scispace - formally typeset
Search or ask a question

Showing papers in "Nature Materials in 2020"


Journal ArticleDOI
TL;DR: It is shown that new nanostructured electrode materials and matching electrolytes are required to maximize the amount of energy and speed of delivery, and different manufacturing methods will be needed to meet the requirements of the future generation of electronic devices.
Abstract: Electrochemical capacitors can store electrical energy harvested from intermittent sources and deliver energy quickly, but their energy density must be increased if they are to efficiently power flexible and wearable electronics, as well as larger equipment. This Review summarizes progress in the field of materials for electrochemical capacitors over the past decade as well as outlines key perspectives for future research. We describe electrical double-layer capacitors based on high-surface-area carbons, pseudocapacitive materials such as oxides and the two-dimensional inorganic compounds known as MXenes, and emerging microdevices for the Internet of Things. We show that new nanostructured electrode materials and matching electrolytes are required to maximize the amount of energy and speed of delivery, and different manufacturing methods will be needed to meet the requirements of the future generation of electronic devices. Scientifically justified metrics for testing, comparison and optimization of various kinds of electrochemical capacitors are provided and explained.

952 citations


Journal ArticleDOI
TL;DR: The dominant mechanism of nanoparticle entry into solid tumours has now been shown to be an active trans- endothelial pathway rather than the currently established passive transport via inter-endothelial gaps.
Abstract: The concept of nanoparticle transport through gaps between endothelial cells (inter-endothelial gaps) in the tumour blood vessel is a central paradigm in cancer nanomedicine. The size of these gaps was found to be up to 2,000 nm. This justified the development of nanoparticles to treat solid tumours as their size is small enough to extravasate and access the tumour microenvironment. Here we show that these inter-endothelial gaps are not responsible for the transport of nanoparticles into solid tumours. Instead, we found that up to 97% of nanoparticles enter tumours using an active process through endothelial cells. This result is derived from analysis of four different mouse models, three different types of human tumours, mathematical simulation and modelling, and two different types of imaging techniques. These results challenge our current rationale for developing cancer nanomedicine and suggest that understanding these active pathways will unlock strategies to enhance tumour accumulation. The dominant mechanism of nanoparticle entry into solid tumours has now been shown to be an active trans-endothelial pathway rather than the currently established passive transport via inter-endothelial gaps.

879 citations


Journal ArticleDOI
TL;DR: A generic Lewis acidic etching route for preparing high-rate negative-electrode MXenes with enhanced electrochemical performance in non-aqueous electrolyte is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga.
Abstract: Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g−1 (205 mAh g−1) with high charge–discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications. Two-dimensional transition metal carbides and nitrides, known as MXenes, are currently considered as energy storage materials. A generic Lewis acidic etching route for preparing high-rate negative-electrode MXenes with enhanced electrochemical performance in non-aqueous electrolyte is now proposed.

623 citations


Journal ArticleDOI
TL;DR: Interestingly, guided by first-principles calculations, it is found that the catalytic properties of the Co–N4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic Properties of metalloenzymes.
Abstract: Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H2O2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N4 moiety incorporated in nitrogen-doped graphene for H2O2 production and exhibits a kinetic current density of 2.8 mA cm−2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g−1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H2O2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H2O2 production.

583 citations


Journal ArticleDOI
TL;DR: This work investigates the quantum transport of both bulk crystal and exfoliated MnBi 2 Te 4 flakes in a field-effect transistor geometry and observes a large longitudinal resistance and zero Hall plateau, which are characteristics of an axion insulator state.
Abstract: The intricate interplay between non-trivial topology and magnetism in two-dimensional materials can lead to the emergence of interesting phenomena such as the quantum anomalous Hall effect. Here we investigate the quantum transport of both bulk crystal and exfoliated MnBi2Te4 flakes in a field-effect transistor geometry. For the six septuple-layer device tuned into the insulating regime, we observe a large longitudinal resistance and zero Hall plateau, which are characteristics of an axion insulator state. The robust axion insulator state occurs in zero magnetic field, over a wide magnetic-field range and at relatively high temperatures. Moreover, a moderate magnetic field drives a quantum phase transition from the axion insulator phase to a Chern insulator phase with zero longitudinal resistance and quantized Hall resistance h/e2, where h is Planck’s constant and e is electron charge. Our results pave the way for using even-number septuple-layer MnBi2Te4 to realize the quantized topological magnetoelectric effect and axion electrodynamics in condensed matter systems. A large longitudinal resistance and zero Hall plateau—hallmarks of an axion insulator—are found in MnBi2Te4. Moreover, a moderate magnetic field drives a quantum phase transition to a Chern insulator phase with zero longitudinal resistance and quantized Hall resistance h/e2.

