scispace - formally typeset
Search or ask a question

Showing papers in "Nature Immunology in 2003"


Journal ArticleDOI
TL;DR: It is reported that the forkhead transcription factor Foxp3 is specifically expressed in CD4+CD25+ regulatory T cells and is required for their development and function and ectopic expression ofFoxp3 confers suppressor function on peripheral CD4-CD25− T cells.
Abstract: CD4+CD25+ regulatory T cells are essential for the active suppression of autoimmunity. Here we report that the forkhead transcription factor Foxp3 is specifically expressed in CD4+CD25+ regulatory T cells and is required for their development. The lethal autoimmune syndrome observed in Foxp3-mutant scurfy mice and Foxp3-null mice results from a CD4+CD25+ regulatory T cell deficiency and not from a cell-intrinsic defect of CD4+CD25- T cells. CD4+CD25+ regulatory T cells rescue disease development and preferentially expand when transferred into neonatal Foxp3-deficient mice. Furthermore, ectopic expression of Foxp3 confers suppressor function on peripheral CD4+CD25- T cells. Thus, Foxp3 is a critical regulator of CD4+CD25+ regulatory T cell development and function.

7,321 citations


Journal ArticleDOI
TL;DR: It is shown that Foxp3 is highly expressed by TR cells and is associated with TR cell activity and phenotype, indicating that the Scurfin and CTLA-4 pathways may intersect and providing further insight into the TR cell lineage.
Abstract: The molecular properties that characterize CD4+CD25+ regulatory T cells (TR cells) remain elusive. Absence of the transcription factor Scurfin (also known as forkhead box P3 and encoded by Foxp3) causes a rapidly fatal lymphoproliferative disease, similar to that seen in mice lacking cytolytic T lymphocyte-associated antigen 4 (CTLA-4). Here we show that Foxp3 is highly expressed by T(R) cells and is associated with T(R) cell activity and phenotype. Scurfin-deficient mice lack T(R) cells, whereas mice that overexpress Foxp3 possess more T(R) cells. In Foxp3-overexpressing mice, both CD4+CD25- and CD4-CD8+ T cells show suppressive activity and CD4+CD25- cells express glucocorticoid-induced tumor-necrosis factor receptor-related (GITR) protein. The forced expression of Foxp3 also delays disease in CTLA-4-/- mice, indicating that the Scurfin and CTLA-4 pathways may intersect and providing further insight into the T(R) cell lineage.

2,832 citations


Journal ArticleDOI
TL;DR: It is reported that the noncanonical IκB kinase homologs, IKKε (IKKε) and TANK-binding kinase-1 (TBK1), which were previously implicated in NF-κB activation, are also essential components of the IRF3 signaling pathway.
Abstract: The transcription factors interferon regulatory factor 3 (IRF3) and NF-kappaB are required for the expression of many genes involved in the innate immune response. Viral infection, or the binding of double-stranded RNA to Toll-like receptor 3, results in the coordinate activation of IRF3 and NF-kappaB. Activation of IRF3 requires signal-dependent phosphorylation, but little is known about the signaling pathway or kinases involved. Here we report that the noncanonical IkappaB kinase homologs, IkappaB kinase-epsilon (IKKepsilon) and TANK-binding kinase-1 (TBK1), which were previously implicated in NF-kappaB activation, are also essential components of the IRF3 signaling pathway. Thus, IKKepsilon and TBK1 have a pivotal role in coordinating the activation of IRF3 and NF-kappaB in the innate immune response.

2,328 citations


Journal ArticleDOI
TL;DR: It is proposed that TCM and TEM do not necessarily represent distinct subsets, but are part of a continuum in a linear naive → effector → TEM → TCM differentiation pathway.
Abstract: Memory CD8 T cells can be divided into two subsets, central (TCM) and effector (TEM), but their lineage relationships and their ability to persist and confer protective immunity are not well understood. Our results show that TCM have a greater capacity than TEM to persist in vivo and are more efficient in mediating protective immunity because of their increased proliferative potential.We also demonstrate that, following antigen clearance, TEM convert to TCM and that the duration of this differentiation is programmed within the first week after immunization.We propose that TCM and TEM do not necessarily represent distinct subsets, but are part of a continuum in a linear naive → effector → TEM → TCM differentiation pathway.

