scispace - formally typeset
Search or ask a question

Showing papers in "Nature Chemistry in 2013"


Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations


Journal ArticleDOI
TL;DR: This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry, and are more atom- and step-economical than previous methods.
Abstract: The beginning of the twenty-first century has witnessed significant advances in the field of C-H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C-H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C-H activation. This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

1,838 citations


Journal ArticleDOI
TL;DR: It is shown explicitly that G-quadruplex formation in DNA is modulated during cell-cycle progression and that endogenous G- quadruplex DNA structures can be stabilized by a small-molecule ligand and corroborate the application of stabilizing ligands in a cellular context to target G- Quadruplexes and intervene with their function.
Abstract: Four-stranded G-quadruplex nucleic acid structures are of great interest as their high thermodynamic stability under near-physiological conditions suggests that they could form in cells. Here we report the generation and application of an engineered, structure-specific antibody employed to quantitatively visualize DNA G-quadruplex structures in human cells. We show explicitly that G-quadruplex formation in DNA is modulated during cell-cycle progression and that endogenous G-quadruplex DNA structures can be stabilized by a small-molecule ligand. Together these findings provide substantive evidence for the formation of G-quadruplex structures in the genome of mammalian cells and corroborate the application of stabilizing ligands in a cellular context to target G-quadruplexes and intervene with their function.

1,682 citations


Journal ArticleDOI
TL;DR: It is shown that anodes made from low-cost SiMPs, for which stable deep galvanostatic cycling was previously impossible, can now have an excellent cycle life when coated with a self-healing polymer and attain a cycle life ten times longer than state-of-art anodesmade from Si MPs and still retain a high capacity.
Abstract: The ability to repair damage spontaneously, which is termed self-healing, is an important survival feature in nature because it increases the lifetime of most living creatures. This feature is highly desirable for rechargeable batteries because the lifetime of high-capacity electrodes, such as silicon anodes, is shortened by mechanical fractures generated during the cycling process. Here, inspired by nature, we apply self-healing chemistry to silicon microparticle (SiMP) anodes to overcome their short cycle-life. We show that anodes made from low-cost SiMPs (∼3–8 mm), for which stable deep galvanostatic cycling was previously impossible, can now have an excellent cycle life when coated with a self-healing polymer. We attain a cycle life ten times longer than state-of-art anodes made from SiMPs and still retain a high capacity (up to ∼3,000 mA h g 21 ). Cracks and damage in the coating during cycling can be healed spontaneously by the randomly branched hydrogen-bonding polymer used.

1,003 citations


Journal ArticleDOI
TL;DR: The utility of microfluidic reactor technology as a tool in chemical synthesis in both academic research and industrial applications and the current roadblocks hindering the widespread use are assessed.
Abstract: The successes and failures of past research in the development of microfluidic reactors for chemical synthesis are highlighted. Current roadblocks are assessed and a series of challenges for the future of this area are identified.

953 citations


Journal ArticleDOI
TL;DR: A facile method to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers is reported, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography.
Abstract: An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed ‘inverse vulcanization’) to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li–S batteries, exhibiting high specific capacity (823 mA h g−1 at 100 cycles) and enhanced capacity retention. A polymerization method for converting elemental sulfur into a chemically stable, processable and electrochemically active copolymer has been described. This methodology — termed inverse vulcanization — is conducted by a one-step process using liquid sulfur, as both reaction medium and reactant, and vinylic comonomers to form polymeric materials with a high content of sulfur (50–90 wt%).

938 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the HOR can be enhanced more than fivefold compared to state-of-the-art platinum catalysts, and it is proposed that the more oxophilic sites on Ir and PtRu material electrodes facilitate the adsorption of OHad species.
Abstract: The development of hydrogen-based energy sources as viable alternatives to fossil-fuel technologies has revolutionized clean energy production using fuel cells However, to date, the slow rate of the hydrogen oxidation reaction (HOR) in alkaline environments has hindered advances in alkaline fuel cell systems Here, we address this by studying the trends in the activity of the HOR in alkaline environments We demonstrate that it can be enhanced more than fivefold compared to state-of-the-art platinum catalysts The maximum activity is found for materials (Ir and Pt₀₁Ru₀₉) with an optimal balance between the active sites that are required for the adsorption/dissociation of H₂ and for the adsorption of hydroxyl species (OHad) We propose that the more oxophilic sites on Ir (defects) and PtRu material (Ru atoms) electrodes facilitate the adsorption of OHad species Those then react with the hydrogen intermediates (Had) that are adsorbed on more noble surface sites

