scispace - formally typeset
Search or ask a question

Showing papers in "Nature Ecology and Evolution in 2020"


Journal ArticleDOI
TL;DR: Evidence is provided that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions including nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare.
Abstract: The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect human wellbeing and ecosystem sustainability. Here, combining a global observational study with an experimental microcosm study, we provide evidence that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions. These functions include nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare. Our findings also reveal the context dependency of such relationships and the importance of the connectedness, biodiversity and nature of the globally distributed dominant phylotypes within the soil network in maintaining multiple functions. Moreover, our results suggest that the positive association between plant diversity and multifunctionality across biomes is indirectly driven by soil biodiversity. Together, our results provide insights into the importance of soil biodiversity for maintaining soil functionality locally and across biomes, as well as providing strong support for the inclusion of soil biodiversity in conservation and management programmes.

405 citations


Journal ArticleDOI
TL;DR: Reduced human mobility during the pandemic will reveal critical aspects of the authors' impact on animals, providing important guidance on how best to share space on this crowded planet.
Abstract: Reduced human mobility during the pandemic will reveal critical aspects of our impact on animals, providing important guidance on how best to share space on this crowded planet

357 citations


Journal ArticleDOI
TL;DR: Compiling a global geo-database of >30,000 range shifts, the authors show that marine species closely track shifting isotherms, whereas terrestrial species lag behind, probably due to wider thermal safety margins and movement constraints imposed by human activities.
Abstract: There is mounting evidence of species redistribution as climate warms. Yet, our knowledge of the coupling between species range shifts and isotherm shifts remains limited. Here, we introduce BioShifts—a global geo-database of 30,534 range shifts. Despite a spatial imbalance towards the most developed regions of the Northern Hemisphere and a taxonomic bias towards the most charismatic animals and plants of the planet, data show that marine species are better at tracking isotherm shifts, and move towards the pole six times faster than terrestrial species. More specifically, we find that marine species closely track shifting isotherms in warm and relatively undisturbed waters (for example, the Central Pacific Basin) or in cold waters subject to high human pressures (for example, the North Sea). On land, human activities impede the capacity of terrestrial species to track isotherm shifts in latitude, with some species shifting in the opposite direction to isotherms. Along elevational gradients, species follow the direction of isotherm shifts but at a pace that is much slower than expected, especially in areas with warm climates. Our results suggest that terrestrial species are lagging behind shifting isotherms more than marine species, which is probably related to the interplay between the wider thermal safety margin of terrestrial versus marine species and the more constrained physical environment for dispersal in terrestrial versus marine habitats. Compiling a global geo-database of >30,000 range shifts, the authors show that marine species closely track shifting isotherms, whereas terrestrial species lag behind, probably due to wider thermal safety margins and movement constraints imposed by human activities.

292 citations


Journal ArticleDOI
TL;DR: A cross-scale analysis of paired-stressor effects on biological variables of European freshwater ecosystems shows that in 39% of cases, significant effects were limited to single stressors, with nutrient enrichment being the most important of these in lakes.
Abstract: Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.

267 citations


Journal ArticleDOI
TL;DR: The results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.
Abstract: Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions. The position of species within this space maps with 70-85% accuracy onto major niche axes, including trophic level, dietary resource type and finer-scale variation in foraging behaviour. Phylogenetic analyses reveal that these form-function associations reflect convergence towards predictable trait combinations, indicating that morphological variation is organized into a limited set of dimensions by evolutionary adaptation. Our results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.