1,842 citations


Journal ArticleDOI
TL;DR: Increased expression of the interleukin 7 receptor α-chain (IL-7Rα) identifies the effector CD8 T cells that will differentiate into memory cells, and this marker may be useful in predicting the number of memory T cells generated after infection or immunization.
Abstract: A major unanswered question is what distinguishes the majority of activated CD8 T cells that die after an acute viral infection from the small fraction (5-10%) that survive to become long-lived memory cells. In this study we show that increased expression of the interleukin 7 receptor alpha-chain (IL-7Ralpha) identifies the effector CD8 T cells that will differentiate into memory cells. IL-7R(hi) effector cells contained increased amounts of antiapoptotic molecules, and adoptive transfer of IL-7R(hi) and IL-7R(lo) effector cells showed that IL-7R(hi) cells preferentially gave rise to memory cells that could persist and confer protective immunity. Thus, selective expression of IL-7R identifies memory cell precursors, and this marker may be useful in predicting the number of memory T cells generated after infection or immunization.

1,801 citations


Journal ArticleDOI
TL;DR: The identification of a ligand-receptor system that, upon engagement, leads to the establishment of an antiviral state and may contribute to antiviral or other defenses by a mechanism similar to, but independent of, type I IFNs.
Abstract: We report here the identification of a ligand-receptor system that, upon engagement, leads to the establishment of an antiviral state. Three closely positioned genes on human chromosome 19 encode distinct but paralogous proteins, which we designate interferon-lambda1 (IFN-lambda1), IFN-lambda2 and IFN-lambda3 (tentatively designated as IL-29, IL-28A and IL-28B, respectively, by HUGO). The expression of IFN-lambda mRNAs was inducible by viral infection in several cell lines. We identified a distinct receptor complex that is utilized by all three IFN-lambda proteins for signaling and is composed of two subunits, a receptor designated CRF2-12 (also designated as IFN-lambdaR1) and a second subunit, CRF2-4 (also known as IL-10R2). Both receptor chains are constitutively expressed on a wide variety of human cell lines and tissues and signal through the Jak-STAT (Janus kinases-signal transducers and activators of transcription) pathway. This receptor-ligand system may contribute to antiviral or other defenses by a mechanism similar to, but independent of, type I IFNs.

1,725 citations


Journal ArticleDOI
TL;DR: A family of three cytokines, designated interleukin 28A, IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family are identified and may serve as an alternative totype I IFNs in providing immunity to viral infection.
Abstract: Cytokines play a critical role in modulating the innate and adaptive immune systems. Here, we have identified from the human genomic sequence a family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family. We found that like type I IFNs, IL-28 and IL-29 were induced by viral infection and showed antiviral activity. However, IL-28 and IL-29 interacted with a heterodimeric class II cytokine receptor that consisted of IL-10 receptor beta (IL-10Rbeta) and an orphan class II receptor chain, designated IL-28Ralpha. This newly described cytokine family may serve as an alternative to type I IFNs in providing immunity to viral infection.

1,564 citations


Journal ArticleDOI
TL;DR: It is shown that mouse CD4+CD25+ cells, either resting or induced to overexpress CTLA-4 by treatment with antibody to CD3, initiated tryptophan catabolism in dendritic cells through a CT LA-4-dependent mechanism, which might represent a major mechanism of action of TR cells.
Abstract: Regulatory T (T(R)) cells manifest constitutive expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), but the function of CTLA-4 in mediating the regulatory function of T(R) cells is unclear. We show here that mouse CD4+CD25+ cells, either resting or induced to overexpress CTLA-4 by treatment with antibody to CD3, initiated tryptophan catabolism in dendritic cells through a CTLA-4-dependent mechanism. This process required B7 expression and cytokine production by the dendritic cells. In contrast, T(R) cells cultured in the presence of bacterial lipopolysaccharide induced tryptophan catabolism by dendritic cells in a CTLA-4-independent but cytokine-dependent way. Thus, regulation of immunosuppressive tryptophan catabolism in dendritic cells might represent a major mechanism of action of T(R) cells.

