scispace - formally typeset
Search or ask a question

Showing papers in "Nature Chemical Biology in 2017"


Journal ArticleDOI
TL;DR: Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL 4 inhibition is a viable therapeutic approach to preventing ferroPTosis-related diseases.
Abstract: Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.

1,626 citations


Journal ArticleDOI
TL;DR: It is discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs) and is specific toward two fatty acyls-arachidonoyl (AA) and AdA (AdA).
Abstract: Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.

1,303 citations


Journal ArticleDOI
TL;DR: The results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.
Abstract: Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its impact on target degradation selectivity remain elusive. We solved the crystal structure of Brd4 degrader MZ1 in complex with human VHL and the Brd4 bromodomain (Brd4BD2). The ligand folds into itself to allow formation of specific intermolecular interactions in the ternary complex. Isothermal titration calorimetry studies, supported by surface mutagenesis and proximity assays, are consistent with pronounced cooperative formation of ternary complexes with Brd4BD2. Structure-based-designed compound AT1 exhibits highly selective depletion of Brd4 in cells. Our results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.

646 citations


Journal ArticleDOI
TL;DR: The use of H2O2 by a monocopper enzyme that is otherwise cofactor-free offers new perspectives regarding the mode of action of copper enzymes, and these findings have implications for the enzymatic conversion of biomass in Nature and in industrial biorefining.
Abstract: Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of polysaccharides. Identification of a hydrogen peroxide–dependent pathway for sugar oxidation by these enzymes challenges the prevailing model that LPMOs are oxygen-dependent monooxygenases.

353 citations


Journal ArticleDOI
TL;DR: RODEO (Rapid ORF Description and Evaluation Online), which combines hidden Markov model-based analysis, heuristic scoring, and machine learning to identify biosynthetic gene clusters and predict RiPP precursor peptides to provide a framework for future genome-mining efforts.
Abstract: RODEO, an algorithm developed for RiPP natural product discovery, was applied to map out the gene clusters that encode and tailor lasso peptides and led to the identification and characterization of several new lasso peptide topologies.

285 citations


Journal ArticleDOI
TL;DR: These sulfonamides represent selective chemical probes for disrupting CAPERα function and designate DCAFs as promising drug targets for promoting selective protein degradation in cancer therapy.
Abstract: Target-protein degradation is an emerging field in drug discovery and development. In particular, the substrate-receptor proteins of the cullin-ubiquitin ligase system play a key role in selective protein degradation, which is an essential component of the anti-myeloma activity of immunomodulatory drugs (IMiDs), such as lenalidomide. Here, we demonstrate that a series of anticancer sulfonamides NSC 719239 (E7820), indisulam, and NSC 339004 (chloroquinoxaline sulfonamide, CQS) induce proteasomal degradation of the U2AF-related splicing factor coactivator of activating protein-1 and estrogen receptors (CAPERα) via CRL4DCAF15 mediated ubiquitination in human cancer cell lines. Both CRISPR-Cas9-based knockout of DCAF15 and a single amino acid substitution of CAPERα conferred resistance against sulfonamide-induced CAPERα degradation and cell-growth inhibition. Thus, these sulfonamides represent selective chemical probes for disrupting CAPERα function and designate DCAFs as promising drug targets for promoting selective protein degradation in cancer therapy.

250 citations


Journal ArticleDOI
TL;DR: EED226 is reported, a potent and selective PRC2 inhibitor that directly binds to the H3K27me3 binding pocket of EED, and shows similar activity to SAM-competitive inhibitors in blocking H 3K27 methylation ofPRC2 target genes and inducing regression of human lymphoma xenograft tumors.
Abstract: Polycomb repressive complex 2 (PRC2) consists of three core subunits, EZH2, EED and SUZ12, and plays pivotal roles in transcriptional regulation. The catalytic subunit EZH2 methylates histone H3 lysine 27 (H3K27), and its activity is further enhanced by the binding of EED to trimethylated H3K27 (H3K27me3). Small-molecule inhibitors that compete with the cofactor S-adenosylmethionine (SAM) have been reported. Here we report the discovery of EED226, a potent and selective PRC2 inhibitor that directly binds to the H3K27me3 binding pocket of EED. EED226 induces a conformational change upon binding EED, leading to loss of PRC2 activity. EED226 shows similar activity to SAM-competitive inhibitors in blocking H3K27 methylation of PRC2 target genes and inducing regression of human lymphoma xenograft tumors. Interestingly, EED226 also effectively inhibits PRC2 containing a mutant EZH2 protein resistant to SAM-competitive inhibitors. Together, we show that EED226 inhibits PRC2 activity via an allosteric mechanism and offers an opportunity for treatment of PRC2-dependent cancers.