247 citations


Journal ArticleDOI
TL;DR: Analysing communities of soil bacteria under differing nutrient concentrations, the authors show that extensive growth with high levels of nutrients results in stronger interactions among species, leading to declines in biodiversity and stability.
Abstract: Organisms-especially microbes-tend to live together in ecosystems. While some of these ecosystems are very biodiverse, others are not, and while some are very stable over time, others undergo strong temporal fluctuations. Despite a long history of research and a plethora of data, it is not fully understood what determines the biodiversity and stability of ecosystems. Theory and experiments suggest a connection between species interaction, biodiversity and the stability of ecosystems, where an increase in ecosystem stability with biodiversity could be observed in several cases. However, what causes these connections remains unclear. Here, we show in microbial ecosystems in the laboratory that the concentrations of available nutrients can set the strength of interactions between bacteria. High nutrient concentrations allowed the bacteria to strongly alter the chemical environment, causing on average more negative interactions between species. These stronger interactions excluded more species from the community, resulting in a loss of biodiversity. At the same time, the stronger interactions also decreased the stability of the microbial communities, providing a mechanistic link between species interaction, biodiversity and stability in microbial ecosystems.

243 citations


Journal ArticleDOI
TL;DR: It is shown how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication.
Abstract: Although it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication. We resolve two distinct ancient duplications based on patterns of chromosomal conserved synteny. All extant vertebrates share the first duplication, which occurred in the mid/late Cambrian by autotetraploidization (that is, direct genome doubling). In contrast, the second duplication is found only in jawed vertebrates and occurred in the mid–late Ordovician by allotetraploidization (that is, genome duplication following interspecific hybridization) from two now-extinct progenitors. This complex genomic history parallels the diversification of vertebrate lineages in the fossil record. Genomic comparisons with a new amphioxus chromosome-scale genome assembly reveal details of the early evolution of vertebrate genomes.

200 citations


Journal ArticleDOI
TL;DR: An assessment of the habitat of native vertebrate species burnt by the 2019–2020 Australian mega-fires shows that 70 taxa were severely affected, and 21 of these were already listed as threatened with extinction.
Abstract: Australia’s 2019–2020 mega-fires were exacerbated by drought, anthropogenic climate change and existing land-use management. Here, using a combination of remotely sensed data and species distribution models, we found these fires burnt ~97,000 km2 of vegetation across southern and eastern Australia, which is considered habitat for 832 species of native vertebrate fauna. Seventy taxa had a substantial proportion (>30%) of habitat impacted; 21 of these were already listed as threatened with extinction. To avoid further species declines, Australia must urgently reassess the extinction vulnerability of fire-impacted species and assist the recovery of populations in both burnt and unburnt areas. Population recovery requires multipronged strategies aimed at ameliorating current and fire-induced threats, including proactively protecting unburnt habitats. An assessment of the habitat of native vertebrate species burnt by the 2019–2020 Australian mega-fires shows that 70 taxa were severely affected.

