem tissue from both FALS and SALS patients are similarly toxic to motor neurons and that SOD1 is a viable target for SALS, as its knockdown significantly attenuatesAstrocyte-mediated toxicity toward motor neurons.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, with astrocytes implicated as contributing substantially to motor neuron death in familial (F)ALS. However, the proposed role of astrocytes in the pathology of ALS derives in part from rodent models of FALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene, which account for 90% of ALS patients, remains to be established. Using astrocytes generated from postmortem tissue from both FALS and SALS patients, we show that astrocytes derived from both patient groups are similarly toxic to motor neurons. We also demonstrate that SOD1 is a viable target for SALS, as its knockdown significantly attenuates astrocyte-mediated toxicity toward motor neurons. Our data highlight astrocytes as a non-cell autonomous component in SALS and provide an in vitro model system to investigate common disease mechanisms and evaluate potential therapies for SALS and FALS.

Journal ArticleDOI
TL;DR: The authors demonstrated that TALE nucleases, composed of an engineered array of TALE repeats fused to the non-specific FokI cleavage domain, could be used to introduce targeted double-stranded breaks (DSBs) in human cells with high efficiency.
Abstract: To the Editor: Miller et al. recently described a TALE nuclease architecture for performing efficient genome editing1. The authors demonstrated that TALE nucleases, composed of an engineered array of TALE repeats fused to the non-specific FokI cleavage domain, could be used to introduce targeted double-stranded breaks (DSBs) in human cells with high efficiency. Repair of these DSBs by normal DNA repair mechanisms such as non-homologous end-joining (NHEJ) or homologous recombination (HR) enables introduction of alterations at or near the site of the break. A single 34 amino acid TALE repeat binds to one bp of DNA and repeats that bind each of the four DNA bases have been described2, 3. These modules can be assembled into arrays capable of binding extended DNA sequences. TALE nucleases may have advantages over engineered zinc finger nucleases (ZFNs) due to the relative ease with which they can be designed and their potential ability to be targeted to a wide range of sequences (with target sites reported to be as frequent as 1 in 35 bps of random DNA sequence4). We sought to determine whether the TALE nuclease framework described by Miller et al. could also be used to efficiently modify endogenous genes in zebrafish. Previous studies have shown that error-prone repair of ZFN-induced DSBs by NHEJ can result in the efficient introduction of small insertions or deletions (indels) at cleavage sites in endogenous zebrafish genes5–7. These indels frequently result in frameshift knockout mutations that can be passed through the germline to create mutant fish5–9. ZFN technology has enabled reverse genetics studies to be performed in zebrafish, a capability that did not previously exist. However, engineering ZFNs can be challenging due to the need to account for context-dependent effects among individual fingers in an array. In addition, although many zebrafish genes can be targeted with ZFNs made by publicly available methods that account for context-dependence7, 10, it can in some instances be difficult to target within some genes in zebrafish due to the currently limited targeting range of publicly available ZFN engineering platforms. Thus, if TALE nucleases could be used to introduce targeted mutations in zebrafish, this platform would provide an important additional capability for this model organism. To test the ability of TALE nucleases to function in zebrafish, we targeted DNA sequences in two endogenous zebrafish genes gria3a and hey2 (Figure 1). To avoid confounding effects that might affect binding and cleavage of DNA sites by TALE nucleases (e.g.