524 citations


Journal ArticleDOI
TL;DR: The observation of tunable collective phases in a simple band, which hosts only two holes per unit cell at full filling, establishes twisted bilayer transition metal dichalcogenides as an ideal platform to study correlated physics in two dimensions on a triangular lattice.
Abstract: In narrow electron bands in which the Coulomb interaction energy becomes comparable to the bandwidth, interactions can drive new quantum phases. Such flat bands in twisted graphene-based systems result in correlated insulator, superconducting and topological states. Here we report evidence of low-energy flat bands in twisted bilayer WSe2, with signatures of collective phases observed over twist angles that range from 4 to 5.1°. At half-band filling, a correlated insulator appeared that is tunable with both twist angle and displacement field. At a 5.1° twist, zero-resistance pockets were observed on doping away from half filling at temperatures below 3 K, which indicates a possible transition to a superconducting state. The observation of tunable collective phases in a simple band, which hosts only two holes per unit cell at full filling, establishes twisted bilayer transition metal dichalcogenides as an ideal platform to study correlated physics in two dimensions on a triangular lattice. Tunable correlated states are observed in twist bilayer WSe2 over a range of twist angles, with signatures of superconductivity for a twist of 5.1°.

467 citations


Journal ArticleDOI
TL;DR: In this article, the magic-angle twisted bilayer bilayer graphene has been shown to have properties that are sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation.
Abstract: Near a magic twist angle, bilayer graphene transforms from a weakly correlated Fermi liquid to a strongly correlated two-dimensional electron system with properties that are extraordinarily sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation. Among other phenomena, magic-angle twisted bilayer graphene hosts superconductivity, interaction-induced insulating states, magnetism, electronic nematicity, linear-in-temperature low-temperature resistivity and quantized anomalous Hall states. We highlight some key research results in this field, point to important questions that remain open and comment on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world.

443 citations


Journal ArticleDOI
TL;DR: This Review discusses current understanding of charge carrier transport in conjugated polymers and small molecule semiconductors and strategies to improve their performance.
Abstract: Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure–property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films—as used, for example, in bioelectronics and thermoelectric devices—affects the electronic structure and charge transport properties. Organic semiconductors are making their way into applications ranging from display technology to flexible electronics and biomedical applications. This Review discusses current understanding of charge carrier transport in these materials and strategies to improve their performance.

408 citations


Journal ArticleDOI
TL;DR: Current understanding of the processes occurring in organic mixed ionic–electronic conductors and their structure–property relations are described, and recent approaches that extend fundamental understanding and contribute to the advancement of materials are highlighted.
Abstract: Materials that efficiently transport and couple ionic and electronic charge are key to advancing a host of technological developments for next-generation bioelectronic, optoelectronic and energy storage devices. Here we highlight key progress in the design and study of organic mixed ionic–electronic conductors (OMIECs), a diverse family of soft synthetically tunable mixed conductors. Across applications, the same interrelated fundamental physical processes dictate OMIEC properties and determine device performance. Owing to ionic and electronic interactions and coupled transport properties, OMIECs demand special understanding beyond knowledge derived from the study of organic thin films and membranes meant to support either electronic or ionic processes only. We address seemingly conflicting views and terminology regarding charging processes in these materials, and highlight recent approaches that extend fundamental understanding and contribute to the advancement of materials. Further progress is predicated on multimodal and multi-scale approaches to overcome lingering barriers to OMIEC design and implementation. From optoelectronic to biomedical and energy storage applications, the interest in organic mixed ionic–electronic conductors is expanding. This Review describes current understanding of the processes occurring in these materials and their structure–property relations.

346 citations


Journal ArticleDOI
TL;DR: A combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities and gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance.
Abstract: We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems. The electrochemical performance of supercapacitors can be enhanced with porous electrodes. Molecular dynamics simulations can now help to clarify the double-layer structure and capacitive performance of supercapacitors composed of MOF electrodes and ionic liquid electrolytes.

