scispace - formally typeset
Search or ask a question

Showing papers in "Nature Medicine in 2007"


Journal ArticleDOI
TL;DR: A previously unrecognized pathway for the activation of tumor antigen–specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs) is described.
Abstract: Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen-specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.

2,666 citations


Journal ArticleDOI
TL;DR: It is shown that anthracyclin-induced CRT translocation induces the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface and is identified as a key feature determining anticancer immune responses.
Abstract: Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.

2,550 citations


Journal ArticleDOI
TL;DR: It is proposed that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis, where NETs have the greatest capacity for bacterial trapping.
Abstract: It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs) Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis

1,963 citations


Journal ArticleDOI
TL;DR: It is shown that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart.
Abstract: Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-β1 (TGF-β1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.

1,908 citations


Journal ArticleDOI
TL;DR: These magnetism-engineered iron oxide (MEIO) nanoprobes, when conjugated with antibodies, showed enhanced magnetic resonance imaging (MRI) sensitivity for the detection of cancer markers compared with probes currently available and could enhance the ability to visualize other biological events critical to diagnostics and therapeutics.
Abstract: Successful development of ultra-sensitive molecular imaging nanoprobes for the detection of targeted biological objects is a challenging task Although magnetic nanoprobes have the potential to perform such a role, the results from probes that are currently available have been far from optimal Here we used artificial engineering approaches to develop innovative magnetic nanoprobes, through a process that involved the systematic evaluation of the magnetic spin, size and type of spinel metal ferrites These magnetism-engineered iron oxide (MEIO) nanoprobes, when conjugated with antibodies, showed enhanced magnetic resonance imaging (MRI) sensitivity for the detection of cancer markers compared with probes currently available Also, we successfully visualized small tumors implanted in a mouse Such high-performance, nanotechnology-based molecular probes could enhance the ability to visualize other biological events critical to diagnostics and therapeutics

1,774 citations


Journal ArticleDOI
TL;DR: In this article, the authors showed that hydrogen (H2 )h can be used as an effective antioxidant therapy; owing to its ability to rapidly diffuse across membranes, it can reach and react with cytotoxic reactive oxygen species (ROS) and thus protect against oxidative damage.
Abstract: Acute oxidative stress induced by ischemia-reperfusion or inflammation causes serious damage to tissues, and persistent oxidative stress is accepted as one of the causes of many common diseases including cancer. We show here that hydrogen (H2 )h as potential as an antioxidant in preventive and therapeutic applications. We induced acute oxidative stress in cultured cells by three independent methods. H2 selectively reduced the hydroxyl radical, the most cytotoxic of reactive oxygen species (ROS), and effectively protected cells; however, H2 did not react with other ROS, which possess physiological roles. We used an acute rat model in which oxidative stress damage was induced in the brain by focal ischemia and reperfusion. The inhalation of H2 gas markedly suppressed brain injury by buffering the effects of oxidative stress. Thus H2 can be used as an effective antioxidant therapy; owing to its ability to rapidly diffuse across membranes, it can reach and react with cytotoxic ROS and thus protect against oxidative damage.

1,764 citations


Journal ArticleDOI
TL;DR: The data show thatmiR-133, and possibly miR-1, are key regulators of cardiac hypertrophy, suggesting their therapeutic application in heart disease.
Abstract: Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy. In vitro overexpression of miR-133 or miR-1 inhibited cardiac hypertrophy. In contrast, suppression of miR-133 by 'decoy' sequences induced hypertrophy, which was more pronounced than that after stimulation with conventional inducers of hypertrophy. In vivo inhibition of miR-133 by a single infusion of an antagomir caused marked and sustained cardiac hypertrophy. We identified specific targets of miR-133: RhoA, a GDP-GTP exchange protein regulating cardiac hypertrophy; Cdc42, a signal transduction kinase implicated in hypertrophy; and Nelf-A/WHSC2, a nuclear factor involved in cardiogenesis. Our data show that miR-133, and possibly miR-1, are key regulators of cardiac hypertrophy, suggesting their therapeutic application in heart disease.