1,338 citations


Journal ArticleDOI
TL;DR: It is reported that NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan derived primarily from Gram-negative bacteria.
Abstract: Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan. *Note: In the version of this article initially published online, one author's first name and last name were reversed. The correct author name should be Su Qiu. This mistake has been corrected for the HTML and print versions of the article.

1,267 citations


Journal ArticleDOI
TL;DR: This work has identified an alternative adaptor, designated Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule (TICAM)-1, that can physically bind the TIR domain of TLR3 and activate the IFN-β promoter in response to poly(I):poly(C).
Abstract: Human Toll-like receptor (TLR) 3 recognizes double-stranded (ds) RNA and induces production of interferon (IFN)-beta independent of the adaptor molecules MyD88 and TIRAP. Thus, another adaptor must exist that preferentially mediates TLR3-dependent production of IFN-beta. We have identified an alternative adaptor, designated Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule (TICAM)-1, that can physically bind the TIR domain of TLR3 and activate the IFN-beta promoter in response to poly(I):poly(C). Thus, dsRNA-TLR3-dependent production of IFN-beta is mediated mainly by TICAM-1. This TICAM-1-dependent pathway may have a role in other TLR-IFN-beta pathways, which form part of the MyD88-independent cellular immune response.

1,224 citations


Journal ArticleDOI
TL;DR: TRAM provides specificity for the MyD88-independent component of TLR4 signaling, and is identified as a fourth TIR domain–containing adaptor, TRIF-related adaptor molecule (TRAM), and analyzed its physiological function by gene targeting.
Abstract: Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses through signaling pathways mediated by Toll–interleukin 1 receptor (TIR) domain–containing adaptors such as MyD88, TIRAP and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4. Here we have identified a fourth TIR domain–containing adaptor, TRIF-related adaptor molecule (TRAM), and analyzed its physiological function by gene targeting. TRAM-deficient mice showed defects in cytokine production in response to the TLR4 ligand, but not to other TLR ligands. TLR4- but not TLR3-mediated MyD88-independent interferon-β production and activation of signaling cascades were abolished in TRAM-deficient cells. Thus, TRAM provides specificity for the MyD88-independent component of TLR4 signaling.

Journal ArticleDOI
TL;DR: It is shown that a previously uncharacterized angiogenin, Ang4, is produced by mouse Paneth cells, is secreted into the gut lumen and has bactericidal activity against intestinal microbes, revealing a mechanism whereby intestinal commensal bacteria influence gut microbial ecology and shape innate immunity.
Abstract: Although angiogenins have been implicated in tumor-associated angiogenesis, their normal physiologic function remains unclear. We show that a previously uncharacterized angiogenin, Ang4, is produced by mouse Paneth cells, is secreted into the gut lumen and has bactericidal activity against intestinal microbes. Ang4 expression is induced by Bacteroides thetaiotaomicron, a predominant member of the gut microflora, revealing a mechanism whereby intestinal commensal bacteria influence gut microbial ecology and shape innate immunity. Furthermore, mouse Ang1 and human angiogenin, circulating proteins induced during inflammation, exhibit microbicidal activity against systemic bacterial and fungal pathogens, suggesting that they contribute to systemic responses to infection. These results establish angiogenins as a family of endogenous antimicrobial proteins.

Journal ArticleDOI
TL;DR: UPR-induced splicing of XBP-1 by the transmembrane endonuclease IRE1 is required to restore production of immunoglobulin in XBP -1−/− mouse B cells, providing an integral link between X BP-1, the UPR and plasma cell differentiation.
Abstract: The transcription factor X-box binding protein 1 (XBP-1) is essential for the differentiation of plasma cells and the unfolded protein response (UPR). Here we show that UPR-induced splicing of XBP-1 by the transmembrane endonuclease IRE1 is required to restore production of immunoglobulin in XBP-1−/− mouse B cells, providing an integral link between XBP-1, the UPR and plasma cell differentiation. Signals involved in plasma cell differentiation, specifically interleukin-4, control the transcription of XBP-1, whereas its post-transcriptional processing is dependent on synthesis of immunoglobulins during B cell differentiation. We also show that XBP-1 is involved in controlling the production of interleukin-6, a cytokine that is essential for plasma cell survival. Thus, signals upstream and downstream of XBP-1 integrate plasma cell differentiation with the UPR.