855 citations


Journal ArticleDOI
TL;DR: This Review describes successful 2D polymerization strategies, as well as seminal research that inspired their development, and describes the early application targets of 2D polymers, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Abstract: Two-dimensional polymers, which exhibit periodic bonding in two orthogonal directions, offer mechanical, electronic and structural properties distinct from their linear or irregularly crosslinked polymer counterparts. Their potential is largely unexplored because versatile and controlled synthetic strategies are only now emerging. This Review describes recent developments in two-dimensional polymerization methods.

800 citations


Journal ArticleDOI
TL;DR: This work shows that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator.
Abstract: The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

774 citations


Journal ArticleDOI
TL;DR: A biocompatible near-infrared silicon-rhodamine probe that can be coupled specifically to proteins using different labelling techniques, and its high permeability and fluorogenic character permit the imaging of proteins in living cells and tissues.
Abstract: The ideal fluorescent probe for bioimaging is bright, absorbs at long wavelengths and can be implemented flexibly in living cells and in vivo. However, the design of synthetic fluorophores that combine all of these properties has proved to be extremely difficult. Here, we introduce a biocompatible near-infrared silicon-rhodamine probe that can be coupled specifically to proteins using different labelling techniques. Importantly, its high permeability and fluorogenic character permit the imaging of proteins in living cells and tissues, and its brightness and photostability make it ideally suited for live-cell super-resolution microscopy. The excellent spectroscopic properties of the probe combined with its ease of use in live-cell applications make it a powerful new tool for bioimaging.

740 citations


Journal ArticleDOI
TL;DR: It is demonstrated that growing nano-size phases from perovskites can be controlled through judicious choice of composition, particularly by tuning deviations from the ideal ABO3 stoichiometry.
Abstract: Surfaces decorated with uniformly dispersed catalytically active nanoparticles play a key role in many fields, including renewable energy and catalysis. Typically, these structures are prepared by deposition techniques, but alternatively they could be made by growing the nanoparticles in situ directly from the (porous) backbone support. Here we demonstrate that growing nano-size phases from perovskites can be controlled through judicious choice of composition, particularly by tuning deviations from the ideal ABO3 stoichiometry. This non-stoichiometry facilitates a change in equilibrium position to make particle exsolution much more dynamic, enabling the preparation of compositionally diverse nanoparticles (that is, metallic, oxides or mixtures) and seems to afford unprecedented control over particle size, distribution and surface anchorage. The phenomenon is also shown to be influenced strongly by surface reorganization characteristics. The concept exemplified here may serve in the design and development of more sophisticated oxide materials with advanced functionality across a range of possible domains of application.

Journal ArticleDOI
TL;DR: Polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, are reported, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched, leading to energy barriers for relaxation of magnetization that exceed 800 K.
Abstract: Dysprosium alkoxides and dysprosium-doped yttrium alkoxides show very large energy barriers, greater than 800 K, to magnetic relaxation. These barriers arise from the presence of a strongly axial pseudo-octahedral crystal field, which switches off relaxation through the first excited state that typically occurs in single-molecule magnets, and favours a competitive pathway through higher-energy states.

Journal ArticleDOI
TL;DR: This Review discusses the relevance of PPIs and, in particular, the importance of α-helix-mediated PPIs to chemical biology and drug discovery with a focus on designing inhibitors, including constrained peptides, foldamers and proteomimetic-derived ligands.
Abstract: Inhibition of protein-protein interactions (PPIs) represents a significant challenge because it is unclear how they can be effectively and selectively targeted using small molecules. Achieving this goal is critical given the defining role of these interactions in biological processes. A rational approach to inhibitor design based on the secondary structure at the interface is the focus of much research, and different classes of designed ligands have emerged, some of which effectively and selectively disrupt targeted PPIs. This Review discusses the relevance of PPIs and, in particular, the importance of α-helix-mediated PPIs to chemical biology and drug discovery with a focus on designing inhibitors, including constrained peptides, foldamers and proteomimetic-derived ligands. In doing so, key challenges and major advances in developing generic approaches for the elaboration of PPI inhibitors are highlighted. The challenges faced in developing such ligands as drug leads--and how criteria applied to these may differ from conventional small-molecule drugs--are summarized.