245 citations


Journal ArticleDOI
TL;DR: This Perspective provides an overview of N-terminal modification techniques and the chemical rationale governing each, along with their uses in a number of diverse biological applications.
Abstract: The formation of well-defined protein bioconjugates is critical for many studies and technologies in chemical biology. Tried-and-true methods for accomplishing this typically involve the targeting of cysteine residues, but the rapid growth of contemporary bioconjugate applications has required an expanded repertoire of modification techniques. One very powerful set of strategies involves the modification of proteins at their N termini, as these positions are typically solvent exposed and provide chemically distinct sites for many protein targets. Several chemical techniques can be used to modify N-terminal amino acids directly or convert them into unique functional groups for further ligations. A growing number of N-terminus-specific enzymatic ligation strategies have provided additional possibilities. This Perspective provides an overview of N-terminal modification techniques and the chemical rationale governing each. Examples of specific N-terminal protein conjugates are provided, along with their uses in a number of diverse biological applications.

238 citations


Journal ArticleDOI
TL;DR: This work inhibits the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells.
Abstract: Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne-doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice.

231 citations


Journal ArticleDOI
TL;DR: A functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition is described and a previously unrecognized site in RAS is defined for inhibiting RAS function.
Abstract: RAS GTPases are important mediators of oncogenesis in humans. However, pharmacological inhibition of RAS has proved challenging. Here we describe a functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition. We developed NS1, a synthetic binding protein (monobody) that bound with high affinity to both GTP- and GDP-bound states of H-RAS and K-RAS but not N-RAS. NS1 potently inhibited growth factor signaling and oncogenic H-RAS- and K-RAS-mediated signaling and transformation but did not block oncogenic N-RAS, BRAF or MEK1. NS1 bound the α4-β6-α5 region of RAS, which disrupted RAS dimerization and nanoclustering and led to blocking of CRAF-BRAF heterodimerization and activation. These results establish the importance of the α4-β6-α5 interface in RAS-mediated signaling and define a previously unrecognized site in RAS for inhibiting RAS function.

229 citations


Journal ArticleDOI
TL;DR: An efficient CRISPR-Cas9 knock-in strategy is reported to activate silent biosynthetic gene clusters (BGCs) in streptomycetes and triggered the production of unique metabolites, including a novel pentangular type II polyketide in Streptomyces viridochromogenes.
Abstract: Most microbial biosynthetic gene clusters are inactive under laboratory culture conditions. A CRISPR–Cas9 genome-editing approach in Streptomyces species enables the targeted activation of silent gene clusters and production of encoded natural products.

Journal ArticleDOI
TL;DR: A fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue is reported.
Abstract: An automated method for solid-phase polypeptide synthesis capitalizes on rapid amide bond formation to enable the production of multiple traditionally difficult-to-synthesize sequences with both high yield and high purity. Here we report a fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue. Crude peptide purities and isolated yields were comparable to those for standard-batch solid-phase peptide synthesis. At full capacity, this approach can yield tens of thousands of individual 30-mer peptides per year.

Journal ArticleDOI
TL;DR: MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573, which represents a potent MRG PRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases.
Abstract: The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small-molecule MRGPRX2 agonists, selective nanomolar-potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found that many opioid compounds activated MRGPRX2, including (-)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan, and the prodynorphin-derived peptides dynorphin A, dynorphin B, and α- and β-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573-a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases-along with an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line, inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573.

Journal ArticleDOI
TL;DR: Modulation of NoBody levels reveals that its abundance is anti-correlated with cellular P-body numbers and alters the steady-state levels of a cellular NMD substrate, implicate NoBody as a novel component of the mRNA decapping complex and demonstrate potential functionality of a newly discovered microprotein.
Abstract: Proteomic detection of non-annotated microproteins indicates the translation of hundreds of small open reading frames (smORFs) in human cells, but whether these microproteins are functional or not is unknown. Here, we report the discovery and characterization of a 7-kDa human microprotein we named non-annotated P-body dissociating polypeptide (NoBody). NoBody interacts with mRNA decapping proteins, which remove the 5' cap from mRNAs to promote 5'-to-3' decay. Decapping proteins participate in mRNA turnover and nonsense-mediated decay (NMD). NoBody localizes to mRNA-decay-associated RNA-protein granules called P-bodies. Modulation of NoBody levels reveals that its abundance is anticorrelated with cellular P-body numbers and alters the steady-state levels of a cellular NMD substrate. These results implicate NoBody as a novel component of the mRNA decapping complex and demonstrate potential functionality of a newly discovered microprotein.

Journal ArticleDOI
TL;DR: A chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueously buffers, shear forces and lowered pH is presented.
Abstract: Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.

Journal ArticleDOI
TL;DR: The current status of mitophagy modulators is summarized and the available chemical tools are analyzed, commenting on their advantages, limitations and current applications.
Abstract: Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications.

Journal ArticleDOI
TL;DR: The 1.35 Å structure of vanadium nitrogenase from Azotobacter vinelandii is reported, and an additional α-helical subunit not present in molybdenum nitrogenase is found, which helps to rationalize the altered chemical properties of this unique N2- and CO-fixing enzyme.
Abstract: Nitrogenases catalyze the reduction of dinitrogen (N2) gas to ammonium at a complex heterometallic cofactor. This most commonly occurs at the FeMo cofactor (FeMoco), a [Mo-7Fe-9S-C] cluster whose exact reactivity and substrate-binding mode remain unknown. Alternative nitrogenases replace molybdenum with either vanadium or iron and differ in reactivity, most prominently in the ability of vanadium nitrogenase to reduce CO to hydrocarbons. Here we report the 1.35-A structure of vanadium nitrogenase from Azotobacter vinelandii. The 240-kDa protein contains an additional α-helical subunit that is not present in molybdenum nitrogenase. The FeV cofactor (FeVco) is a [V-7Fe-8S-C] cluster with a homocitrate ligand to vanadium. Unexpectedly, it lacks one sulfide ion compared to FeMoco, which is replaced by a bridging ligand, likely a μ-1,3-carbonate. The anion fits into a pocket within the protein that is obstructed in molybdenum nitrogenase, and its different chemical character helps to rationalize the altered chemical properties of this unique N2- and CO-fixing enzyme.

Journal ArticleDOI
TL;DR: It is shown that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.
Abstract: Inhibitors of the post-proline-cleaving serine proteases DPP8 and DPP9 trigger a lytic form of programmed cell death called pyroptosis by activating pro-caspase-1 without autoproteolysis.

Journal ArticleDOI
TL;DR: Acid-enhanced production of L-2HG leads to stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) in normoxia and offers insights into mechanisms whereby microenvironmental factors influence production of metabolites that alter cell fate and function.
Abstract: The metabolite 2-hydroxyglutarate (2HG) can be produced as either a D-R- or L-S- enantiomer, each of which inhibits α-ketoglutarate (αKG)-dependent enzymes involved in diverse biologic processes. Oncogenic mutations in isocitrate dehydrogenase (IDH) produce D-2HG, which causes a pathologic blockade in cell differentiation. On the other hand, oxygen limitation leads to accumulation of L-2HG, which can facilitate physiologic adaptation to hypoxic stress in both normal and malignant cells. Here we demonstrate that purified lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) catalyze stereospecific production of L-2HG via 'promiscuous' reduction of the alternative substrate αKG. Acidic pH enhances production of L-2HG by promoting a protonated form of αKG that binds to a key residue in the substrate-binding pocket of LDHA. Acid-enhanced production of L-2HG leads to stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) in normoxia. These findings offer insights into mechanisms whereby microenvironmental factors influence production of metabolites that alter cell fate and function.