Journal ArticleDOI
TL;DR: This review compares and contrasts how naive CD4+ and CD8+ T cells make the transition to effector and/or memory cells and discusses the implications of these findings for vaccine development.
Abstract: Naive CD4+ and CD8+ T cells undergo unique developmental programs after activation, resulting in the generation of effector and long-lived memory T cells. Recent evidence indicates that both cell-intrinsic and cell-extrinsic factors regulate memory T cell differentiation. This review compares and contrasts how naive CD4+ and CD8+ T cells make the transition to effector and/or memory cells and discusses the implications of these findings for vaccine development.

Journal ArticleDOI
TL;DR: The exquisite ability of the innate immune system to precisely target a conserved site on flagellin that is essential for bacterial motility is demonstrated.
Abstract: Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and activates host inflammatory responses. In this study, we examine the nature of the TLR5-flagellin interaction. With deletional, insertional and alanine-scanning mutagenesis, we precisely mapped the TLR5 recognition site on flagellin to a cluster of 13 amino acid residues that participate in intermolecular interactions within flagellar protofilaments and that are required for bacterial motility. The recognition site is buried in the flagellar filament, and monomeric flagellin, but not the filamentous molecule, stimulated TLR5. Finally, flagellin coprecipitated with TLR5, indicating close physical interaction between the molecules. These studies demonstrate the exquisite ability of the innate immune system to precisely target a conserved site on flagellin that is essential for bacterial motility.

Journal ArticleDOI
TL;DR: It is shown that infection with lymphocytic choriomeningitis virus induces cross-priming by a mechanism dependent on type I interferon (IFN- α/β) and expression of IFN-α/β is identified as a mechanism for the induction of cross-Priming during virus infections.
Abstract: CD8+ T cell responses can be generated against antigens that are not expressed directly within antigen-presenting cells (APCs), through a process known as cross-priming. To initiate cross-priming, APCs must both capture extracellular antigen and receive specific activation signals. We have investigated the nature of APC activation signals associated with virus infection that stimulate cross-priming. We show that infection with lymphocytic choriomeningitis virus induces cross-priming by a mechanism dependent on type I interferon (IFN-alpha/beta). Activation of cross-priming by IFN-alpha/beta was independent of CD4+ T cell help or interaction of CD40 and CD40 ligand, and involved direct stimulation of dendritic cells. These data identify expression of IFN-alpha/beta as a mechanism for the induction of cross-priming during virus infections.

Journal ArticleDOI
TL;DR: It is shown that Socs3 deficiency results in prolonged activation of signal transducer and activator of transcription 1 (STAT1) and STAT3 after IL-6 stimulation but normal activation of STAT1 after stimulation with interferon-γ (IFN-γ).
Abstract: Members of the suppressor of cytokine signaling (SOCS) family are potentially key physiological negative regulators of interleukin-6 (IL-6) signaling. To examine whether SOCS3 is involved in regulating this signaling, we have used conditional gene targeting to generate mice lacking Socs3 in the liver or in macrophages. We show that Socs3 deficiency results in prolonged activation of signal transducer and activator of transcription 1 (STAT1) and STAT3 after IL-6 stimulation but normal activation of STAT1 after stimulation with interferon-gamma (IFN-gamma). Conversely, IL-6-induced STAT activation is normal in Socs1-deficient cells, whereas STAT1 activation induced by IFN-gamma is prolonged. Microarray analysis shows that the pattern of gene expression induced by IL-6 in Socs3-deficient livers mimics that induced by IFN-gamma. Our data indicate that SOCS3 and SOCS1 have reciprocal functions in IL-6 and IFN-gamma regulation and imply that SOCS3 has a role in preventing IFN-gamma-like responses in cells stimulated by IL-6.

Journal ArticleDOI
TL;DR: BTLA is a third inhibitory receptor on T lymphocytes with similarities to cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), and BTLA-deficient mice have increased specific antibody responses and enhanced sensitivity to experimental autoimmune encephalomyelitis.
Abstract: During activation, T cells express receptors for receiving positive and negative costimulatory signals. Here we identify the B and T lymphocyte attenuator (BTLA), an immunoglobulin domain-containing glycoprotein with two immunoreceptor tyrosine-based inhibitory motifs. BTLA is not expressed by naive T cells, but it is induced during activation and remains expressed on T helper type 1 (T(H)1) but not T(H)2 cells. Crosslinking BTLA with antigen receptors induces its tyrosine phosphorylation and association with the Src homology domain 2 (SH2)-containing protein tyrosine phosphatases SHP-1 and SHP-2, and attenuates production of interleukin 2 (IL-2). BTLA-deficient T cells show increased proliferation, and BTLA-deficient mice have increased specific antibody responses and enhanced sensitivity to experimental autoimmune encephalomyelitis. B7x, a peripheral homolog of B7, is a ligand of BTLA. Thus, BTLA is a third inhibitory receptor on T lymphocytes with similarities to cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1).

Journal ArticleDOI
TL;DR: It is shown that Aire deficiency causes almost complete failure to delete the organ-specific cells in the thymus, indicating that autoimmune polyendocrinopathy syndrome 1 is caused by failure of a specialized mechanism for deleting forbidden T cell clones.
Abstract: Autoimmune polyendocrinopathy syndrome type 1 is a recessive Mendelian disorder resulting from mutations in a novel gene, AIRE, and is characterized by a spectrum of organ-specific autoimmune diseases. It is not known what tolerance mechanisms are defective as a result of AIRE mutation. By tracing the fate of autoreactive CD4+ T cells with high affinity for a pancreatic antigen in transgenic mice with an Aire mutation, we show here that Aire deficiency causes almost complete failure to delete the organ-specific cells in the thymus. These results indicate that autoimmune polyendocrinopathy syndrome 1 is caused by failure of a specialized mechanism for deleting forbidden T cell clones, establishing a central role for this tolerance mechanism.

Journal ArticleDOI
TL;DR: SOCS3 selectively blocks signaling by IL-6, thereby preventing its ability to inhibit LPS signaling, and is shown to be a key regulator of the divergent action of these two cytokines.
Abstract: Whereas interleukin-6 (IL-6) is a proinflammatory cytokine, IL-10 is an anti-inflammatory cytokine. Although signal transducer and activator of transcription 3 (STAT3) is essential for the function of both IL-6 and IL-10, it is unclear how these two cytokines have such opposing functions. Here we show that suppressor of cytokine signaling 3 (SOCS3) is a key regulator of the divergent action of these two cytokines. In macrophages lacking the Socs3 gene or carrying a mutation of the SOCS3-binding site in gp130, the lipopolysaccharide-induced production of tumor necrosis factor (TNF) and IL-12 is suppressed by both IL-10 and IL-6. SOCS3 specifically prevents activation of STAT3 by IL-6 but not IL-10. Taken together, these data indicate that SOCS3 selectively blocks signaling by IL-6, thereby preventing its ability to inhibit LPS signaling.

Journal ArticleDOI
TL;DR: The zebrafish is firmly established as a genetic model for the study of vertebrate blood development and its blood-forming system is characterized to provide a cellular context in which to study the genetics of hematopoiesis.
Abstract: The zebrafish is firmly established as a genetic model for the study of vertebrate blood development. Here we have characterized the blood-forming system of adult zebrafish. Each major blood lineage can be isolated by flow cytometry, and with these lineal profiles, defects in zebrafish blood mutants can be quantified. We developed hematopoietic cell transplantation to study cell autonomy of mutant gene function and to establish a hematopoietic stem cell assay. Hematopoietic cell transplantation can rescue multilineage hematopoiesis in embryonic lethal gata1-/- mutants for over 6 months. Direct visualization of fluorescent donor cells in embryonic recipients allows engraftment and homing events to be imaged in real time. These results provide a cellular context in which to study the genetics of hematopoiesis.

Journal ArticleDOI
TL;DR: The phenotype of human ICOS deficiency, which differs in key aspects from that of the ICOS−/− mouse, suggests a critical involvement of ICOS in T cell help for late B cell differentiation, class-switching and memory B cell generation.
Abstract: No genetic defect is known to cause common variable immunodeficiency (CVID), a heterogeneous human disorder leading to adult-onset panhypogammaglobulinemia. In a search for CVID candidate proteins, we found four of 32 patients to lack ICOS, the "inducible costimulator" on activated T cells, due to an inherited homozygous deletion in the ICOS gene. T cells from these individuals were normal with regard to subset distribution, activation, cytokine production and proliferation. In contrast, naive, switched and memory B cells were reduced. The phenotype of human ICOS deficiency, which differs in key aspects from that of the ICOS-/- mouse, suggests a critical involvement of ICOS in T cell help for late B cell differentiation, class-switching and memory B cell generation.

Journal ArticleDOI
TL;DR: This data support a model in which NKT cells use a unique activation mechanism not requiring their recognition of microbial antigens, and propose this mechanism of activation as a major pathway responsible for the rapid activation of N KT cells in different microbial infections.
Abstract: CD1d-restricted natural killer T (NKT) cells are important for host defense against a variety of microbial pathogens. How and when these T cells become activated physiologically during infection remains unknown. Our data support a model in which NKT cells use a unique activation mechanism not requiring their recognition of microbial antigens. Instead, weak responses to CD1d-presented self antigens were amplified by interleukin 12 made by dendritic cells in response to microbial products, resulting in potent interferon-gamma secretion. NKT cells were among the first lymphocytes to respond during Salmonella typhimurium infection, and their activation in vivo also depended on interleukin 12 and CD1d recognition. We propose this mechanism of activation as a major pathway responsible for the rapid activation of NKT cells in different microbial infections.

Journal ArticleDOI
TL;DR: It is shown that the RNA-DNA hybrid structure that forms in vitro is an R-loop with a displaced guanine (G)-rich strand that is single-stranded that exists in vivo in B cells that have been stimulated to transcribe theγ3 or the γ2b switch region.
Abstract: The mechanism responsible for immunoglobulin class switch recombination is unknown. Previous work has shown that class switch sequences have the unusual property of forming RNA-DNA hybrids when transcribed in vitro. Here we show that the RNA-DNA hybrid structure that forms in vitro is an R-loop with a displaced guanine (G)-rich strand that is single-stranded. This R-loop structure exists in vivo in B cells that have been stimulated to transcribe the γ3 or the γ2b switch region. The length of the R-loops can exceed 1 kilobase. We propose that this distinctive DNA structure is important in the class switch recombination mechanism

Journal ArticleDOI
TL;DR: The data indicate that the Tim-3 pathway provides an important mechanism to down-regulate TH1-dependent immune responses and to facilitate the development of immunological tolerance.
Abstract: Although T helper (T(H)) cell-mediated immunity is required to effectively eliminate pathogens, unrestrained T(H) activity also contributes to tissue injury in many inflammatory and autoimmune diseases. We report here that the T(H) type 1 (T(H)1)-specific Tim-3 (T cell immunoglobulin domain, mucin domain) protein functions to inhibit aggressive T(H)1-mediated auto- and alloimmune responses. Tim-3 pathway blockade accelerated diabetes in nonobese diabetic mice and prevented acquisition of transplantation tolerance induced by costimulation blockade. These effects were mediated, at least in part, by dampening of the antigen-specific immunosuppressive function of CD4(+)CD25(+) regulatory T cell populations. Our data indicate that the Tim-3 pathway provides an important mechanism to down-regulate T(H)1-dependent immune responses and to facilitate the development of immunological tolerance.

Journal ArticleDOI
TL;DR: The function of SOCS1 and SOCS3 in innate and adaptive immunity, with particular emphasis on the relationship between immune regulation and SOCs, is reviewed.
Abstract: The suppressors of cytokine signaling (SOCS) and cytokine-inducible SH2 protein are key physiological regulators of the immune system. Principally, SOCS1 and SOCS3 regulate T cells as well as antigen-presenting cells, including macrophages and dendritic cells. Here we review the function of SOCS1 and SOCS3 in innate and adaptive immunity, with particular emphasis on the relationship between immune regulation and SOCS.