Journal ArticleDOI
TL;DR: The conversion of homogeneous Cobalt complexes into heterogeneous cobalt oxide catalysts via immobilization and pyrolysis on activated carbon and reusable non-noble-metal catalysts are highly selective for the industrially important hydrogenation of structurally diverse and functionalized nitroarenes to anilines.
Abstract: Molecularly well-defined homogeneous catalysts are known for a wide variety of chemical transformations. The effect of small changes in molecular structure can be studied in detail and used to optimize many processes. However, many industrial processes require heterogeneous catalysts because of their stability, ease of separation and recyclability, but these are more difficult to control on a molecular level. Here, we describe the conversion of homogeneous cobalt complexes into heterogeneous cobalt oxide catalysts via immobilization and pyrolysis on activated carbon. The catalysts thus produced are useful for the industrially important reduction of nitroarenes to anilines. The ligand indirectly controls the selectivity and activity of the recyclable catalyst and catalyst optimization can be performed at the level of the solution-phase precursor before conversion into the active heterogeneous catalyst.

Journal ArticleDOI
TL;DR: This work reports the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2](-), for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field, and exhibits magnetic blocking below 4.5 K.
Abstract: Mononuclear complexes of certain lanthanide ions are known to have large magnetization reversal barriers caused by strong spin–orbit coupling. Now, careful tuning of the ligand field of a transition metal complex has engendered a comparable spin-reversal barrier — and in turn magnetic blocking at 4.5 K.

Journal ArticleDOI
TL;DR: The use of spray-drying is reported as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm, which can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nano MOFs.
Abstract: Metal-organic frameworks (MOFs) are among the most attractive porous materials known today. Their miniaturization to the nanoscale--into nanoMOFs--is expected to serve myriad applications from drug delivery to membranes, to open up novel avenues to more traditional storage and catalysis applications, and to enable the creation of sophisticated superstructures. Here, we report the use of spray-drying as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm. This strategy conceptually mimics the emulsions used by chemists to confine the synthesis of materials, but does not require secondary immiscible solvents or surfactants. We demonstrate that the resulting spherical, hollow superstructures can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nanoMOFs. This spray-drying strategy enables the construction of multicomponent MOF superstructures, and the encapsulation of guest species within these superstructures. We anticipate that this will provide new routes to capsules, reactors and composite materials.

Journal ArticleDOI
TL;DR: It is shown that easily available chiral organic catalysts can guide both the stereoselectivity-defining events and, through the transient formation of photon-absorbing chiral electron donor–acceptor complexes, the photoactivation of the substrates.
Abstract: Asymmetric catalytic variants of sunlight-driven photochemical processes hold extraordinary potential for the sustainable preparation of chiral molecules. However, the involvement of short-lived electronically excited states inherent to any photochemical reaction makes it challenging for a chiral catalyst to dictate the stereochemistry of the products. Here, we report that readily available chiral organic catalysts, with well-known utility in thermal asymmetric processes, can also confer a high level of stereocontrol in synthetically relevant intermolecular carbon-carbon bond-forming reactions driven by visible light. A unique mechanism of catalysis is proposed, wherein the catalyst is involved actively in both the photochemical activation of the substrates (by inducing the transient formation of chiral electron donor-acceptor complexes) and the stereoselectivity-defining event. We use this approach to enable transformations that are extremely difficult under thermal conditions, such as the asymmetric α-alkylation of aldehydes with alkyl halides, the formation of all-carbon quaternary stereocentres and the control of remote stereochemistry.

Journal ArticleDOI
TL;DR: The real-time study of mechanochemical transformations in a ball mill by means of in situ diffraction of high-energy synchrotron X-rays reveals that mechanochemistry is highly dynamic, with reaction rates comparable to or greater than those in solution.
Abstract: Chemical and structural transformations have long been carried out by milling. Such mechanochemical steps are now ubiquitous in a number of industries (such as the pharmaceutical, chemical and metallurgical industries), and are emerging as excellent environmentally friendly alternatives to solution-based syntheses. However, mechanochemical transformations are typically difficult to monitor in real time, which leaves a large gap in the mechanistic understanding required for their development. We now report the real-time study of mechanochemical transformations in a ball mill by means of in situ diffraction of high-energy synchrotron X-rays. Focusing on the mechanosynthesis of metal-organic frameworks, we have directly monitored reaction profiles, the formation of intermediates, and interconversions of framework topologies. Our results reveal that mechanochemistry is highly dynamic, with reaction rates comparable to or greater than those in solution. The technique also enabled us to probe directly how catalytic additives recently introduced in the mechanosynthesis of metal-organic frameworks, such as organic liquids or ionic species, change the reactivity pathways and kinetics.