Journal ArticleDOI
TL;DR: Corn, a genetically encoded fluorescent RNA reporter suitable for quantifying RNA transcription in cells, is developed, and direct imaging of Pol III transcripts containing a photostable RNA-fluorophore complex is provided.
Abstract: Quantitative measurement of transcription rates in live cells is important for revealing mechanisms of transcriptional regulation. This is particularly challenging when measuring the activity of RNA polymerase III (Pol III), which transcribes growth-promoting small RNAs. To address this issue, we developed Corn, a genetically encoded fluorescent RNA reporter suitable for quantifying RNA transcription in cells. Corn binds and induces fluorescence of 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime, which resembles the fluorophore found in red fluorescent protein (RFP). Notably, Corn shows high photostability, enabling quantitative fluorescence imaging of mTOR-dependent Pol III transcription. We found that, unlike actinomycin D, mTOR inhibitors resulted in heterogeneous transcription suppression in individual cells. Quantitative imaging of Corn-tagged Pol III transcript levels revealed distinct Pol III transcription 'trajectories' elicited by mTOR inhibition. Together, these studies provide an approach for quantitative measurement of Pol III transcription by direct imaging of Pol III transcripts containing a photostable RNA-fluorophore complex.

Journal ArticleDOI
TL;DR: Phage-assisted continuous evolution selections are designed to rapidly produce highly active and selective orthogonal AARSs with high activity and amino acid specificity and the capability of PACE is established to efficiently evolve orthogsonal Aarss withHigh activity and Amino acid specificity.
Abstract: Directed evolution of orthogonal aminoacyl-tRNA synthetases (AARSs) enables site-specific installation of noncanonical amino acids (ncAAs) into proteins. Traditional evolution techniques typically produce AARSs with greatly reduced activity and selectivity compared to their wild-type counterparts. We designed phage-assisted continuous evolution (PACE) selections to rapidly produce highly active and selective orthogonal AARSs through hundreds of generations of evolution. PACE of a chimeric Methanosarcina spp. pyrrolysyl-tRNA synthetase (PylRS) improved its enzymatic efficiency (kcat/KMtRNA) 45-fold compared to the parent enzyme. Transplantation of the evolved mutations into other PylRS-derived synthetases improved yields of proteins containing noncanonical residues up to 9.7-fold. Simultaneous positive and negative selection PACE over 48 h greatly improved the selectivity of a promiscuous Methanocaldococcus jannaschii tyrosyl-tRNA synthetase variant for site-specific incorporation of p-iodo-L-phenylalanine. These findings offer new AARSs that increase the utility of orthogonal translation systems and establish the capability of PACE to efficiently evolve orthogonal AARSs with high activity and amino acid specificity.

Journal ArticleDOI
TL;DR: A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.
Abstract: Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

Journal ArticleDOI
TL;DR: Two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32-46 °C are presented.
Abstract: Temperature is a unique input signal that could be used by engineered microbial therapeutics to sense and respond to host conditions or spatially targeted external triggers such as focused ultrasound. To enable these possibilities, we present two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32–46°C. We integrate these molecular bioswitches into thermal logic circuits and demonstrate their utility in three in vivo microbial therapy scenarios, including spatially precise activation using focused ultrasound, modulation of activity in response to a host fever, and self-destruction after fecal elimination to prevent environmental escape. This technology provides a critical capability for coupling endogenous or applied thermal signals to cellular function in basic research, biomedical and industrial applications.

Journal ArticleDOI
TL;DR: An imaging method that allows simultaneous in situ quantification of cholesterol in two leaflets of the plasma membrane (PM) using tunable orthogonal cholesterol sensors found excellent correlation between the IPM cholesterol level and cellular Wnt signaling activity, suggesting that TAPMC and stimulus-induced PM cholesterol redistribution are crucial for tight regulation of cellular processes under physiological conditions.
Abstract: Controlled distribution of lipids across various cell membranes is crucial for cell homeostasis and regulation. We developed an imaging method that allows simultaneous in situ quantification of cholesterol in two leaflets of the plasma membrane (PM) using tunable orthogonal cholesterol sensors. Our imaging revealed marked transbilayer asymmetry of PM cholesterol (TAPMC) in various mammalian cells, with the concentration in the inner leaflet (IPM) being ∼12-fold lower than that in the outer leaflet (OPM). The asymmetry was maintained by active transport of cholesterol from IPM to OPM and its chemical retention at OPM. Furthermore, the increase in the IPM cholesterol level was triggered in a stimulus-specific manner, allowing cholesterol to serve as a signaling lipid. We found excellent correlation between the IPM cholesterol level and cellular Wnt signaling activity, suggesting that TAPMC and stimulus-induced PM cholesterol redistribution are crucial for tight regulation of cellular processes under physiological conditions.