1,738 citations


Journal ArticleDOI
TL;DR: Modulation of TGF-β signaling by a TLR4-MyD88–NF-κB axis provides a novel link between proinflammatory and profibrogenic signals.
Abstract: Hepatic injury is associated with a defective intestinal barrier and increased hepatic exposure to bacterial products. Here we report that the intestinal bacterial microflora and a functional Toll-like receptor 4 (TLR4), but not TLR2, are required for hepatic fibrogenesis. Using Tlr4-chimeric mice and in vivo lipopolysaccharide (LPS) challenge, we demonstrate that quiescent hepatic stellate cells (HSCs), the main precursors for myofibroblasts in the liver, are the predominant target through which TLR4 ligands promote fibrogenesis. In quiescent HSCs, TLR4 activation not only upregulates chemokine secretion and induces chemotaxis of Kupffer cells, but also downregulates the transforming growth factor (TGF)-beta pseudoreceptor Bambi to sensitize HSCs to TGF-beta-induced signals and allow for unrestricted activation by Kupffer cells. LPS-induced Bambi downregulation and sensitization to TGF-beta is mediated by a MyD88-NF-kappaB-dependent pathway. Accordingly, Myd88-deficient mice have decreased hepatic fibrosis. Thus, modulation of TGF-beta signaling by a TLR4-MyD88-NF-kappaB axis provides a novel link between proinflammatory and profibrogenic signals.

1,604 citations


Journal ArticleDOI
TL;DR: It is shown that TH17 lymphocytes transmigrate efficiently across BBB-ECs, highly express granzyme B, kill human neurons and promote central nervous system inflammation through CD4+ lymphocyte recruitment and that IL-17 and IL-22 disrupt BBB tight junctions in vitro and in vivo.
Abstract: T(H)17 lymphocytes appear to be essential in the pathogenesis of numerous inflammatory diseases. We demonstrate here the expression of IL-17 and IL-22 receptors on blood-brain barrier endothelial cells (BBB-ECs) in multiple sclerosis lesions, and show that IL-17 and IL-22 disrupt BBB tight junctions in vitro and in vivo. Furthermore, T(H)17 lymphocytes transmigrate efficiently across BBB-ECs, highly express granzyme B, kill human neurons and promote central nervous system inflammation through CD4+ lymphocyte recruitment.

1,492 citations


Journal ArticleDOI
TL;DR: Results indicate that constitutive autophagy in the heart under baseline conditions is a homeostatic mechanism for maintaining cardiomyocyte size and global cardiac structure and function, and that upregulation of autophagic in failing hearts is an adaptive response for protecting cells from hemodynamic stress.
Abstract: Autophagy, an evolutionarily conserved process for the bulk degradation of cytoplasmic components, serves as a cell survival mechanism in starving cells. Although altered autophagy has been observed in various heart diseases, including cardiac hypertrophy and heart failure, it remains unclear whether autophagy plays a beneficial or detrimental role in the heart. Here, we report that the cardiac-specific loss of autophagy causes cardiomyopathy in mice. In adult mice, temporally controlled cardiac-specific deficiency of Atg5 (autophagy-related 5), a protein required for autophagy, led to cardiac hypertrophy, left ventricular dilatation and contractile dysfunction, accompanied by increased levels of ubiquitination. Furthermore, Atg5-deficient hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation. On the other hand, cardiac-specific deficiency of Atg5 early in cardiogenesis showed no such cardiac phenotypes under baseline conditions, but developed cardiac dysfunction and left ventricular dilatation one week after treatment with pressure overload. These results indicate that constitutive autophagy in the heart under baseline conditions is a homeostatic mechanism for maintaining cardiomyocyte size and global cardiac structure and function, and that upregulation of autophagy in failing hearts is an adaptive response for protecting cells from hemodynamic stress.

1,390 citations


Journal ArticleDOI
TL;DR: The evolution of the understanding of the TH17 pathway illuminates a shift in immunologists' perspectives regarding the basis of tissue damage, where for over 20 years the role of TH1 cells was considered paramount.
Abstract: For over 35 years, immunologists have divided T-helper (TH) cells into functional subsets. T-helper type 1 (TH1) cells—long thought to mediate tissue damage—might be involved in the initiation of damage, but they do not sustain or play a decisive role in many commonly studied models of autoimmunity, allergy and microbial immunity. A major role for the cytokine interleukin-17 (IL-17) has now been described in various models of immune-mediated tissue injury, including organ-specific autoimmunity in the brain, heart, synovium and intestines, allergic disorders of the lung and skin, and microbial infections of the intestines and the nervous system. A pathway named TH17 is now credited for causing and sustaining tissue damage in these diverse situations. The TH1 pathway antagonizes the TH17 pathway in an intricate fashion. The evolution of our understanding of the TH17 pathway illuminates a shift in immunologists' perspectives regarding the basis of tissue damage, where for over 20 years the role of TH1 cells was considered paramount.

Journal ArticleDOI
TL;DR: The quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
Abstract: CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.