Journal ArticleDOI
TL;DR: Experimental data reveal how the properties of such a large graphene subunit are affected by multiple odd-membered-ring defects.
Abstract: Graphite, the most stable form of elemental carbon, consists of pure carbon sheets stacked upon one another like reams of paper. Individual sheets, known as graphene, prefer planar geometries as a consequence of the hexagonal honeycomb-like arrangements of trigonal carbon atoms that comprise their two-dimensional networks. Defects in the form of non-hexagonal rings in such networks cause distortions away from planarity. Herein we report an extreme example of this phenomenon. A 26-ring C80H30 nanographene that incorporates five seven-membered rings and one five-membered ring embedded in a hexagonal lattice was synthesized by stepwise chemical methods, isolated, purified and fully characterized spectroscopically. Its grossly warped structure was revealed by single-crystal X-ray crystallography. An independent synthetic route to a freely soluble derivative of this new type of 'nanocarbon' is also reported. Experimental data reveal how the properties of such a large graphene subunit are affected by multiple odd-membered-ring defects.

Journal ArticleDOI
TL;DR: A triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS) pentacene are reported, and a transient bound excimer intermediate is observed, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule.
Abstract: Solution-based studies of singlet exciton fission have provided valuable insight to this spin-allowed process in organic chromophores, whereby a photogenerated spin-singlet exciton splits into two spin-triplet excitons on separate molecules. Here we review the most significant experimental contributions made regarding fission in solution, in both intra- and intermolecular systems. Intramolecular fission allows a clearer examination of the molecular excited states involved in triplet formation, and the ability to control inter-chromophore structure offers a route to directly investigate the role of molecular coupling. In diffusional, intermolecular systems the conformational freedom and slower timescales of fission reveal the nature of intermediate states.

Journal ArticleDOI
TL;DR: A simple process is described for assessing the likely scope and limitations of a chemical reaction beyond the idealized reaction conditions initially reported.
Abstract: For researchers to rapidly adopt new synthetic methodology, they need to gauge whether the reaction will work for their substrate — a point not easily conveyed by traditional screens of reaction scope. Here, a simple method is described to assess the likely scope and limitations of a chemical reaction beyond the idealized conditions initially reported.

Journal ArticleDOI
TL;DR: The concept of the electron-coupled-proton buffer (ECPB) is introduced, whereby O⁂ and H₂ can be produced at separate times during water electrolysis, which could have advantages in preventing gas mixing in the headspaces of high-pressure electrolysis cells, with implications for safety and electrolyser degradation.
Abstract: Hydrogen is essential to several key industrial processes and could play a major role as an energy carrier in a future 'hydrogen economy'. Although the majority of the world's hydrogen supply currently comes from the reformation of fossil fuels, its generation from water using renewables-generated power could provide a hydrogen source without increasing atmospheric CO₂ levels. Conventional water electrolysis produces H₂ and O₂ simultaneously, such that these gases must be generated in separate spaces to prevent their mixing. Herein, using the polyoxometalate H₃PMo₁₂O₄₀, we introduce the concept of the electron-coupled-proton buffer (ECPB), whereby O₂ and H₂ can be produced at separate times during water electrolysis. This could have advantages in preventing gas mixing in the headspaces of high-pressure electrolysis cells, with implications for safety and electrolyser degradation. Furthermore, we demonstrate that temporally separated O₂ and H₂ production allows greater flexibility regarding the membranes and electrodes that can be used in water-splitting cells.