Journal ArticleDOI
TL;DR: The results identify the cellular behaviors that promote an efficient CD8+ T cell response in the lymph node by subjecting intact lymph nodes to real-time two-photon microscopy.
Abstract: The cellular dynamics underlying activation of CD8+ T cells by dendritic cells (DCs) in the lymph node are not known. Here we have tracked the behavior of T cells and DCs by subjecting intact lymph nodes to real-time two-photon microscopy. We show that DCs scan at least 500 different T cells per hour in the absence of antigen. Antigen-bearing DCs are highly efficient in recruiting peptide-specific T cells and can engage more than ten T cells simultaneously. The duration of these interactions is of the order of hours, not minutes. The overall avidity of the interaction influences the probability that T cells will be stably captured by DCs, providing a possible basis for T cell competition. Taken together, our results identify the cellular behaviors that promote an efficient CD8+ T cell response in the lymph node.

Journal ArticleDOI
TL;DR: Inflammation is enhanced in SIGIRR-deficient mice, as shown by their enhanced chemokine induction after IL-1 injection and reduced threshold for lethal endotoxin challenge and biochemical analysis indicated that SIGirR binds to the TLR–IL-1R signaling components in a ligand-dependent way.
Abstract: The Toll-like receptor–interleukin 1 receptor signaling (TLR–IL-1R) receptor superfamily is important in differentially recognizing pathogen products and eliciting appropriate immune responses. These receptors alter gene expression, mainly through the activation of nuclear factor-κB and activating protein 1. SIGIRR (single immunoglobulin IL-1R-related molecule), a member of this family that does not activate these factors, instead negatively modulates immune responses. Inflammation is enhanced in SIGIRR-deficient mice, as shown by their enhanced chemokine induction after IL-1 injection and reduced threshold for lethal endotoxin challenge. Cells from SIGIRR-deficient mice showed enhanced activation in response to either IL-1 or certain Toll ligands. Finally, biochemical analysis indicated that SIGIRR binds to the TLR–IL-1R signaling components in a ligand-dependent way. Our data show that SIGIRR functions as a biologically important modulator of TLR–IL-1R signaling.

Journal ArticleDOI
TL;DR: The identification of a secreted form of Tim-3 that contains only the immunoglobulin (Ig) variable (V) domain of the full-length molecule indicates that interaction ofTim-3 with Tim- 3 ligand may serve to inhibit effector TH1 cells during a normal immune response and may be crucial for the induction of peripheral tolerance.
Abstract: T helper type 1 (T(H)1) immune responses are central in cell-mediated immunity, and a T(H)1-specific cell surface molecule called Tim-3 (T cell immunoglobulin domain, mucin domain) has been identified. Here we report the identification of a secreted form of Tim-3 that contains only the immunoglobulin (Ig) variable (V) domain of the full-length molecule. Fusion proteins (Tim-3-Ig) of both Tim-3 isoforms specifically bound CD4(+) T cells, indicating that a Tim-3 ligand is expressed on CD4(+) T cells. Administration of Tim-3-Ig to immunized mice caused hyperproliferation of T(H)1 cells and T(H)1 cytokine release. Tim-3-Ig also abrogated tolerance induction in T(H)1 cells, and Tim-3-deficient mice were refractory to the induction of high-dose tolerance. These data indicate that interaction of Tim-3 with Tim-3 ligand may serve to inhibit effector T(H)1 cells during a normal immune response and may be crucial for the induction of peripheral tolerance.

Journal ArticleDOI
TL;DR: It is shown that recessive mutations of the gene encoding uracil–DNA glycosylase (UNG) are associated with profound impairment in CSR at a DNA precleavage step and with a partial disturbance of the SHM pattern in three patients with hyper-IgM syndrome.
Abstract: Activation-induced cytidine deaminase (AID) is a 'master molecule' in immunoglobulin (Ig) class-switch recombination (CSR) and somatic hypermutation (SHM) generation, AID deficiencies are associated with hyper-IgM phenotypes in humans and mice. We show here that recessive mutations of the gene encoding uracil-DNA glycosylase (UNG) are associated with profound impairment in CSR at a DNA precleavage step and with a partial disturbance of the SHM pattern in three patients with hyper-IgM syndrome. Together with the finding that nuclear UNG expression was induced in activated B cells, these data support a model of CSR and SHM in which AID deaminates cytosine into uracil in targeted DNA (immunoglobulin switch or variable regions), followed by uracil removal by UNG.