335 citations


Journal ArticleDOI
TL;DR: This Perspective provides an overview of strategies that use molecular enhancement of heterogeneous catalysts to improve activity, efficiency and selectivity in the further development of CO2RR.
Abstract: The electrocatalytic carbon dioxide reduction reaction (CO2RR) addresses the need for storage of renewable energy in valuable carbon-based fuels and feedstocks, yet challenges remain in the improvement of electrosynthesis pathways for highly selective hydrocarbon production. To improve catalysis further, it is of increasing interest to lever synergies between heterogeneous and homogeneous approaches. Organic molecules or metal complexes adjacent to heterogeneous active sites provide additional binding interactions that may tune the stability of intermediates, improving catalytic performance by increasing Faradaic efficiency (product selectivity), as well as decreasing overpotential. We offer a forward-looking perspective on molecularly enhanced heterogeneous catalysis for CO2RR. We discuss four categories of molecularly enhanced strategies: molecular-additive-modified heterogeneous catalysts, immobilized organometallic complex catalysts, reticular catalysts and metal-free polymer catalysts. We introduce present-day challenges in molecular strategies and describe a vision for CO2RR electrocatalysis towards multi-carbon products. These strategies provide potential avenues to address the challenges of catalyst activity, selectivity and stability in the further development of CO2RR.

Journal ArticleDOI
TL;DR: It is demonstrated that room-temperature antiferromagnetic skyrmions can be stabilized in synthetic antiferromaagnets (SAFs), in which perpendicular magnetic anisotropy, antiferromeagnetic coupling and chiral order can be adjusted concurrently.
Abstract: Room-temperature skyrmions in ferromagnetic films and multilayers show promise for encoding information bits in new computing technologies. Despite recent progress, ferromagnetic order generates dipolar fields that prevent ultrasmall skyrmion sizes, and allows a transverse deflection of moving skyrmions that hinders their efficient manipulation. Antiferromagnetic skyrmions shall lift these limitations. Here we demonstrate that room-temperature antiferromagnetic skyrmions can be stabilized in synthetic antiferromagnets (SAFs), in which perpendicular magnetic anisotropy, antiferromagnetic coupling and chiral order can be adjusted concurrently. Utilizing interlayer electronic coupling to an adjacent bias layer, we demonstrate that spin-spiral states obtained in a SAF with vanishing perpendicular magnetic anisotropy can be turned into isolated antiferromagnetic skyrmions. We also provide model-based estimates of skyrmion size and stability, showing that room-temperature antiferromagnetic skyrmions below 10 nm in radius can be anticipated in further optimized SAFs. Antiferromagnetic skyrmions in SAFs may thus solve major issues associated with ferromagnetic skyrmions for low-power spintronic devices.

Journal ArticleDOI
TL;DR: A new Pt catalyst/support design that substantially reduces local oxygen-related mass transport resistance is reported and exhibits previously unachieved fuel cell power densities in addition to high stability under voltage cycling.
Abstract: The reduction of Pt content in the cathode for proton exchange membrane fuel cells is highly desirable to lower their costs. However, lowering the Pt loading of the cathodic electrode leads to high voltage losses. These voltage losses are known to originate from the mass transport resistance of O2 through the platinum–ionomer interface, the location of the Pt particle with respect to the carbon support and the supports’ structures. In this study, we present a new Pt catalyst/support design that substantially reduces local oxygen-related mass transport resistance. The use of chemically modified carbon supports with tailored porosity enabled controlled deposition of Pt nanoparticles on the outer and inner surface of the support particles. This resulted in an unprecedented uniform coverage of the ionomer over the high surface-area carbon supports, especially under dry operating conditions. Consequently, the present catalyst design exhibits previously unachieved fuel cell power densities in addition to high stability under voltage cycling. Thanks to the Coulombic interaction between the ionomer and N groups on the carbon support, homogeneous ionomer distribution and reproducibility during ink manufacturing process is ensured. Reducing Pt content in cathodes for proton exchange membrane fuel cells is crucial to lower costs but results in high voltage losses. A Pt catalyst/support design that substantially reduces local oxygen-related mass transport resistance is reported.