Journal ArticleDOI
TL;DR: An iridium-catalysed synthesis of pyrroles is described, starting from renewable resources, alcohols that may be derived from lignocellulosic feedstocks and amino alcohols and a catalyst that operates efficiently under mild conditions are developed.
Abstract: The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C-N and C-C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

Journal ArticleDOI
TL;DR: It is demonstrated that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a 'tipping point' in gel assembly, even in polar media such as aqueously methanol and aqueous dimethylsulfoxide.
Abstract: Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel ('co-gel') is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a 'tipping point' in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

Journal ArticleDOI
TL;DR: The significant brightening of nanotube photoluminescence is demonstrated through the creation of an optically allowed defect state that resides below the predicted energy level of the dark excitons.
Abstract: Semiconducting carbon nanotubes promise a broad range of potential applications in optoelectronics and imaging, but their photon-conversion efficiency is relatively low. Quantum theory suggests that nanotube photoluminescence is intrinsically inefficient because of low-lying 'dark' exciton states. Here we demonstrate the significant brightening of nanotube photoluminescence (up to 28-fold) through the creation of an optically allowed defect state that resides below the predicted energy level of the dark excitons. Emission from this new state generates a photoluminescence peak that is red-shifted by as much as 254 meV from the nanotube's original excitonic transition. We also found that the attachment of electron-withdrawing substituents to carbon nanotubes systematically drives this defect state further down the energy ladder. Our experiments show that the material's photoluminescence quantum yield increases exponentially as a function of the shifted emission energy. This work lays the foundation for chemical control of defect quantum states in low-dimensional carbon materials.

Journal ArticleDOI
TL;DR: An easy method is reported to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O2, showing that single gold atoms are not active, but they aggregate under reaction conditions into gold clusters of low atomicity that exhibit a catalytic activity comparable to that of sulfhydryl oxidase enzymes.
Abstract: The catalytic activity of gold depends on particle size, with the reactivity increasing as the particle diameter decreases. However, investigations into behaviour in the subnanometre regime (where gold exists as small clusters of a few atoms) began only recently with advances in synthesis and characterization techniques. Here we report an easy method to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O2. We show that single gold atoms are not active, but they aggregate under reaction conditions into gold clusters of low atomicity that exhibit a catalytic activity comparable to that of sulfhydryl oxidase enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero. Theoretical calculations show that gold clusters are able to activate thiophenol and O2 simultaneously, and larger nanoparticles are passivated by strongly adsorbed thiolates. The combination of both reactants activation and facile product desorption makes gold clusters excellent catalysts.

Journal ArticleDOI
TL;DR: A top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, I PC-2 and IPC-4 is reported, enabling the synthesis of materials with predetermined pore architectures.
Abstract: The properties of zeolites, and thus their suitability for different applications, are intimately connected with their structures. Synthesizing specific architectures is therefore important, but has remained challenging. Here we report a top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, IPC-2 and IPC-4. The three zeolites are closely related as they adopt the same layered structure, and they differ only in how the layers are connected. Choosing different linkers gives rise to different pore sizes, enabling the synthesis of materials with predetermined pore architectures. The structures of the resulting zeolites were characterized by interpreting the X-ray powder-diffraction patterns through models using computational methods; IPC-2 exhibits orthogonal 12- and ten-ring channels, and IPC-4 is a more complex zeolite that comprises orthogonal ten- and eight-ring channels. We describe how this method enables the preparation of functional materials and discuss its potential for targeting other new zeolites.

Journal ArticleDOI
TL;DR: Isolation and characterization of the ruthenium complexes from these reactions suggested a mechanistic scenario in which the trop2dad ligand behaves as a chemically 'non-innocent' co-operative ligand.
Abstract: A ruthenium complex bearing a chemically and redox-non-innocent tetradentate diolefin diazadiene ligand is shown to be an efficient homogeneous catalyst for the conversion of a 1:1 mixture of methanol and water to hydrogen and carbon dioxide. Development of this process is an important step in the production of hydrogen for use as a fuel from biomass.

Journal ArticleDOI
TL;DR: Splitting the electrolysis reaction into two steps through an electrochemical 'buffer' offers a new way to think about improving the cost and efficiency of electrolysers.
Abstract: The electrolysis of water provides a link between electrical energy and hydrogen, a high-energy-density fuel and a versatile energy carrier, but the process is expensive. Splitting the electrolysis reaction into two steps through an electrochemical 'buffer' offers a new way to think about improving the cost and efficiency of electrolysers.

Journal ArticleDOI
TL;DR: It is shown that a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode and mediates H(2) generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials.
Abstract: The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H(2) generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices.