scispace - formally typeset
Search or ask a question

Showing papers in "Nature Genetics in 2006"


Journal ArticleDOI
TL;DR: This work describes a method that enables explicit detection and correction of population stratification on a genome-wide scale and uses principal components analysis to explicitly model ancestry differences between cases and controls.
Abstract: Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences between cases and controls. The resulting correction is specific to a candidate marker’s variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach can easily be applied to disease studies with hundreds of thousands of markers. Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can cause spurious associations in disease studies 1‐8 . Because the effects of stratification vary in proportion to the number of samples 9 , stratification will be an increasing problem in the large-scale association studies of the future, which will analyze thousands of samples in an effort to detect common genetic variants of weak effect. The two prevailing methods for dealing with stratification are genomic control and structured association 9‐14 . Although genomic control and structured association have proven useful in a variety of contexts, they have limitations. Genomic control corrects for stratification by adjusting association statistics at each marker by a uniform overall inflation factor. However, some markers differ in their allele frequencies across ancestral populations more than others. Thus, the uniform adjustment applied by genomic control may be insufficient at markers having unusually strong differentiation across ancestral populations and may be superfluous at markers devoid of such differentiation, leading to a loss in power. Structured association uses a program such as STRUCTURE 15 to assign the samples to discrete subpopulation clusters and then aggregates evidence of association within each cluster. If fractional membership in more than one cluster is allowed, the method cannot currently be applied to genome-wide association studies because of its intensive computational cost on large data sets. Furthermore, assignments of individuals to clusters are highly sensitive to the number of clusters, which is not well defined 14,16 .

9,387 citations


Journal ArticleDOI
TL;DR: A unified mixed-model approach to account for multiple levels of relatedness simultaneously as detected by random genetic markers is developed and provides a powerful complement to currently available methods for association mapping.
Abstract: As population structure can result in spurious associations, it has constrained the use of association studies in human and plant genetics. Association mapping, however, holds great promise if true signals of functional association can be separated from the vast number of false signals generated by population structure. We have developed a unified mixed-model approach to account for multiple levels of relatedness simultaneously as detected by random genetic markers. We applied this new approach to two samples: a family-based sample of 14 human families, for quantitative gene expression dissection, and a sample of 277 diverse maize inbred lines with complex familial relationships and population structure, for quantitative trait dissection. Our method demonstrates improved control of both type I and type II error rates over other methods. As this new method crosses the boundary between family-based and structured association samples, it provides a powerful complement to currently available methods for association mapping.

3,467 citations


Journal ArticleDOI
TL;DR: The results show that two mature miRNAs, derived from the same miRNA polycistron and transcribed together, can carry out distinct biological functions and suggest a molecular mechanism in which miRN as participate in transcriptional circuits that control skeletal muscle gene expression and embryonic development.
Abstract: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation

2,614 citations


Journal ArticleDOI
TL;DR: It is shown that two independent loss-of-function genetic variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis.
Abstract: Atopic disease, including atopic dermatitis (eczema), allergy and asthma, has increased in frequency in recent decades and now affects approximately 20% of the population in the developed world. Twin and family studies have shown that predisposition to atopic disease is highly heritable. Although most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic dermatitis. This work establishes a key role for impaired skin barrier function in the development of atopic disease.

2,605 citations


Journal ArticleDOI
TL;DR: By integrating RNA interference–mediated depletion of Oct4 and Nanog with microarray expression profiling, it is demonstrated that these factors can activate or suppress transcription, and it is shown that common core downstream targets are important to keep ES cells from differentiating.
Abstract: Oct4 and Nanog are transcription factors required to maintain the pluripotency and self-renewal of embryonic stem (ES) cells. Using the chromatin immunoprecipitation paired-end ditags method, we mapped the binding sites of these factors in the mouse ES cell genome. We identified 1,083 and 3,006 high-confidence binding sites for Oct4 and Nanog, respectively. Comparative location analyses indicated that Oct4 and Nanog overlap substantially in their targets, and they are bound to genes in different configurations. Using de novo motif discovery algorithms, we defined the cis-acting elements mediating their respective binding to genomic sites. By integrating RNA interference-mediated depletion of Oct4 and Nanog with microarray expression profiling, we demonstrated that these factors can activate or suppress transcription. We further showed that common core downstream targets are important to keep ES cells from differentiating. The emerging picture is one in which Oct4 and Nanog control a cascade of pathways that are intricately connected to govern pluripotency, self-renewal, genome surveillance and cell fate determination.

2,489 citations


Journal ArticleDOI
TL;DR: A microsatellite within intron 3 of the transcription factor 7–like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes mellitus and is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.
Abstract: We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 x 10(-9)). This was replicated in a Danish cohort (P = 4.8 x 10(-3)) and in a US cohort (P = 3.3 x 10(-9)). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box-containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.

2,150 citations


Journal ArticleDOI
TL;DR: This research presents a novel and scalable approach to personalized medicine that aims to provide real-time information about the immune system’s response to antibiotics and its role in promoting good lung function.
Abstract: Stephen J Chapman1,2, Chiea C Khor1, Fredrik O Vannberg1, Nicholas A Maskell2, Christopher WH Davies3, Emma L Hedley2, Shelley Segal4, Catrin E Moore4, Kyle Knox5, Nicholas P Day6, Stephen H Gillespie7, Derrick W Crook5, Robert JO Davies2 & Adrian VS Hill1 1The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. 2Oxford Centre for Respiratory Medicine, Churchill Hospital Site, Oxford Radcliffe Hospital, Oxford OX3 7LJ, UK. 3Department of Respiratory Medicine, Royal Berkshire Hospital, Reading RG1 5AN, UK. 4Department of Paediatrics, John Radcliffe Hospital, Oxford OX3 9DU, UK. 5Department of Microbiology, John Radcliffe Hospital, Oxford OX3 9DU, UK. 6Centre for Clinical Vaccinology and Tropical Medicine, Oxford OX3 9DU, UK. 7Centre for Medical Microbiology, Department of Infection, University College London, London NW1 2BU, UK. e-mail: adrian.hill@well.ox.ac.uk

1,835 citations


Journal ArticleDOI
TL;DR: A systematic, stepwise screen of 195 CpG island methylation markers using MethyLight technology found that CIMP-positive (CIMP+) tumors convincingly represent a distinct subset, encompassing almost all cases of tumors with BRAFmutation (odds ratio = 203).
Abstract: Aberrant DNA methylation of CpG islands has been widely observed in human colorectal tumors and is associated with gene silencing when it occurs in promoter areas. A subset of colorectal tumors has an exceptionally high frequency of methylation of some CpG islands, leading to the suggestion of a distinct trait referred to as 'CpG island methylator phenotype', or 'CIMP'. However, the existence of CIMP has been challenged. To resolve this continuing controversy, we conducted a systematic, stepwise screen of 195 CpG island methylation markers using MethyLight technology, involving 295 primary human colorectal tumors and 16,785 separate quantitative analyses. We found that CIMP-positive (CIMP+) tumors convincingly represent a distinct subset, encompassing almost all cases of tumors with BRAF mutation (odds ratio = 203). Sporadic cases of mismatch repair deficiency occur almost exclusively as a consequence of CIMP-associated methylation of MLH1 . We propose a robust new marker panel to classify CIMP+ tumors.

1,811 citations


Journal ArticleDOI
TL;DR: It is shown that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA, suggesting that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.
Abstract: Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% ± 9.3%; individuals with Parkinson disease, 52.3% ± 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.

1,362 citations


Journal ArticleDOI
TL;DR: It is demonstrated here that active and inactive genes are engaged in many long-range intrachromosomal interactions and can also form interchromosomal contacts and establish 4C technology as a powerful tool to study nuclear architecture.
Abstract: The spatial organization of DNA in the cell nucleus is an emerging key contributor to genomic function1,2,3,4,5,6,7,8,9,10,11,12. We developed 4C technology (chromosome conformation capture (3C)-on-chip), which allows for an unbiased genome-wide search for DNA loci that contact a given locus in the nuclear space. We demonstrate here that active and inactive genes are engaged in many long-range intrachromosomal interactions and can also form interchromosomal contacts. The active β-globin locus in fetal liver preferentially contacts transcribed, but not necessarily tissue-specific, loci elsewhere on chromosome 7, whereas the inactive locus in fetal brain contacts different transcriptionally silent loci. A housekeeping gene in a gene-dense region on chromosome 8 forms long-range contacts predominantly with other active gene clusters, both in cis and in trans, and many of these intra- and interchromosomal interactions are conserved between the tissues analyzed. Our data demonstrate that chromosomes fold into areas of active chromatin and areas of inactive chromatin and establish 4C technology as a powerful tool to study nuclear architecture.

1,354 citations


Journal ArticleDOI
TL;DR: All estrogen receptor and RNA polymerase II binding sites are mapped on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells, and distinct temporal mechanisms of estrogen-mediated gene regulation are demonstrated.
Abstract: The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of cis-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.

Journal ArticleDOI
TL;DR: Analysis of six annotation categories showed that evolutionarily conserved regions are the predominant sites for differential DNA methylation and that a core region surrounding the transcriptional start site is an informative surrogate for promoter methylation.
Abstract: DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methylation and a core region surrounding the transcriptional start site as informative surrogate for promoter methylation. We find 17% of the 873 analyzed genes differentially methylated in their 5′-untranslated regions (5′-UTR) and about one third of the differentially methylated 5′-UTRs to be inversely correlated with transcription. While our study was controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.

Journal ArticleDOI
TL;DR: These tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini.
Abstract: Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.

Journal ArticleDOI
TL;DR: It is demonstrated that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages.
Abstract: Genome-wide association is a promising approach to identify common genetic variants that predispose to human disease. Because of the high cost of genotyping hundreds of thousands of markers on thousands of subjects, genome-wide association studies often follow a staged design in which a proportion (pi(samples)) of the available samples are genotyped on a large number of markers in stage 1, and a proportion (pi(samples)) of these markers are later followed up by genotyping them on the remaining samples in stage 2. The standard strategy for analyzing such two-stage data is to view stage 2 as a replication study and focus on findings that reach statistical significance when stage 2 data are considered alone. We demonstrate that the alternative strategy of jointly analyzing the data from both stages almost always results in increased power to detect genetic association, despite the need to use more stringent significance levels, even when effect sizes differ between the two stages. We recommend joint analysis for all two-stage genome-wide association studies, especially when a relatively large proportion of the samples are genotyped in stage 1 (pi(samples) >or= 0.30), and a relatively large proportion of markers are selected for follow-up in stage 2 (pi(markers) >or= 0.01).

Journal ArticleDOI
TL;DR: It is demonstrated that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3′ UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle that causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy ofTexel sheep.
Abstract: Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.

Journal ArticleDOI
TL;DR: It is reported that duplication of the APP locus on chromosome 21 in five families with autosomal dominant early-onset Alzheimer disease (ADEOAD) and cerebral amyloid angiopathy (CAA) causes ADEOAD with CAA.
Abstract: We report duplication of the APP locus on chromosome 21 in five families with autosomal dominant early-onset Alzheimer disease (ADEOAD) and cerebral amyloid angiopathy (CAA). Among these families, the duplicated segments had a minimal size ranging from 0.58 to 6.37 Mb. Brains from individuals with APP duplication showed abundant parenchymal and vascular deposits of amyloid-β peptides. Duplication of the APP locus, resulting in accumulation of amyloid-β peptides, causes ADEOAD with CAA.

Journal ArticleDOI
TL;DR: Loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia are described.
Abstract: Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.

Journal ArticleDOI
TL;DR: Combined analysis of the C2 and BF haplotypes and CFH variants shows that variation in the two loci can predict the clinical outcome in 74% of the affected individuals and 56% ofThe controls, expanding and refine the understanding of the genetic risk for AMD.
Abstract: Age-related macular degeneration (AMD) is the most common form of irreversible blindness in developed countries. Variants in the factor H gene (CFH, also known as HF1), which encodes a major inhibitor of the alternative complement pathway, are associated with the risk for developing AMD. Here we test the hypothesis that variation in genes encoding other regulatory proteins of the same pathway is associated with AMD. We screened factor B (BF) and complement component 2 (C2) genes, located in the major histocompatibility complex class III region, for genetic variation in two independent cohorts comprising approximately 900 individuals with AMD and approximately 400 matched controls. Haplotype analyses identify a statistically significant common risk haplotype (H1) and two protective haplotypes. The L9H variant of BF and the E318D variant of C2 (H10), as well as a variant in intron 10 of C2 and the R32Q variant of BF (H7), confer a significantly reduced risk of AMD (odds ratio = 0.45 and 0.36, respectively). Combined analysis of the C2 and BF haplotypes and CFH variants shows that variation in the two loci can predict the clinical outcome in 74% of the affected individuals and 56% of the controls. These data expand and refine our understanding of the genetic risk for AMD.

Journal ArticleDOI
TL;DR: It is suggested that at least a certain class of conserved miRNA targets can be confidently predicted and that this class of targets is large, covering, for example, at least 30% of all human genes when considering about 60 conserved vertebrate miRNA gene families.
Abstract: In recent years, microRNAs (miRNAs) have emerged as a major class of regulatory genes, present in most metazoans and important for a diverse range of biological functions. Because experimental identification of miRNA targets is difficult, there has been an explosion of computational target predictions. Although the initial round of predictions resulted in very diverse results, subsequent computational and experimental analyses suggested that at least a certain class of conserved miRNA targets can be confidently predicted and that this class of targets is large, covering, for example, at least 30% of all human genes when considering about 60 conserved vertebrate miRNA gene families. Most recent approaches have also shown that there are correlations between domains of miRNA expression and mRNA levels of their targets. Our understanding of miRNA function is still extremely limited, but it may be that by integrating mRNA and miRNA sequence and expression data with other comparative genomic data, we will be able to gain global and yet specific insights into the function and evolution of a broad layer of post-transcriptional control.

Journal ArticleDOI
TL;DR: Findings establish a role for microRNAs in non–cell-autonomous Myc-induced tumor phenotypes and suggest that Ras-only cells with a miR-17-92–encoding retrovirus reduced Tsp1 and CTGF levels and formed larger, better-perfused tumors.
Abstract: Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2′-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92–encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92–transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non–cell-autonomous Myc-induced tumor phenotypes.

Journal ArticleDOI
TL;DR: It is demonstrated that an SBP-box gene is critical for normal ripening and highlights the likely importance of epialleles in plant development and the generation of natural variation.
Abstract: A major component in the regulatory network controlling fruit ripening is likely to be the gene at the tomato Colorless non-ripening (Cnr) locus. The Cnr mutation results in colorless fruits with a substantial loss of cell-to-cell adhesion. The nature of the mutation and the identity of the Cnr gene were previously unknown. Using positional cloning and virus-induced gene silencing, here we demonstrate that an SBP-box (SQUAMOSA promoter binding protein-like) gene resides at the Cnr locus. Furthermore, the Cnr phenotype results from a spontaneous epigenetic change in the SBP-box promoter. The discovery that Cnr is an epimutation was unexpected, as very few spontaneous epimutations have been described in plants. This study demonstrates that an SBP-box gene is critical for normal ripening and highlights the likely importance of epialleles in plant development and the generation of natural variation.

Journal ArticleDOI
TL;DR: Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization, suggesting a bone-renal axis that is central to guiding proper mineral metabolism.
Abstract: The osteocyte, a terminally differentiated cell comprising 90%-95% of all bone cells, may have multiple functions, including acting as a mechanosensor in bone (re)modeling. Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes and, when deleted in mice, results in a hypomineralized bone phenotype. We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (P(i)) homeostasis. Both Dmp1-null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism.

Journal ArticleDOI
TL;DR: A signature of chromosomal instability from specific genes whose expression was consistently correlated with total functional aneuploidy in several cancer types was identified, and net overexpression of this signature was predictive of poor clinical outcome in 12 cancer data sets representing six cancer types.
Abstract: We developed a computational method to characterize aneuploidy in tumor samples based on coordinated aberrations in expression of genes localized to each chromosomal region. We summarized the total level of chromosomal aberration in a given tumor in a univariate measure termed total functional aneuploidy. We identified a signature of chromosomal instability from specific genes whose expression was consistently correlated with total functional aneuploidy in several cancer types. Net overexpression of this signature was predictive of poor clinical outcome in 12 cancer data sets representing six cancer types. Also, the signature of chromosomal instability was higher in metastasis samples than in primary tumors and was able to stratify grade 1 and grade 2 breast tumors according to clinical outcome. These results provide a means to assess the potential role of chromosomal instability in determining malignant potential over a broad range of tumors.

Journal ArticleDOI
TL;DR: Protein modeling predicts destabilization of the GS domain, consistent with constitutive activation of ACVR1 as the underlying cause of the ectopic chondrogenesis, osteogenesis and joint fusions seen in FOP.
Abstract: Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. We mapped FOP to chromosome 2q23-24 by linkage analysis and identified an identical heterozygous mutation (617G --> A; R206H) in the glycine-serine (GS) activation domain of ACVR1, a BMP type I receptor, in all affected individuals examined. Protein modeling predicts destabilization of the GS domain, consistent with constitutive activation of ACVR1 as the underlying cause of the ectopic chondrogenesis, osteogenesis and joint fusions seen in FOP.

Journal ArticleDOI
TL;DR: Hemojuvelin is a BMP coreceptor and that hemojuvelin mutants associated with hemochromatosis have impaired BMP signaling ability, and BMP upregulates hepatocyte hepcidin expression, a process enhanced by hemoJuvelin and blunted in Hfe2−/− hepatocytes.
Abstract: Hepcidin is a key regulator of systemic iron homeostasis. Hepcidin deficiency induces iron overload, whereas hepcidin excess induces anemia. Mutations in the gene encoding hemojuvelin (HFE2, also known as HJV) cause severe iron overload and correlate with low hepcidin levels, suggesting that hemojuvelin positively regulates hepcidin expression. Hemojuvelin is a member of the repulsive guidance molecule (RGM) family, which also includes the bone morphogenetic protein (BMP) coreceptors RGMA and DRAGON (RGMB). Here, we report that hemojuvelin is a BMP coreceptor and that hemojuvelin mutants associated with hemochromatosis have impaired BMP signaling ability. Furthermore, BMP upregulates hepatocyte hepcidin expression, a process enhanced by hemojuvelin and blunted in Hfe2-/- hepatocytes. Our data suggest a mechanism by which HFE2 mutations cause hemochromatosis: hemojuvelin dysfunction decreases BMP signaling, thereby lowering hepcidin expression.

Journal ArticleDOI
TL;DR: It is found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans and the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells.
Abstract: Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners. Here we identify 114 unique sequences from all autosomes, several of which interact primarily with the maternally inherited H19 imprinting control region. Imprinted domains were strongly overrepresented in the library of 4C sequences, further highlighting the epigenetic nature of these interactions. Moreover, we found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans. Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells. These observations shed new light on development, cancer epigenetics and the evolution of imprinting.

Journal ArticleDOI
TL;DR: It is found that loss or reduction of this major structural protein, filaggrin, leads to varying degrees of impaired keratinization.
Abstract: Ichthyosis vulgaris (OMIM 146700) is the most common inherited disorder of keratinization and one of the most frequent single-gene disorders in humans. The most widely cited incidence figure is 1 in 250 based on a survey of 6,051 healthy English schoolchildren. We have identified homozygous or compound heterozygous mutations R501X and 2282del4 in the gene encoding filaggrin (FLG) as the cause of moderate or severe ichthyosis vulgaris in 15 kindreds. In addition, these mutations are semidominant; heterozygotes show a very mild phenotype with incomplete penetrance. The mutations show a combined allele frequency of approximately 4% in populations of European ancestry, explaining the high incidence of ichthyosis vulgaris. Profilaggrin is the major protein of keratohyalin granules in the epidermis. During terminal differentiation, it is cleaved into multiple filaggrin peptides that aggregate keratin filaments. The resultant matrix is cross-linked to form a major component of the cornified cell envelope. We find that loss or reduction of this major structural protein leads to varying degrees of impaired keratinization.

Journal ArticleDOI
TL;DR: The complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain, is determined; it indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons.
Abstract: We determined the complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain. Our analysis indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons. These mobile elements are putatively responsible for the acquisition by C. difficile of an extensive array of genes involved in antimicrobial resistance, virulence, host interaction and the production of surface structures. The metabolic capabilities encoded in the genome show multiple adaptations for survival and growth within the gut environment. The extreme genome variability was confirmed by whole-genome microarray analysis; it may reflect the organism's niche in the gut and should provide information on the evolution of virulence in this organism.

Journal ArticleDOI
TL;DR: Deviation of coexpressed genes from this general trend, including high noise in stress-related genes and low noise in proteasomal genes, may indicate fluctuations in pathway-specific regulators or a differential activation pattern of the underlying gene promoters.
Abstract: Noise in gene expression is generated at multiple levels, such as transcription and translation, chromatin remodeling and pathway-specific regulation. Studies of individual promoters have suggested different dominating noise sources, raising the question of whether a general trend exists across a large number of genes and conditions. We examined the variation in the expression levels of 43 Saccharomyces cerevisiae proteins, in cells grown under 11 experimental conditions. For all classes of genes and under all conditions, the expression variance was approximately proportional to the mean; the same scaling was observed at steady state and during the transient responses to the perturbations. Theoretical analysis suggests that this scaling behavior reflects variability in mRNA copy number, resulting from random 'birth and death' of mRNA molecules or from promoter fluctuations. Deviation of coexpressed genes from this general trend, including high noise in stress-related genes and low noise in proteasomal genes, may indicate fluctuations in pathway-specific regulators or a differential activation pattern of the underlying gene promoters.

Journal ArticleDOI
TL;DR: Using a novel single-molecule PCR approach to quantify the total burden of mitochondrial DNA molecules with deletions, it is shown that a high proportion of individual pigmented neurons in the aged human substantia nigra contain very high levels of mtDNA deletions.
Abstract: Using a novel single-molecule PCR approach to quantify the total burden of mitochondrial DNA (mtDNA) molecules with deletions, we show that a high proportion of individual pigmented neurons in the aged human substantia nigra contain very high levels of mtDNA deletions. Molecules with deletions are largely clonal within each neuron; that is, they originate from a single deleted mtDNA molecule that has expanded clonally. The fraction of mtDNA deletions is significantly higher in cytochrome c oxidase (COX)-deficient neurons than in COX-positive neurons, suggesting that mtDNA deletions may be directly responsible for impaired cellular respiration.