Journal ArticleDOI
TL;DR: It is demonstrated that the bulk Dirac bands arise from in-plane localized Fe-3 d orbitals, and evidence that the coexisting Dirac surface state realizes a rare example of fully spin-polarized two-dimensional Dirac fermions due to spin-layer locking in FeSn is identified.
Abstract: A kagome lattice of 3d transition metal ions is a versatile platform for correlated topological phases hosting symmetry-protected electronic excitations and magnetic ground states. However, the paradigmatic states of the idealized two-dimensional kagome lattice-Dirac fermions and flat bands-have not been simultaneously observed. Here, we use angle-resolved photoemission spectroscopy and de Haas-van Alphen quantum oscillations to reveal coexisting surface and bulk Dirac fermions as well as flat bands in the antiferromagnetic kagome metal FeSn, which has spatially decoupled kagome planes. Our band structure calculations and matrix element simulations demonstrate that the bulk Dirac bands arise from in-plane localized Fe-3d orbitals, and evidence that the coexisting Dirac surface state realizes a rare example of fully spin-polarized two-dimensional Dirac fermions due to spin-layer locking in FeSn. The prospect to harness these prototypical excitations in a kagome lattice is a frontier of great promise at the confluence of topology, magnetism and strongly correlated physics.

Journal ArticleDOI
TL;DR: This work provides a path for designing high-voltage aqueous electrolytes for low-cost and sustainable energy storage by demonstrating a ‘molecular crowding’ electrolyte using the water-miscible polymer poly(ethylene glycol) as a crowding agent to decrease water activity achieving a wide operation window at low salt concentration.
Abstract: Developing low-cost and eco-friendly aqueous electrolytes with a wide voltage window is critical to achieve safe, high-energy and sustainable Li-ion batteries. Emerging approaches using highly concentrated salts (21–55 m (mol kg–1)) create artificial solid–electrode interfaces and improve water stability; however, these approaches raise concerns about cost and toxicity. Molecular crowding is a common phenomenon in living cells where water activity is substantially suppressed by molecular crowding agents through altering the hydrogen-bonding structure. Here we demonstrate a ‘molecular crowding’ electrolyte using the water-miscible polymer poly(ethylene glycol) as the crowding agent to decrease water activity, thereby achieving a wide electrolyte operation window (3.2 V) with low salt concentration (2 m). Aqueous Li4Ti5O12/LiMn2O4 full cells with stable specific energies between 75 and 110 W h kg−1 were demonstrated over 300 cycles. Online electrochemical mass spectroscopy revealed that common side reactions in aqueous Li-ion batteries (hydrogen/oxygen evolution reactions) are virtually eliminated. This work provides a path for designing high-voltage aqueous electrolytes for low-cost and sustainable energy storage. Developing cheap and sustainable aqueous electrolytes with a wide voltage window is key to achieving safe and high-energy Li-ion batteries. An electrolyte using the polymer poly(ethylene glycol) as a crowding agent to decrease water activity achieves a wide operation window at low salt concentration.

Journal ArticleDOI
TL;DR: It is demonstrated that incorporating a heterojunction between a donor polymer and non-fullerene acceptor in organic nanoparticles can result in hydrogen evolution photocatalysts with greatly enhanced photocatallytic activity.
Abstract: Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core–shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h−1 g−1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux. Photocatalysts formed from a single organic semiconductor can suffer from inefficient charge generation leading to low photocatalytic activities. Incorporating a heterojunction between a donor polymer and non-fullerene acceptor in organic nanoparticles leads to enhanced photocatalytic hydrogen evolution.

Journal ArticleDOI
TL;DR: The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency.
Abstract: Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m−2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m−2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties. The use of rigid linkers to control the relative position and interaction of donor and acceptor units in exciplex emitters leads to the realization of organic light-emitting devices with enhanced external quantum efficiency.

Journal ArticleDOI
TL;DR: HABN associated with pro-inflammatory macrophages, regulated innate immune responses and exerted potent therapeutic efficacy against colitis, and modulates the gut microbiota, increasing the overall richness and diversity and markedly augmenting the abundance of Akkermansia muciniphila and Clostridium XIVα.
Abstract: While conventional approaches for inflammatory bowel diseases mainly focus on suppressing hyperactive immune responses, it remains unclear how to address disrupted intestinal barriers, dysbiosis of the gut commensal microbiota and dysregulated mucosal immune responses in inflammatory bowel diseases. Moreover, immunosuppressive agents can cause off-target systemic side effects and complications. Here, we report the development of hyaluronic acid–bilirubin nanomedicine (HABN) that accumulates in inflamed colonic epithelium and restores the epithelium barriers in a murine model of acute colitis. Surprisingly, HABN also modulates the gut microbiota, increasing the overall richness and diversity and markedly augmenting the abundance of Akkermansia muciniphila and Clostridium XIVα, which are microorganisms with crucial roles in gut homeostasis. Importantly, HABN associated with pro-inflammatory macrophages, regulated innate immune responses and exerted potent therapeutic efficacy against colitis. Our work sheds light on the impact of nanotherapeutics on gut homeostasis, microbiome and innate immune responses for the treatment of inflammatory diseases. Imbalance of the gut microbiome has been implicated in numerous human diseases. Nanoparticles have now been designed to target colitis by modulating the gut microbiome, local innate immune response and restoration of the intestinal barrier function.

Journal ArticleDOI
TL;DR: A strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation is proposed, which is expected to benefit a wide range of applications of dielectrics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices.
Abstract: Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality -textured Na0.5Bi0.5TiO3–Sr0.7Bi0.2TiO3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m−1, an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of -textured NBT-SBT multilayer ceramics is up to 21.5 J cm−3, outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices. The energy density of dielectric ceramic capacitors is limited by low breakdown fields. Here, by considering the anisotropy of electrostriction in perovskites, it is shown that -textured Na0.5Bi0.5TiO3–Sr0.7Bi0.2TiO3 ceramics can sustain higher electrical fields and achieve an energy density of 21.5 J cm−3.

Journal ArticleDOI
TL;DR: Litao Sun, Yongming Tang and Wei Zuo reflect on their experience of nationwide distance learning in China’s universities during the COVID-19 outbreak.
Abstract: Litao Sun, Yongming Tang and Wei Zuo reflect on their experience of nationwide distance learning in China’s universities during the COVID-19 outbreak.

Journal ArticleDOI
TL;DR: It is shown that nanoparticulate zirconium nitride (ZrN) can replace and even surpass Pt as a catalyst for ORR in alkaline environments and is shown to deliver a greater power density and cyclability than Pt/C in a zinc–air battery.
Abstract: Platinum (Pt)-based materials are important components of microelectronic sensors, anticancer drugs, automotive catalytic converters and electrochemical energy conversion devices1. Pt is currently the most common catalyst used for the oxygen reduction reaction (ORR) in devices such as fuel cells and metal–air batteries2,3, although a scalable use is restricted by the scarcity, cost and vulnerability to poisoning of Pt (refs 4–6). Here we show that nanoparticulate zirconium nitride (ZrN) can replace and even surpass Pt as a catalyst for ORR in alkaline environments. As-synthesized ZrN nanoparticles (NPs) exhibit a high oxygen reduction performance with the same activity as that of a widely used Pt-on-carbon (Pt/C) commercial catalyst. Both materials show the same half-wave potential (E1/2 = 0.80 V) and ZrN has a higher stability (ΔE1/2 = −3 mV) than the Pt/C catalyst (ΔE1/2 = −39 mV) after 1,000 ORR cycles in 0.1 M KOH. ZrN is also shown to deliver a greater power density and cyclability than Pt/C in a zinc–air battery. Replacement of Pt by ZrN is likely to reduce costs and promote the usage of electrochemical energy devices, and ZrN may also be useful in other catalytic systems. Platinum catalysts are widely used for oxygen reduction reactions in electrochemical devices but scalability is restricted by scarcity, cost and vulnerability to poisoning. Zirconium nitride nanoparticles now exhibit an oxygen reduction performance with similar activity to that of Pt on carbon.

Journal ArticleDOI
TL;DR: In this article, a spin-dependent process in the 2D material hexagonal boron nitride (hBN) is reported, showing a triplet ground state and zero-field splitting of 3.5 GHz.
Abstract: Optically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN). We identify fluorescence lines associated with a particular defect, the negatively charged boron vacancy ($${\mathrm{V}}_{\mathrm{B}}^ -$$), showing a triplet (S = 1) ground state and zero-field splitting of ~3.5 GHz. We establish that this centre exhibits optically detected magnetic resonance at room temperature and demonstrate its spin polarization under optical pumping, which leads to optically induced population inversion of the spin ground state—a prerequisite for coherent spin-manipulation schemes. Our results constitute a step forward in establishing 2D hBN as a prime platform for scalable quantum technologies, with potential for spin-based quantum information and sensing applications. An ensemble of spins associated with an intrinsic defect of two-dimensional hexagonal boron nitride is shown to be optically addressable, allowing spin polarization of its triplet ground state and providing evidence of spin coherence.

Journal ArticleDOI
TL;DR: This Comment focuses on how this pandemic has accelerated the development of vaccine platforms distinct from classical vaccines; these novel platforms may also increase the response time when new viruses emerge in the future.
Abstract: Consensus among experts is that only an effective COVID-19 vaccine will end the pandemic. This Comment focuses on how this pandemic has accelerated the development of vaccine platforms distinct from classical vaccines; these novel platforms may also increase the response time when new viruses emerge in the future.

Journal ArticleDOI
TL;DR: This biogel is a step towards durable, life-like soft robotic and electronic systems that are sustainable and closely mimic their natural antetypes, whose mechanical properties can be adapted to a broad range of applications in soft robotics and wearable electronics.
Abstract: Biodegradable and biocompatible elastic materials for soft robotics, tissue engineering or stretchable electronics with good mechanical properties, tunability, modifiability or healing properties drive technological advance, and yet they are not durable under ambient conditions and do not combine all the attributes in a single platform. We have developed a versatile gelatin-based biogel, which is highly resilient with outstanding elastic characteristics, yet degrades fully when disposed. It self-adheres, is rapidly healable and derived entirely from natural and food-safe constituents. We merge all the favourable attributes in one material that is easy to reproduce and scalable, and has a low-cost production under ambient conditions. This biogel is a step towards durable, life-like soft robotic and electronic systems that are sustainable and closely mimic their natural antetypes.

Journal ArticleDOI
TL;DR: The role of device architectures and designs are highlighted, and how engineering concepts deserve to be integrated into fundamental research to accelerate synergies between materials science and engineering, and also to achieve industry-scale deployment.
Abstract: Green hydrogen production using renewables-powered, low-temperature water electrolysers is crucial for rapidly decarbonizing the industrial sector and with it many chemical transformation processes. However, despite decades of research, advances at laboratory scale in terms of catalyst design and insights into underlying processes have not resulted in urgently needed improvements in water electrolyser performance or higher deployment rates. In light of recent developments in water electrolyser devices with modified architectures and designs integrating concepts from Li-ion or redox flow batteries, we discuss practical challenges hampering the scaling-up and large-scale deployment of water electrolysers. We highlight the role of device architectures and designs, and how engineering concepts deserve to be integrated into fundamental research to accelerate synergies between materials science and engineering, and also to achieve industry-scale deployment. New devices require benchmarking and assessment in terms of not only their performance metrics, but also their scalability and deployment potential.

Journal ArticleDOI
TL;DR: It is demonstrated that the reversibility of the cation migration of lithium-rich nickel manganese oxides can be remarkably improved by altering the oxygen stacking sequences in the layered structure and thereby dramatically reducing the voltage decay.
Abstract: Despite the high energy density of lithium-rich layered-oxide electrodes, their real-world implementation in batteries is hindered by the substantial voltage decay on cycling. This voltage decay is widely accepted to mainly originate from progressive structural rearrangements involving irreversible transition-metal migration. As prevention of this spontaneous cation migration has proven difficult, a paradigm shift toward management of its reversibility is needed. Herein, we demonstrate that the reversibility of the cation migration of lithium-rich nickel manganese oxides can be remarkably improved by altering the oxygen stacking sequences in the layered structure and thereby dramatically reducing the voltage decay. The preeminent intra-cycle reversibility of the cation migration is experimentally visualized, and first-principles calculations reveal that an O2-type structure restricts the movements of transition metals within the Li layer, which effectively streamlines the returning migration path of the transition metals. Furthermore, we propose that the enhanced reversibility mitigates the asymmetry of the anionic redox in conventional lithium-rich electrodes, promoting the high-potential anionic reduction, thereby reducing the subsequent voltage hysteresis. Our findings demonstrate that regulating the reversibility of the cation migration is a practical strategy to reduce voltage decay and hysteresis in lithium-rich layered materials.

Journal ArticleDOI
TL;DR: A dose threshold for improving nanoparticle tumour delivery is discovered: 1 trillion nanoparticles in mice, which enabled up to 12% tumours delivery efficiency and delivery to 93% of cells in tumours, and also improved the therapeutic efficacy of Caelyx/Doxil.
Abstract: Nanoparticle delivery to solid tumours over the past ten years has stagnated at a median of 0.7% of the injected dose. Varying nanoparticle designs and strategies have yielded only minor improvements. Here we discovered a dose threshold for improving nanoparticle tumour delivery: 1 trillion nanoparticles in mice. Doses above this threshold overwhelmed Kupffer cell uptake rates, nonlinearly decreased liver clearance, prolonged circulation and increased nanoparticle tumour delivery. This enabled up to 12% tumour delivery efficiency and delivery to 93% of cells in tumours, and also improved the therapeutic efficacy of Caelyx/Doxil. This threshold was robust across different nanoparticle types, tumour models and studies across ten years of the literature. Our results have implications for human translation and highlight a simple, but powerful, principle for designing nanoparticle cancer treatments. Efficient nanoparticle delivery into tumours has been a challenge in the field. It is now shown that the efficiency can be improved substantially when the dose breaches a specific threshold.

Journal ArticleDOI
TL;DR: Theoretical simulations indicate that ion–carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity, and suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation.
Abstract: Biological ion channels have remarkable ion selectivity, permeability and rectification properties, but it is challenging to develop artificial analogues. Here, we report a metal–organic framework-based subnanochannel (MOFSNC) with heterogeneous structure and surface chemistry to achieve these properties. The asymmetrically structured MOFSNC can rapidly conduct K+, Na+ and Li+ in the subnanometre-to-nanometre channel direction, with conductivities up to three orders of magnitude higher than those of Ca2+ and Mg2+, equivalent to a mono/divalent ion selectivity of 103. Moreover, by varying the pH from 3 to 8 the ion selectivity can be tuned further by a factor of 102 to 104. Theoretical simulations indicate that ion–carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity. These findings suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation. Here, using an interfacial growth strategy, UiO-66 MOF nanocrystals are asymmetrically embedded into conical pores in a polymer membrane. These pores have a mono/divalent cation selectivity of 103, which can be tuned by pH, and act as ionic rectifiers.

Journal ArticleDOI
TL;DR: This Review provides an overview of the advances in materials and device design that are enabling the realization of implantable electronic interfaces for long-term, multiplexed recording and stimulation of the brain and nervous system.
Abstract: Engineered systems that can serve as chronically stable, high-performance electronic recording and stimulation interfaces to the brain and other parts of the nervous system, with cellular-level resolution across macroscopic areas, are of broad interest to the neuroscience and biomedical communities. Challenges remain in the development of biocompatible materials and the design of flexible implants for these purposes, where ulimate goals are for performance attributes approaching those of conventional wafer-based technologies and for operational timescales reaching the human lifespan. This Review summarizes recent advances in this field, with emphasis on active and passive constituent materials, design architectures and integration methods that support necessary levels of biocompatibility, electronic functionality, long-term stable operation in biofluids and reliability for use in vivo. Bioelectronic systems that enable multiplexed electrophysiological mapping across large areas at high spatiotemporal resolution are surveyed, with a particular focus on those with proven chronic stability in live animal models and scalability to thousands of channels over human-brain-scale dimensions. Research in materials science will continue to underpin progress in this field of study. This Review provides an overview of the advances in materials and device design that are enabling the realization of implantable electronic interfaces for long-term, multiplexed recording and stimulation of the brain and nervous system.

Journal ArticleDOI
TL;DR: This Review scrutinizes the current research landscape in thermoplasmonics, with a specific focus on its applications and main challenges in many different fields of science, including nanomedicine, cell biology, photothermal and hot-electron chemistry, solar light harvesting, soft matter and nanofluidics.
Abstract: Over the past two decades, there has been a growing interest in the use of plasmonic nanoparticles as sources of heat remotely controlled by light, giving rise to the field of thermoplasmonics. The ability to release heat on the nanoscale has already impacted a broad range of research activities, from biomedicine to imaging and catalysis. Thermoplasmonics is now entering an important phase: some applications have engaged in an industrial stage, while others, originally full of promise, experience some difficulty in reaching their potential. Meanwhile, innovative fundamental areas of research are being developed. In this Review, we scrutinize the current research landscape in thermoplasmonics, with a specific focus on its applications and main challenges in many different fields of science, including nanomedicine, cell biology, photothermal and hot-electron chemistry, solar light harvesting, soft matter and nanofluidics. Thermoplasmonics is based on the use of plasmonic nanoparticles as sources of heat remotely controlled by light. This Review discusses its current applications and challenges in a broad range of scientific fields, from nanomedicine to hot-electron chemistry and nanofluidics.