Journal ArticleDOI
TL;DR: It is demonstrated that mice lacking Mrp8-Mrp14 complexes are protected from endotoxin-induced lethal shock and Escherichia coli–induced abdominal sepsis, indicating new inflammatory components that amplify phagocyte activation during sepsi upstream of TNFα–dependent effects.
Abstract: To identify new components that regulate the inflammatory cascade during sepsis, we characterized the functions of myeloid-related protein-8 (Mrp8, S100A8) and myeloid-related protein-14 (Mrp14, S100A9), two abundant cytoplasmic proteins of phagocytes. We now demonstrate that mice lacking Mrp8-Mrp14 complexes are protected from endotoxin-induced lethal shock and Escherichia coli–induced abdominal sepsis. Both proteins are released during activation of phagocytes, and Mrp8-Mrp14 complexes amplify the endotoxin-triggered inflammatory responses of phagocytes. Mrp8 is the active component that induces intracellular translocation of myeloid differentiation primary response protein 88 and activation of interleukin-1 receptor–associated kinase-1 and nuclear factor-κB, resulting in elevated expression of tumor necrosis factor-α (TNF-α). Using phagocytes expressing a nonfunctional Toll-like receptor 4 (TLR4), HEK293 cells transfected with TLR4, CD14 and MD2, and by surface plasmon resonance studies in vitro, we demonstrate that Mrp8 specifically interacts with the TLR4-MD2 complex, thus representing an endogenous ligand of TLR4. Therefore Mrp8-Mrp14 complexes are new inflammatory components that amplify phagocyte activation during sepsis upstream of TNFα–dependent effects.

Journal ArticleDOI
TL;DR: It is shown that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity and could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo.
Abstract: The repair of injured tendons remains a great challenge, largely owing to a lack of in-depth characterization of tendon cells and their precursors. We show that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. The isolated TSPCs could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo. Moreover, we show that TSPCs reside within a unique niche predominantly comprised of an extracellular matrix, and we identify biglycan (Bgn) and fibromodulin (Fmod) as two critical components that organize this niche. Depletion of Bgn and Fmod affects the differentiation of TSPCs by modulating bone morphogenetic protein signaling and impairs tendon formation in vivo. Our results, while offering new insights into the biology of tendon cells, may assist in future strategies to treat tendon diseases.

Journal ArticleDOI
TL;DR: By inhibiting Dickkopf-1 (DKK-1), a regulatory molecule of the Wnt pathway, this work was able to reverse theBone-destructive pattern of a mouse model of rheumatoid arthritis to the bone-forming pattern of osteoarthritis, suggesting that the WNT pathway is a key regulator of joint remodeling.
Abstract: Degenerative and inflammatory joint diseases lead to a destruction of the joint architecture. Whereas degenerative osteoarthritis results in the formation of new bone, rheumatoid arthritis leads to bone resorption. The molecular basis of these different patterns of joint disease is unknown. By inhibiting Dickkopf-1 (DKK-1), a regulatory molecule of the Wnt pathway, we were able to reverse the bone-destructive pattern of a mouse model of rheumatoid arthritis to the bone-forming pattern of osteoarthritis. In this way, no overall bone erosion resulted, although bony nodules, so-called osteophytes, did form. We identified tumor necrosis factor-a (TNF) as a key inducer of DKK-1 in the mouse inflammatory arthritis model and in human rheumatoid arthritis. These results suggest that the Wnt pathway is a key regulator of joint remodeling. Affliction of joints is the hallmark of rheumatic disease. In addition to pain, both degenerative and inflammatory rheumatic diseases lead to a profound remodeling of the joint architecture, which causes functional disability and progressive crippling. This structural damage is largely responsible for the high socioeconomic burden of rheumatic disease, and definition of its molecular mechanism is therefore of key interest 1 .

Journal ArticleDOI
TL;DR: Adenovirus-mediated expression of AdipoR1 and R2 in the liver of Lepr−/− mice increased AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor (PPAR)-α signaling pathways, respectively, and abolished adiponectin binding and actions, leading to insulin resistance and marked glucose intolerance in vivo.
Abstract: Adiponectin plays a central role as an antidiabetic and antiatherogenic adipokine. AdipoR1 and AdipoR2 serve as receptors for adiponectin in vitro, and their reduction in obesity seems to be correlated with reduced adiponectin sensitivity. Here we show that adenovirus-mediated expression of AdipoR1 and R2 in the liver of Lepr(-/-) mice increased AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor (PPAR)-alpha signaling pathways, respectively. Activation of AMPK reduced gluconeogenesis, whereas expression of the receptors in both cases increased fatty acid oxidation and lead to an amelioration of diabetes. Alternatively, targeted disruption of AdipoR1 resulted in the abrogation of adiponectin-induced AMPK activation, whereas that of AdipoR2 resulted in decreased activity of PPAR-alpha signaling pathways. Simultaneous disruption of both AdipoR1 and R2 abolished adiponectin binding and actions, resulting in increased tissue triglyceride content, inflammation and oxidative stress, and thus leading to insulin resistance and marked glucose intolerance. Therefore, AdipoR1 and R2 serve as the predominant receptors for adiponectin in vivo and play important roles in the regulation of glucose and lipid metabolism, inflammation and oxidative stress in vivo.