182 citations


Journal ArticleDOI
TL;DR: A global ‘roadmap’ for insect conservation and recovery is proposed that entails the immediate implementation of several ‘no-regret’ measures that will act to slow or stop insect declines.
Abstract: To the Editor — A growing number of studies are providing evidence that a suite of anthropogenic stressors — habitat loss and fragmentation, pollution, invasive species, climate change and overharvesting — are seriously reducing insect and other invertebrate abundance, diversity and biomass across the biosphere1–8. These declines affect all functional groups: herbivores, detritivores, parasitoids, predators and pollinators. Insects are vitally important in a wide range of ecosystem services9 of which some are vitally important for food production and security (for example, pollination and pest control)10. There is now a strong scientific consensus that the decline of insects, other arthropods and biodiversity as a whole, is a very real and serious threat that society must urgently address11–13. In response to the increasing public awareness of the problem, the German government is committing funds to combat and reverse declining insect numbers13. This funding should act as a clarion call to other nations across the world — especially wealthier ones — to follow suit and to respond proactively to the crisis by addressing the known and suspected threats and implementing solutions. We hereby propose a global ‘roadmap’ for insect conservation and recovery (Fig. 1). This entails the immediate implementation of several ‘no-regret’ measures (Fig. 1, step 1) that will act to slow or stop insect declines. Among the initiatives we encourage are the following immediate measures: Taking aggressive steps to reduce greenhouse gas emissions; reversing recent trends in agricultural intensification including reduced application of synthetic pesticides and fertilizers and pursuing their replacement with agro-ecological measures; promoting the diversification and maintenance of locally adapted landuse techniques; increasing landscape heterogeneity through the maintenance of natural areas within the landscape matrix and ensuring the retention and creation of microhabitats within habitats which may be increasingly important for insects during extreme climatic events such as droughts or heatwaves; reducing identified local threats such as light, water or noise pollution, invasive species and so on; prioritizing the import of goods that are not produced at the cost of healthy, species-rich ecosystems; designing and deploying policies (for example, subsidies and taxation) to induce the innovation and adoption of insectfriendly technologies; enforcing stricter measures to reduce the introduction of alien species, and prioritizing nature-based tactics for their (long-term) mitigation; compiling and implementing conservation strategies for species that are vulnerable, threatened or endangered; funding educational and outreach programs, including those tailored to the needs of the wider public, farmers, land managers, decision makers and conservation professionals; enhancing ‘citizen science’ or ‘community science’ as a way of obtaining more data on insect diversity and abundance as well as engaging the public, especially in areas where academic or professional infrastructure is lacking; devising and deploying measures across agricultural and food value chains that favour insect-friendly farming, including tracking, labelling, certification and insurance schemes or outcome-based incentives that facilitate behavioural changes, and investing in capacity building to create a new generation of insect conservationists and providing knowledge and skills to existing professionals (particularly in developing countries). To better understand changes in insect abundance and diversity, research should aim to prioritize the following areas: Quantifying temporal trends in insect abundance, diversity and biomass by extracting long-term datasets from existing insect collections to inform new censuses; exploring the relative contributions of different anthropogenic stressors causing insect declines within and across different taxa; initiating long-term studies comparing insect abundance and diversity in different habitats and ecosystems along a management-intensity gradient and at the intersection of agricultural and natural habitats; designing and validating insectfriendly techniques that are effective, locally relevant and economically sound in agriculture, managed habitats and urban environments; promoting and applying standardized monitoring protocols globally and establishing long-term monitoring plots or sites based on such protocols, as well as increasing support for existing monitoring efforts; establishing an international governing body under the auspices of existing bodies (for example, the United Nations Environment Programme (UNEP) or the International Union for Conservation of Nature (IUCN)) that is accountable for documenting and monitoring the effects of proposed solutions on insect biodiversity in the longer term; launching public–private partnerships and sustainable financing initiatives with the aim of restoring, protecting and creating new vital insect habitats as well as managing key threats; increasing exploration and research to improve biodiversity assessments, with a focus on regional capacity building in understudied and neglected areas, and performing large-scale assessments of the conservation status of insect groups to help define priority species, areas and issues. Most importantly, we should not wait to act until we have addressed every key knowledge gap. We currently have enough information on some key causes of insect decline to formulate no-regret solutions whilst more data are compiled for lesserknown taxa and regions and long-term data are aggregated and assessed. Implementation should be accompanied by research that examines impacts, the results of which can be used to modify and improve the implementation of effective measures. Furthermore, such a ‘learning-by-doing’ approach ensures that these conservation strategies are robust to newly emerging pressures and threats. We must act now. ❐

167 citations


Journal ArticleDOI
TL;DR: It is suggested that vector-borne, generalist wildlife and zoonotic pathogens are the types of parasites most likely to be affected by changes to biodiversity, and biodiversity conservation and management need to be considered alongside other disease management options.
Abstract: The disease ecology community has struggled to come to consensus on whether biodiversity reduces or increases infectious disease risk, a question that directly affects policy decisions for biodiversity conservation and public health. Here, we summarize the primary points of contention regarding biodiversity-disease relationships and suggest that vector-borne, generalist wildlife and zoonotic pathogens are the types of parasites most likely to be affected by changes to biodiversity. One synthesis on this topic revealed a positive correlation between biodiversity and human disease burden across countries, but as biodiversity changed over time within these countries, this correlation became weaker and more variable. Another synthesis-a meta-analysis of generally smaller-scale experimental and field studies-revealed a negative correlation between biodiversity and infectious diseases (a dilution effect) in various host taxa. These results raise the question of whether biodiversity-disease relationships are more negative at smaller spatial scales. If so, biodiversity conservation at the appropriate scales might prevent wildlife and zoonotic diseases from increasing in prevalence or becoming problematic (general proactive approaches). Further, protecting natural areas from human incursion should reduce zoonotic disease spillover. By contrast, for some infectious diseases, managing particular species or habitats and targeted biomedical approaches (targeted reactive approaches) might outperform biodiversity conservation as a tool for disease control. Importantly, biodiversity conservation and management need to be considered alongside other disease management options. These suggested guiding principles should provide common ground that can enhance scientific and policy clarity for those interested in simultaneously improving wildlife and human health.

161 citations


Journal ArticleDOI
TL;DR: It is argued that the net conservation impacts of COVID-19 will be strongly negative in Africa, and the critical importance of conserving habitat and regulating unsafe wildlife trade practices to reduce the risk of future pandemics.
Abstract: The SARS-CoV-2 virus and COVID-19 illness are driving a global crisis. Governments have responded by restricting human movement, which has reduced economic activity. These changes may benefit biodiversity conservation in some ways, but in Africa, we contend that the net conservation impacts of COVID-19 will be strongly negative. Here, we describe how the crisis creates a perfect storm of reduced funding, restrictions on the operations of conservation agencies, and elevated human threats to nature. We identify the immediate steps necessary to address these challenges and support ongoing conservation efforts. We then highlight systemic flaws in contemporary conservation and identify opportunities to restructure for greater resilience. Finally, we emphasize the critical importance of conserving habitat and regulating unsafe wildlife trade practices to reduce the risk of future pandemics.

Journal ArticleDOI
TL;DR: It is found that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data.
Abstract: Hypotheses about the origin of eukaryotic cells are classically framed within the context of a universal 'tree of life' based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes. We find that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data. Our analyses support a close relationship between eukaryotes and Asgard archaea and identify the Heimdallarchaeota as the current best candidate for the closest archaeal relatives of the eukaryotic nuclear lineage.

Journal ArticleDOI
TL;DR: A genome assembly of the sterlet, Acipenser ruthenus, reveals a whole-genome duplication early in the evolution of the entire sturgeon lineage and provides details about the rediploidization of the genome.
Abstract: Sturgeons seem to be frozen in time. The archaic characteristics of this ancient fish lineage place it in a key phylogenetic position at the base of the ~30,000 modern teleost fish species. Moreover, sturgeons are notoriously polyploid, providing unique opportunities to investigate the evolution of polyploid genomes. We assembled a high-quality chromosome-level reference genome for the sterlet, Acipenser ruthenus. Our analysis revealed a very low protein evolution rate that is at least as slow as in other deep branches of the vertebrate tree, such as that of the coelacanth. We uncovered a whole-genome duplication that occurred in the Jurassic, early in the evolution of the entire sturgeon lineage. Following this polyploidization, the rediploidization of the genome included the loss of whole chromosomes in a segmental deduplication process. While known adaptive processes helped conserve a high degree of structural and functional tetraploidy over more than 180 million years, the reduction of redundancy of the polyploid genome seems to have been remarkably random.

Journal ArticleDOI
TL;DR: By quantifying metabolic interactions between individual cells in synthetic microbial communities, the authors show that interactions are extremely localized, and that the spatial scale of interactions influences community dynamics.
Abstract: Communities of interacting microorganisms play important roles across all habitats on Earth. These communities typically consist of a large number of species that perform different metabolic processes. The functions of microbial communities ultimately emerge from interactions between these different microorganisms. To understand the dynamics and functions of microbial communities, we thus need to know the nature and strength of these interactions. Here, we quantified the interaction strength between individual cells in microbial communities. We worked with synthetic communities of Escherichia coli bacteria that exchange metabolites to grow. We combined single-cell growth rate measurements with mathematical modelling to quantify metabolic interactions between individual cells and to map the spatial interaction network in these communities. We found that cells only interact with other cells in their immediate neighbourhood. This short interaction range limits the coupling between different species and reduces their ability to perform metabolic processes collectively. Our experiments and models demonstrate that the spatial scale of biotic interaction plays a fundamental role in shaping the ecological dynamics of communities and the functioning of ecosystems.

Journal ArticleDOI
TL;DR: Climate is more important than soil conditions for plant adaptation and variation in root-associated filamentous eukaryotic communities, whereas soil properties are primary drivers of bacterial community differentiation in roots.
Abstract: Factors that drive continental-scale variation in root microbiota and plant adaptation are poorly understood. We monitored root-associated microbial communities in Arabidopsis thaliana and co-occurring grasses at 17 European sites across 3 years. We observed strong geographic structuring of the soil biome, but not of the root microbiota. A few phylogenetically diverse and geographically widespread bacteria consistently colonized plant roots. Among-site and across-year similarity in microbial community composition was stronger for the bacterial root microbiota than for filamentous eukaryotes. In a reciprocal transplant between two A. thaliana populations in Sweden and Italy, we uncoupled soil from location effects and tested their contributions to root microbiota variation and plant adaptation. Community differentiation in plant roots was explained primarily by location for filamentous eukaryotes and by soil origin for bacteria, whereas host genotype effects were marginal. Strong local adaptation between the two A. thaliana populations was observed, with differences in soil properties and microbes of little importance for the observed magnitude of adaptive differentiation. Our results suggest that, across large spatial scales, climate is more important than soil conditions for plant adaptation and variation in root-associated filamentous eukaryotic communities, whereas soil properties are primary drivers of bacterial community differentiation in roots. Across large spatial scales, climate is more important than soil conditions for plant adaptation and variation in root-associated filamentous eukaryotic communities.

Journal ArticleDOI
TL;DR: Biodiversity time series from temperate regions reveal that marine communities in warmer places gain species but lose individuals with warming, but colder environments show weaker trends, whereas no systematic relationships between biodiversity and temperature change were detectable for terrestrial communities.
Abstract: Climate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5–60.0° latitude) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, where species richness mostly increases with warming. However, biodiversity responses are conditional on the baseline climate, such that in initially warmer locations richness increase is more pronounced while abundance declines with warming. In contrast, we do not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. As the world is committed to further warming, substantial challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of ‘climate migrants’. Temperature-driven community restructuring is especially evident in the ocean, whereas climatic debt may be accumulating on land. Biodiversity time series from temperate regions reveal that marine communities in warmer places gain species but lose individuals with warming, but colder environments show weaker trends, whereas no systematic relationships between biodiversity and temperature change were detectable for terrestrial communities.

Journal ArticleDOI
TL;DR: Analysis of expert elicitation methods indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production.
Abstract: The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.

Journal ArticleDOI
TL;DR: High variation but no overall trend in abundance and diversity among sites and taxa is found, which could mask subtler changes in species composition that nonetheless endanger insect-provided ecosystem services.
Abstract: Recent reports of dramatic declines in insect abundance suggest grave consequences for global ecosystems and human society. Most evidence comes from Europe, however, leaving uncertainty about insect population trends worldwide. We used >5,300 time series for insects and other arthropods, collected over 4–36 years at monitoring sites representing 68 different natural and managed areas, to search for evidence of declines across the United States. Some taxa and sites showed decreases in abundance and diversity while others increased or were unchanged, yielding net abundance and biodiversity trends generally indistinguishable from zero. This lack of overall increase or decline was consistent across arthropod feeding groups and was similar for heavily disturbed versus relatively natural sites. The apparent robustness of US arthropod populations is reassuring. Yet, this result does not diminish the need for continued monitoring and could mask subtler changes in species composition that nonetheless endanger insect-provided ecosystem services. Analysing >5,000 population abundance time series for insects and other arthropods from 68 sites within the US Long Term Ecological Research network, the authors find high variation but no overall trend in abundance and diversity among sites and taxa.

Journal ArticleDOI
TL;DR: The utility of the threshold paradigm, such that relatively small perturbations drive abrupt ecosystem changes, is challenged by a synthesis of 36 meta-analyses, which detected few signatures of thresholds from over 4,600 global change impacts on natural ecological communities.
Abstract: To understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4,600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that ‘safe-operating spaces’ are unlikely to be quantifiable.

Journal ArticleDOI
TL;DR: How adherence to Open Science principles is key to the OTN community is demonstrated and five activities that can accelerate the synthesis of trait data across the Tree of Life are outlined, thereby facilitating rapid advances to address scientific inquiries and environmental issues.
Abstract: Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges.

Journal ArticleDOI
TL;DR: An analysis of the overlap between tropical forest restoration, human populations, development and national policies for community forest ownership shows that 294.5 million people live within forest restoration opportunity land in the Global South.
Abstract: Forest restoration occupies centre stage in global conversations about carbon removal and biodiversity conservation, but recent research rarely acknowledges social dimensions or environmental justice implications related to its implementation. We find that 294.5 million people live on tropical forest restoration opportunity land in the Global South, including 12% of the total population in low-income countries. Forest landscape restoration that prioritizes local communities by affording them rights to manage and restore forests provides a promising option to align global agendas for climate mitigation, conservation, environmental justice and sustainable development.

Journal ArticleDOI
TL;DR: By analysing changes in occupancy among >5,000 species of invertebrate, bryophytes and lichens in the United Kingdom over the past 45 years, the authors find substantial turnover in community composition among all groups, although average declines are evident only among terrestrial non-insect invertebrates.
Abstract: Large-scale biodiversity changes are measured mainly through the responses of a few taxonomic groups. Much less is known about the trends affecting most invertebrates and other neglected taxa, and it is unclear whether well-studied taxa, such as vertebrates, reflect changes in wider biodiversity. Here, we present and analyse trends in the UK distributions of over 5,000 species of invertebrates, bryophytes and lichens, measured as changes in occupancy. Our results reveal substantial variation in the magnitude, direction and timing of changes over the last 45 years. Just one of the four major groups analysed, terrestrial non-insect invertebrates, exhibits the declining trend reported among vertebrates and butterflies. Both terrestrial insects and the bryophytes and lichens group increased in average occupancy. A striking pattern is found among freshwater species, which have undergone a strong recovery since the mid-1990s after two decades of decline. We show that, while average occupancy among most groups appears to have been stable or increasing, there has been substantial change in the relative commonness and rarity of individual species, indicating considerable turnover in community composition. Additionally, large numbers of species have experienced substantial declines. Our results suggest a more complex pattern of biodiversity change in the United Kingdom than previously reported. By analysing changes in occupancy among >5,000 species of invertebrates, bryophytes and lichens in the United Kingdom over the past 45 years, the authors find substantial turnover in community composition among all groups, although average declines are evident only among terrestrial non-insect invertebrates.

Journal ArticleDOI
TL;DR: Three iron minerals found in alkaline hydrothermal vents are shown to convert CO 2 and H 2 into formate, acetate and pyruvate in water, suggesting that such reactions could have paved the way for early metabolism.
Abstract: Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization, in which water reacts with iron-containing minerals deep within the Earth’s crust. H2 is the electron donor for the most ancient and the only energy-releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals—greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)—catalyse the fixation of CO2 with H2 at 100 °C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 µM), pyruvate (up to 10 µM), methanol (up to 100 µM) and methane. The results shed light on both the geochemical origin of microbial metabolism and the nature of abiotic formate and methane synthesis in modern hydrothermal vents. Three iron minerals found in alkaline hydrothermal vents are shown to convert CO2 and H2 into formate, acetate and pyruvate in water, suggesting that such reactions could have paved the way for early metabolism.

Journal ArticleDOI
TL;DR: It is indicated that animal genomes evolved by unparalleled gene duplication followed by differential gene loss, and an atlas of gene repertoire evolution throughout the animal tree of life is provided to navigate how, when and how often each gene in each genome was gained, duplicated or lost.
Abstract: Although recent research has revealed high genomic complexity in the earliest-splitting animals and their ancestors, the macroevolutionary trends orchestrating gene repertoire evolution throughout the animal phyla remain poorly understood. We used a phylogenomic approach to interrogate genome evolution across all animal phyla. Our analysis uncovered a bimodal distribution of recruitment of orthologous genes, with most genes gained very ‘early’ (that is, at deep nodes) or very ‘late’, representing lineage-specific acquisitions. The emergence of animals was characterized by high values of gene birth and duplications. Deuterostomes, ecdysozoans and Xenacoelomorpha were characterized by no gene gain but rampant differential gene loss. Genes considered as animal hallmarks, such as Notch/Delta, were convergently duplicated in all phyla and at different evolutionary depths. Genes duplicated in all nodes from Metazoa to phylum-specific levels were enriched in functions related to the neural system, suggesting that this system has been continuously and independently reshaped throughout evolution across animals. Our results indicate that animal genomes evolved by unparalleled gene duplication followed by differential gene loss, and provide an atlas of gene repertoire evolution throughout the animal tree of life to navigate how, when and how often each gene in each genome was gained, duplicated or lost. Phylogenomic analysis including representatives of all metazoan phyla shows gene duplication followed by differential gene loss throughout the animal tree of life.

Journal ArticleDOI
TL;DR: It is argued that this framework can reveal the presence of ‘sensory danger zones’, hotspots of conservation concern where sensory pollutants overlap in space and time with an organism’s activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants.
Abstract: Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms—masking, distracting and misleading—that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of ‘sensory danger zones’, hotspots of conservation concern where sensory pollutants overlap in space and time with an organism’s activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.

Journal ArticleDOI
TL;DR: A study of global tree ring data records over the last century reveals a temporal trade-off between resistance and resilience to drought for gymnosperms, indicating that previous model simulations assuming invariant resistance may have underestimated the impacts of drought on gymnosperm-dominated forests under future climate change.
Abstract: The frequency and intensity of droughts have increased over the decades, leading to increased forest decline. The response of forest to drought can be evaluated by both its sensitivity to drought (resistance) and its post-drought recovery rate (resilience). However, it remains uncertain how drought resistance and resilience of forests change over time under climate change. We assessed the spatiotemporal dynamics of forest resistance and resilience to drought over the past century (1901–2015) with global tree ring data records from 2,935 sites, in conjunction with plant trait data. We found that gymnosperms and angiosperms showed different spatial patterns of drought resistance and resilience, driven by variations in eco-physiological traits. Resistance and resilience also varied with drought seasonal timing. Surprisingly, we found that the trade-off between resistance and resilience for gymnosperms, previously reported only spatially, also occurred at the temporal scale. In particular, drought resilience markedly increased, but resistance decreased, for gymnosperms between 1950–1969 and 1990–2009, indicating that previous model simulations assuming invariant resistance may have underestimated the impacts of drought on gymnosperm-dominated forests under future climate change. A study of global tree ring data records over the last century reveals a temporal trade-off between resistance and resilience to drought for gymnosperms.

Journal ArticleDOI
TL;DR: A new study of the divergence time of angiosperm families shows that the diversification of families into extant diversity was delayed until the Palaeocene, this time lag being geographically heterogeneous, and longer in tropical than in temperate and arid biomes.
Abstract: The Early Cretaceous (145–100 million years ago (Ma)) witnessed the rise of flowering plants (angiosperms), which ultimately lead to profound changes in terrestrial plant communities. However, palaeobotanical evidence shows that the transition to widespread angiosperm-dominated biomes was delayed until the Palaeocene (66–56 Ma). Important aspects of the timing and geographical setting of angiosperm diversification during this period, and the groups involved, remain uncertain. Here we address these aspects by constructing and dating a new and complete family-level phylogeny, which we integrate with 16 million geographic occurrence records for angiosperms on a global scale. We show substantial time lags (mean, 37–56 Myr) between the origin of families (stem age) and the diversification leading to extant species (crown ages) across the entire angiosperm tree of life. In turn, our results show that families with the shortest lags are overrepresented in temperate and arid biomes compared with tropical biomes. Our results imply that the diversification and ecological expansion of extant angiosperms was geographically heterogeneous and occurred long after most of their phylogenetic diversity originated during the Cretaceous Terrestrial Revolution. A new study of the divergence time of angiosperm families shows that although most angiosperm families originated during the middle Cretaceous (~100–90 million years ago), the diversification of families into extant diversity was delayed until the Palaeocene (~66–56 million years ago), this time lag being geographically heterogeneous, and longer in tropical than in temperate and arid biomes.

Journal ArticleDOI
TL;DR: The ‘social microbiome’ is proposed as the microbial metacommunity of an animal social group, and the social and environmental forces that shape it at different levels, from individuals to species.
Abstract: Host-associated microbiomes play an increasingly appreciated role in animal metabolism, immunity and health. The microbes in turn depend on their host for resources and can be transmitted across the host's social network. In this Perspective, we describe how animal social interactions and networks may provide channels for microbial transmission. We propose the 'social microbiome' as the microbial metacommunity of an animal social group. We then consider the various social and environmental forces that are likely to influence the social microbiome at multiple scales, including at the individual level, within social groups, between groups, within populations and species, and finally between species. Through our comprehensive discussion of the ways in which sociobiological and ecological factors may affect microbial transmission, we outline new research directions for the field.

Journal ArticleDOI
TL;DR: A social–ecological systems framework is used to make recommendations for global targets that capture the interdependencies of biodiversity, ecosystem services and sustainable development to inform the Convention on Biological Diversity post-2020 process and the future of the UN’s Sustainable Development Goals.
Abstract: We are approaching a reckoning point in 2020 for global targets that better articulate the interconnections between biodiversity, ecosystem services and sustainable development. The Convention on Biological Diversity's (CBD's) post-2020 global biodiversity framework and targets will be developed as we enter the last decade to meet the Sustainable Development Goals (SDGs) and targets. Despite recent findings of unprecedented declines in biodiversity and ecosystem services and their negative impacts on SDGs, these declines remain largely unaccounted for in the SDG's upcoming 'decade of action'. We use a social-ecological systems framework to develop four recommendations for targets that capture the interdependencies between biodiversity, ecosystem services and sustainable development. These recommendations, which are primarily aimed at the CBD post-2020 process, include moving from separate social and ecological targets to social-ecological targets that: account for (1) the support system role of biodiversity and (2) ecosystem services in sustainable development. We further propose target advances that (3) capture social-ecological feedbacks reinforcing unsustainable outcomes, and (4) reveal indirect feedbacks hidden by current target systems. By making these social-ecological interdependencies explicit, it is possible to create coherent systems of global targets that account for the complex role of biodiversity and ecosystem services in sustainable development.

Journal ArticleDOI
TL;DR: Filamentous macrofossils from the one-billion-year-old Nanfen Formation of northern China are interpreted as a new species of early multicellular green algae, suggesting that chlorophytes acquired macroscopic size,Multicellularity and cellular differentiation nearly a billion years ago, much earlier than previously thought.
Abstract: Chlorophytes (representing a clade within the Viridiplantae and a sister group of the Streptophyta) probably dominated marine export bioproductivity and played a key role in facilitating ecosystem complexity before the Mesozoic diversification of phototrophic eukaryotes such as diatoms, coccolithophorans and dinoflagellates. Molecular clock and biomarker data indicate that chlorophytes diverged in the Mesoproterozoic or early Neoproterozoic, followed by their subsequent phylogenetic diversification, multicellular evolution and ecological expansion in the late Neoproterozoic and Palaeozoic. This model, however, has not been rigorously tested with palaeontological data because of the scarcity of Proterozoic chlorophyte fossils. Here we report abundant millimetre-sized, multicellular and morphologically differentiated macrofossils from rocks approximately 1,000 million years ago. These fossils are described as Proterocladus antiquus new species and are interpreted as benthic siphonocladalean chlorophytes, suggesting that chlorophytes acquired macroscopic size, multicellularity and cellular differentiation nearly a billion years ago, much earlier than previously thought. Filamentous macrofossils from the one-billion-year-old Nanfen Formation of northern China are interpreted as a new species of early multicellular green algae.