Journal ArticleDOI
TL;DR: DEREPLICATOR is a new dereplication algorithm that enabled high-throughput PNP identification and that is compatible with large-scale mass spectrometry-based screening platforms for natural product discovery.
Abstract: Peptidic natural products (PNPs) are widely used compounds that include many antibiotics and a variety of other bioactive peptides Although recent breakthroughs in PNP discovery raised the challenge of developing new algorithms for their analysis, identification of PNPs via database search of tandem mass spectra remains an open problem To address this problem, natural product researchers use dereplication strategies that identify known PNPs and lead to the discovery of new ones, even in cases when the reference spectra are not present in existing spectral libraries DEREPLICATOR is a new dereplication algorithm that enables high-throughput PNP identification and that is compatible with large-scale mass-spectrometry-based screening platforms for natural product discovery After searching nearly one hundred million tandem mass spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure, DEREPLICATOR identified an order of magnitude more PNPs (and their new variants) than any previous dereplication efforts

Journal ArticleDOI
TL;DR: It is shown here that the homologous human β1-adrenergic receptor initiates an internal Gs-cAMP signal from the Golgi apparatus, and ’location bias’ is proposed as a new principle for achieving functional selectivity of GPCR-directed drug action.
Abstract: G-protein-coupled receptors (GPCRs) are increasingly recognized to operate from intracellular membranes as well as the plasma membrane. The β2-adrenergic GPCR can activate Gs-linked cyclic AMP (Gs-cAMP) signaling from endosomes. We show here that the homologous human β1-adrenergic receptor initiates an internal Gs-cAMP signal from the Golgi apparatus. By developing a chemical method to acutely squelch G-protein coupling at defined membrane locations, we demonstrate that Golgi activation contributes significantly to the overall cellular cAMP response. Golgi signaling utilizes a preexisting receptor pool rather than receptors delivered from the cell surface, requiring separate access of extracellular ligands. Epinephrine, a hydrophilic endogenous ligand, accesses the Golgi-localized receptor pool by facilitated transport requiring the organic cation transporter 3 (OCT3), whereas drugs can access the Golgi pool by passive diffusion according to hydrophobicity. We demonstrate marked differences, among both agonist and antagonist drugs, in Golgi-localized receptor access and show that β-blocker drugs currently used in the clinic differ markedly in ability to antagonize the Golgi signal. We propose 'location bias' as a new principle for achieving functional selectivity of GPCR-directed drug action.

Journal ArticleDOI
TL;DR: Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp, the toxic noncoding repeat expansion that causes myotonic dystrophy type 1.
Abstract: Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context.

Journal ArticleDOI
TL;DR: A genetically encoded system is designed that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression that is used to produce 'color photographs' on bacterial culture plates by controlling pigment production.
Abstract: A synthetic biology system composed of light-wavelength-responsive genetic regulators, signal-processing circuits and pigment-production pathways have resulted in an Escherichia coli strain that can record color images in RGB format Optogenetic tools use colored light to rapidly control gene expression in space and time We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs

Journal ArticleDOI
TL;DR: ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays, selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation and facilitating novel insights into SUMO biology.
Abstract: Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.

Journal ArticleDOI
TL;DR: This work identifies and characterize a new QS autoinducer-receptor pair and proposes that DPO allows V. cholerae to regulate collective behaviors to diversify its QS output during colonization of the human host.
Abstract: Quorum sensing (QS) is a cell-cell communication process that enables bacteria to track cell population density and orchestrate collective behaviors. QS relies on the production and detection of, and the response to, extracellular signal molecules called autoinducers. In Vibrio cholerae, multiple QS circuits control pathogenesis and biofilm formation. Here, we identify and characterize a new QS autoinducer-receptor pair. The autoinducer is 3,5-dimethylpyrazin-2-ol (DPO). DPO is made from threonine and alanine, and its synthesis depends on threonine dehydrogenase (Tdh). DPO binds to and activates a transcription factor, VqmA. The VqmA-DPO complex activates expression of vqmR, which encodes a small regulatory RNA. VqmR represses genes required for biofilm formation and toxin production. We propose that DPO allows V. cholerae to regulate collective behaviors to, among other possible roles, diversify its QS output during colonization of the human host.