--chromatin structure or DNA methylation), we chose to target sequences that we had efficiently altered previously in zebrafish using engineered ZFNs (Supplementary Figures 1 and 2). Using an iterative assembly approach (Supplementary Methods), we constructed four TALE nuclease monomers to partially overlapping sites in the gria3a gene and two TALE nuclease monomers to a site in the hey2 gene (Figure 1 and Supplementary Figure 3). These six TALE nuclease monomers all harbor the wild-type FokI cleavage domain (Supplementary Figures 4 and 5) and can be paired in combinations to make three TALE nuclease dimers to the gria3a gene and one TALE nuclease dimer to the hey2 gene (Figure 1). We injected RNAs encoding the various TALE nuclease pairs into one-cell stage zebrafish embryos and determined the frequency of NHEJ-mediated mutagenesis at the target site by sequence analysis of alleles from pooled injected embryos (Supplementary Methods, Supplementary Figs. 6–10 and Supplementary Table 1). As shown in Figure 1, we found that all four pairs of TALE nucleases induced targeted indels with high mutation frequencies ranging from 11 to 33%. These frequencies are comparable to what we obtained with ZFNs targeted to DNA sequences in the same vicinity of the gene (Supplementary Figure 1); however, we note that TALE nucleases harbor wild-type FokI domains whereas the ZFNs harbor obligate heterodimeric FokI domains11. Although small indels were typically observed with the TALE nucleases, some large deletions (up to 303 basepairs) were also found (Figure 1). Figure 1 Target sequences, frequencies of mutations, and sequences of mutations induced by TALE nucleases in embryonic zebrafish cells To assess the toxicity of our engineered TALE nucleases, we scored the percentages of dead and deformed embryos that resulted from mRNA microinjections (Supplementary Figure 11). Although we cannot directly compare these results with the microinjections of ZFNs due to the differences between the FokI endonuclease domains used (EL/KK heterodimeric FokI11 for ZFNs versus wild-type FokI for the TALE nucleases) and the specific sequences targeted, the toxicity we observed with injection of 600 pg of TALE nuclease mRNAs (ranging between 40–80%) appears similar to that observed with 400–500 pg of mRNAs encoding ZFNs targeted to sequences in the same vicinity and to other genes (Supplementary Figure 12 and Reference 7). An important future experiment will be to demonstrate germline transmission of TALE nuclease-induced mutations. Given that the frequencies of mutation and the extent of toxicities we observe are similar to what we have seen with ZFNs, we expect that TALE nuclease-induced mutations should be efficiently passed through the germline to progeny and we are currently conducting experiments to test this prediction. Successful germline transmission of these mutations will be critical for using TALE nucleases to perform reverse genetics in zebrafish. Progeny fish bearing TALE nuclease-induced mutations, unlike founder F0 fish, will not be mosaic (i.e.--these fish will have uniform mutation of all cells in the organism); such mutant fish will enable determination of whether both mono-allelic and bi-allelic alterations of a gene are possible and will provide a more straightforward background on which to perform analysis of off-target effects. In summary, we show that the TALE nuclease framework described by Miller et al. can be used to efficiently introduce targeted indel mutations in endogenous zebrafish genes at the somatic cell level. Although in this study we chose two genomic loci that have been successfully targeted with ZFNs before, all six TALE nuclease monomers we constructed showed high mutagenesis activities when tested in various pairwise combinations, suggesting that the TALE nuclease framework is also highly robust and effective in zebrafish. As is the case with ZFNs, the complete genome-wide spectrum of off-target mutations introduced by TALE nucleases remains unknown. However, expression of the TALE nucleases we made in zebrafish does not show toxicity substantially different from that observed with expression of ZFNs, suggesting that the magnitude of off-target effects may be comparable with the two types of nucleases. In principle, off-target mutations made by TALE nucleases can be removed by out-crossing the founder assuming that they are not tightly linked to the intended mutation. In addition, mutant phenotypes could also be confirmed by generation of a second mutant allele using nucleases targeted to a different site. For mutagenesis of genes in zebrafish (and other model organisms such as C. elegans12), TALE nucleases may offer potential advantages over ZFNs because they can be easily and quickly assembled in a modular fashion and they can potentially target a greater range of DNA sequences. Thus, we expect that the ability to utilize both ZFNs and TALE nucleases should enable any researcher to rapidly and easily create targeted mutations in their endogenous zebrafish gene of interest.

Journal ArticleDOI
TL;DR: This work was supported in part by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation award no. 0540879, and by the Joint BioEnergy Institute, which was funded by the US Department of Energy, Office of Science, Officeof Biological and Environmental Research, through contract DE-AC02-05CH11231.
Abstract: 1. Holtz, W.J. & Keasling J.D. Engineering static and dynamic control of synthetic pathways. Cell 140, 19– 23 (2010). 2. Gibson, D.G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010). 3. Thykaer, J. & nielsen, J. Metabolic engineering of b–lactam production. Metab. Eng. 5, 56–69 (2003). 4. nielsen, J. It is all about metabolic fluxes. J. Bacteriol. 185, 7031–7035 (2003). 5. Feist, A.M. & Palsson, B.O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659– 667 (2008). 6. Herrgard, M.J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26, 1155–1160 (2008). ACKNOWlEDGMENTS J.N. was supported in part by the Chalmers Foundation and the Knut and Alice Wallenberg Foundation. J.D.K. was supported in part by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation award no. 0540879, and by the Joint BioEnergy Institute, which is funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231.

Journal ArticleDOI
TL;DR: Compared with far-red GFP-like proteins, iRFP has a substantially higher signal-to-background ratio in a mouse model due to its infrared-shifted spectra and has higher effective brightness, intracellular stability and photostability than earlier phytochrome-derived fluorescent probes.
Abstract: Imaging biological processes in mammalian tissues will be facilitated by fluorescent probes with excitation and emission bands within the near-infrared optical window of high transparency. Here we report a phytochrome-based near-infrared fluorescent protein (iRFP) with excitation and emission maxima at 690 nm and 713 nm, respectively. iRFP does not require an exogenous supply of the chromophore biliverdin and has higher effective brightness, intracellular stability and photostability than earlier phytochrome-derived fluorescent probes. Compared with far-red GFP-like proteins, iRFP has a substantially higher signal-to-background ratio in a mouse model due to its infrared-shifted spectra.

Journal ArticleDOI
TL;DR: A mathematical concept known as a de Bruijn graph turns the formidable challenge of assembling a contiguous genome from billions of short sequencing reads into a tractable computational problem.
Abstract: A mathematical concept known as a de Bruijn graph turns the formidable challenge of assembling a contiguous genome from billions of short sequencing reads into a tractable computational problem.

Journal ArticleDOI
TL;DR: This work revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC) and identified several non-HDAC targets for hydroxamate inhibitors.
Abstract: The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.

Journal ArticleDOI
Pelin Yilmaz1, Pelin Yilmaz2, Renzo Kottmann1, Dawn Field, Rob Knight3, Rob Knight4, James R. Cole5, Linda A. Amaral-Zettler6, Jack A. Gilbert7, Jack A. Gilbert8, Jack A. Gilbert9, Ilene Karsch-Mizrachi10, Anjanette Johnston10, Guy Cochrane, Robert Vaughan, Christopher I. Hunter, Joonhong Park11, Norman Morrison12, Philippe Rocca-Serra13, Peter Sterk, Manimozhiyan Arumugam, Mark J. Bailey, Laura K. Baumgartner4, Bruce W. Birren14, Martin J. Blaser15, Vivien Bonazzi10, Timothy F. Booth, Peer Bork, Frederic D. Bushman16, Pier Luigi Buttigieg1, Pier Luigi Buttigieg2, Patrick S. G. Chain5, Patrick S. G. Chain17, Patrick S. G. Chain18, Emily S. Charlson16, Elizabeth K. Costello4, Heather Huot-Creasy19, Peter Dawyndt20, Todd Z. DeSantis21, Noah Fierer4, Jed A. Fuhrman22, Rachel E. Gallery23, Dirk Gevers14, Richard A. Gibbs24, Inigo San Gil25, Antonio Gonzalez4, Jeffrey I. Gordon26, Robert P. Guralnick4, Wolfgang Hankeln2, Wolfgang Hankeln1, Sarah K. Highlander24, Philip Hugenholtz27, Janet K. Jansson18, Janet K. Jansson21, Andrew L. Kau26, Scott T. Kelley28, Jerry Kennedy4, Dan Knights4, Omry Koren29, Justin Kuczynski4, Nikos C. Kyrpides18, Robert Larsen4, Christian L. Lauber4, Teresa M. Legg4, Ruth E. Ley29, Catherine A. Lozupone4, Wolfgang Ludwig30, Donna Lyons4, Eamonn Maguire13, Barbara A. Methé31, Folker Meyer8, Brian D. Muegge26, Sara Nakielny4, Karen E. Nelson31, Diana R. Nemergut4, Josh D. Neufeld32, Lindsay K. Newbold, Anna Oliver, Norman R. Pace4, Giriprakash Palanisamy33, Jörg Peplies, Joseph F. Petrosino24, Lita M. Proctor10, Elmar Pruesse2, Elmar Pruesse1, Christian Quast1, Jeroen Raes34, Sujeevan Ratnasingham35, Jacques Ravel19, David A. Relman36, David A. Relman37, Susanna Assunta-Sansone13, Patrick D. Schloss, Lynn M. Schriml19, Rohini Sinha16, Michelle I. Smith26, Erica Sodergren26, Aymé Spor29, Jesse Stombaugh4, James M. Tiedje5, Doyle V. Ward14, George M. Weinstock26, Doug Wendel4, Owen White19, Andrew S. Whiteley, Andreas Wilke8, Jennifer R. Wortman19, Tanya Yatsunenko26, Frank Oliver Glöckner2, Frank Oliver Glöckner1 
TL;DR: To establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, the minimum information about any (x) sequence is presented (MIxS).
Abstract: Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The ‘environmental packages’ apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.

Journal ArticleDOI
TL;DR: It is demonstrated that the human ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways, and it is proposed that individual mi RNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.
Abstract: The embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.

Journal ArticleDOI
TL;DR: Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research, and show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events.
Abstract: Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient events. Genome-wide integration site analysis mapped the actual in vivo cleavage activity of four ZFN pairs targeting CCR5 or IL2RG. Ranking loci with repeatedly detectable nuclease activity by deep-sequencing allowed us to monitor the degree of ZFN specificity in vivo at these positions. Cleavage required binding of ZFNs in specific spatial arrangements on DNA bearing high homology to the intended target site and only tolerated mismatches at individual positions of the ZFN binding sites. Whereas the consensus binding sequence derived in vivo closely matched that obtained in biochemical experiments, the ranking of in vivo cleavage sites could not be predicted in silico. Comprehensive mapping of ZFN activity in vivo will facilitate the broad application of these reagents in translational research.

Journal ArticleDOI
TL;DR: Extended passage of some iPSC clones in culture did not improve their epigenetic resemblance to embryonic stem cells, implying that some human iPSCs retain a residual 'epigenetic memory' of their tissue of origin.
Abstract: Mouse induced pluripotent stem (iPS) cells have been shown to retain an epigenetic 'memory' of their cell type of origin. Kim et al. study this question in human cells and document both incomplete erasure of methylation and aberrant de novo methylation during reprogramming.

Journal ArticleDOI
TL;DR: This study combines metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide.
Abstract: Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.

Journal ArticleDOI
TL;DR: This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population.
Abstract: To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.

Journal ArticleDOI
Katherine Amps1, Peter W. Andrews1, George Anyfantis2, Lyle Armstrong2, Stuart Avery3, Hossein Baharvand4, Julie C. Baker5, Duncan Baker6, Maria D. Barbadillo Muñoz7, Stephen J. Beil8, Nissim Benvenisty9, Dalit Ben-Yosef10, Juan Carlos Biancotti11, Alexis Bosman12, Romulo M. Brena8, Daniel R. Brison13, Gunilla Caisander, Marãa V. Camarasa14, Jieming Chen15, Eric Chiao5, Young Min Choi16, Andre Choo, D.M. Collins, Alan Colman3, Jeremy M. Crook3, George Q. Daley17, Anne Dalton6, Paul A. De Sousa18, Chris Denning7, J.M. Downie, Petr Dvorak19, Karen Dyer Montgomery20, Anis Feki, Angela Ford1, Victoria Fox8, Ana Maria Fraga21, Tzvia Frumkin10, Lin Ge22, Paul J. Gokhale1, Tamar Golan-Lev9, Hamid Gourabi4, Michal Gropp, Lu GuangXiu22, Aleš Hampl19, Katie Harron23, Lyn Healy, Wishva Herath15, Frida Holm24, Outi Hovatta24, Johan Hyllner, Maneesha S. Inamdar25, Astrid K. Irwanto15, Tetsuya Ishii26, Marisa Jaconi12, Ying Jin27, Susan J. Kimber14, Sergey Kiselev28, Barbara B. Knowles3, Oded Kopper9, Valeri Kukharenko, Anver Kuliev, Maria A. Lagarkova29, Peter W. Laird8, Majlinda Lako2, Andrew L. Laslett, Neta Lavon11, Dong Ryul Lee, Jeoung Eun Lee, Chunliang Li27, Linda S. Lim15, Tenneille Ludwig20, Yu Ma27, Edna Maltby6, Ileana Mateizel30, Yoav Mayshar9, Maria Mileikovsky, Stephen L. Minger31, Takamichi Miyazaki26, Shin Yong Moon16, Harry Moore1, Christine L. Mummery32, Andras Nagy, Norio Nakatsuji26, Kavita Narwani11, Steve Oh, Sun Kyung Oh16, Cia Olson33, Timo Otonkoski33, Fei Pan8, In-Hyun Park34, Steve Pells18, Martin F. Pera8, Lygia da Veiga Pereira21, Ouyang Qi22, Grace Selva Raj3, Benjamin Reubinoff, Alan Robins, Paul Robson15, Janet Rossant35, Ghasem Hosseini Salekdeh4, Thomas C. Schulz, Karen Sermon30, Jameelah Sheik Mohamed15, Hui Shen8, Eric S Sherrer, Kuldip S. Sidhu36, Shirani Sivarajah3, Heli Skottman37, Claudia Spits30, Glyn Stacey, Raimund Strehl, Nick Strelchenko, Hirofumi Suemori26, Bowen Sun27, Riitta Suuronen37, Kazutoshi Takahashi26, Timo Tuuri33, Parvathy Venu25, Yuri Verlinsky, Dorien Ward-van Oostwaard32, Daniel J. Weisenberger8, Yue Wu31, Shinya Yamanaka26, Lorraine E. Young7, Qi Zhou38 
TL;DR: Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells, and single-nucleotide polymorphism analysis revealed that they included representatives of most major ethnic groups.
Abstract: The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells.

Journal ArticleDOI
TL;DR: The results suggest that the Nimblegen platform, which is the only one to use high-density overlapping baits, covers fewer genomic regions than the other platforms but requires the least amount of sequencing to sensitively detect small variants.
Abstract: Whole exome sequencing by high-throughput sequencing of target-enriched genomic DNA (exome-seq) has become common in basic and translational research as a means of interrogating the interpretable part of the human genome at relatively low cost. We present a comparison of three major commercial exome sequencing platforms from Agilent, Illumina and Nimblegen applied to the same human blood sample. Our results suggest that the Nimblegen platform, which is the only one to use high-density overlapping baits, covers fewer genomic regions than the other platforms but requires the least amount of sequencing to sensitively detect small variants. Agilent and Illumina are able to detect a greater total number of variants with additional sequencing. Illumina captures untranslated regions, which are not targeted by the Nimblegen and Agilent platforms. We also compare exome sequencing and whole genome sequencing (WGS) of the same sample, demonstrating that exome sequencing can detect additional small variants missed by WGS.