Journal ArticleDOI
TL;DR: It is shown that expression of the gene encoding B7-H1 increases post transcriptionally in human glioma after loss of phosphatase and tensin homolog (PTEN) and activation of the phosphatidylinositol-3-OH kinase (PI(3)K) pathway.
Abstract: Cancer immunoresistance and immune escape may play important roles in tumor progression and pose obstacles for immunotherapy. Expression of the immunosuppressive protein B7 homolog 1 (B7-H1), also known as programmed death ligand-1 (PD-L1), is increased in many pathological conditions, including cancer. Here we show that expression of the gene encoding B7-H1 increases post transcriptionally in human glioma after loss of phosphatase and tensin homolog (PTEN) and activation of the phosphatidylinositol-3-OH kinase (PI(3)K) pathway. Tumor specimens from individuals with glioblastoma multiforme (GBM) had levels of B7-H1 protein that correlated with PTEN loss, and tumor-specific T cells lysed human glioma targets expressing wild-type PTEN more effectively than those expressing mutant PTEN. These data identify a previously unrecognized mechanism linking loss of the tumor suppressor PTEN with immunoresistance, mediated in part by B7-H1.

Journal ArticleDOI
TL;DR: Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition and displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis.
Abstract: The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G αi- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition. © 2007 Nature Publishing Group.

Journal ArticleDOI
TL;DR: In vivo models show that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex, identifying a previously unknown mechanism of T- cell tolerance in cancer.
Abstract: Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs.

Journal ArticleDOI
TL;DR: The data suggest that mGlu2/3 receptor agonists have antipsychotic properties and may provide a new alternative for the treatment of schizophrenia.
Abstract: Corrigenda: Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial

Journal ArticleDOI
TL;DR: A comprehensive analysis of the 160 dominant CD8+ T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa suggested the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection.
Abstract: Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8(+) T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein-specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8(+) T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation.

Journal ArticleDOI
TL;DR: Biological analysis of the 18 proteins found in blood plasma points to systemic dysregulation of hematopoiesis, immune responses, apoptosis and neuronal support in presymptomatic Alzheimer's disease.
Abstract: A molecular test for Alzheimer's disease could lead to better treatment and therapies. We found 18 signaling proteins in blood plasma that can be used to classify blinded samples from Alzheimer's and control subjects with close to 90% accuracy and to identify patients who had mild cognitive impairment that progressed to Alzheimer's disease 2-6 years later. Biological analysis of the 18 proteins points to systemic dysregulation of hematopoiesis, immune responses, apoptosis and neuronal support in presymptomatic Alzheimer's disease.

Journal ArticleDOI
TL;DR: These results indicate that a completely biological and clinically relevant TEBV can be assembled exclusively from an individual's own cells, without relying upon synthetic or exogenous scaffolding.
Abstract: There is a crucial need for alternatives to native vein or artery for vascular surgery. The clinical efficacy of synthetic, allogeneic or xenogeneic vessels has been limited by thrombosis, rejection, chronic inflammation and poor mechanical properties. Using adult human fibroblasts extracted from skin biopsies harvested from individuals with advanced cardiovascular disease, we constructed tissue-engineered blood vessels (TEBVs) that serve as arterial bypass grafts in long-term animal models. These TEBVs have mechanical properties similar to human blood vessels, without relying upon synthetic or exogenous scaffolding. The TEBVs are antithrombogenic and mechanically stable for 8 months in vivo. Histological analysis showed complete tissue integration and formation of vasa vasorum. The endothelium was confluent and positive for von Willebrand factor. A smooth muscle-specific alpha-actin-positive cell population developed within the TEBV, suggesting regeneration of a vascular media. Electron microscopy showed an endothelial basement membrane, elastogenesis and a complex collagen network. These results indicate that a completely biological and clinically relevant TEBV can be assembled exclusively from an individual's own cells.

Journal ArticleDOI
TL;DR: A previously uncharacterized set of S. aureus virulence factors are revealed that account at least in part for the enhanced virulence of CA-MRSA.
Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) remains a major human pathogen. Traditionally, MRSA infections occurred exclusively in hospitals and were limited to immunocompromised patients or individuals with predisposing risk factors. However, recently there has been an alarming epidemic caused by community-associated (CA)-MRSA strains, which can cause severe infections that can result in necrotizing fasciitis or even death in otherwise healthy adults outside of healthcare settings. In the US, CA-MRSA is now the cause of the majority of infections that result in trips to the emergency room. It is unclear what makes CA-MRSA strains more successful in causing human disease compared with their hospital-associated counterparts. Here we describe a class of secreted staphylococcal peptides that have a remarkable ability to recruit, activate and subsequently lyse human neutrophils, thus eliminating the main cellular defense against S. aureus infection. These peptides are produced at high concentrations by standard CA-MRSA strains and contribute significantly to the strains' ability to cause disease in animal models of infection. Our study reveals a previously uncharacterized set of S. aureus virulence factors that account at least in part for the enhanced virulence of CA-MRSA.

Journal ArticleDOI
TL;DR: The identification of the antigen recognition receptors for innate immunity, most notably the Toll-like receptors, has sparked great interest in therapeutic manipulation of the innate immune system and significant efforts have begun to develop antagonists to Toll- like receptors.
Abstract: The identification of the antigen recognition receptors for innate immunity, most notably the Toll-like receptors, has sparked great interest in therapeutic manipulation of the innate immune system. Toll-like receptor agonists are being developed for the treatment of cancer, allergies and viral infections, and as adjuvants for potent new vaccines to prevent or treat cancer and infectious diseases. As recognition grows of the role of inappropriate Toll-like receptor stimulation in inflammation and autoimmunity, significant efforts have begun to develop antagonists to Toll-like receptors as well.

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the carefully orchestrated cross-talk between cells of the bone marrow and between bone cells and the brain through which bone is constantly remodeled during adult life and highlights molecular aberrations that cause bone cells to become dysfunctional.
Abstract: The use of genetically manipulated mouse models, gene and protein discovery and the cataloguing of genetic mutations have each allowed us to obtain new insights into skeletal morphogenesis and remodeling. These techniques have made it possible to identify molecules that are obligatory for specific cellular functions, and to exploit these molecules for therapeutic purposes. New insights into the pathophysiology of diseases have also enabled us to understand molecular defects in a way that was not possible a decade ago. This review summarizes our current understanding of the carefully orchestrated cross-talk between cells of the bone marrow and between bone cells and the brain through which bone is constantly remodeled during adult life. It also highlights molecular aberrations that cause bone cells to become dysfunctional, as well as therapeutic options and opportunities to counteract skeletal loss.

Journal ArticleDOI
TL;DR: It is suggested that inhibiting the IL-1R–Myd88 pathway in vivo could block the damage from acute inflammation that occurs in response to sterile cell death, and do so in a way that might not compromise tissue repair or host defense against pathogens.
Abstract: Dying cells stimulate inflammation, and this response is thought to contribute to the pathogenesis of many diseases. Very little has been known, however, about how cell death triggers inflammation. We found here that the acute neutrophilic inflammatory response to cell injury requires the signaling protein myeloid differentiation primary response gene 88 (Myd88). Analysis of the contribution of Myd88-dependent receptors to this response revealed only a minor reduction in mice doubly deficient in Toll-like receptor 2 (Tlr2) and Tlr4 and normal responses in mice lacking Tlr1, Tlr3, Tlr6, Tlr7, Tlr9, Tlr11 or the interleukin-18 receptor (IL-18R). However, mice lacking IL-1R showed a markedly reduced neutrophilic inflammatory response to dead cells and tissue injury in vivo as well as greatly decreased collateral damage from inflammation. This inflammatory response required IL-1alpha, and IL-1R function was required on non-bone-marrow-derived cells. Notably, the acute monocyte response to cell death, which is thought to be important for tissue repair, was much less dependent on the IL-1R-Myd88 pathway. Also, this pathway was not required for the neutrophil response to a microbial stimulus. These findings suggest that inhibiting the IL-1R-Myd88 pathway in vivo could block the damage from acute inflammation that occurs in response to sterile cell death, and do so in a way that might not compromise tissue repair or host defense against pathogens.

Journal ArticleDOI
TL;DR: Administration of an HDAC inhibitor (HDACi) in vivo increased Foxp3 gene expression, as well as the production and suppressive function of regulatory T cells (Treg cells), and HDAC9 proved particularly important in regulatingFoxp3-dependent suppression.
Abstract: Histone/protein deacetylases (HDACs) regulate chromatin remodeling and gene expression as well as the functions of more than 50 transcription factors and nonhistone proteins. We found that administration of an HDAC inhibitor (HDACi) in vivo increased Foxp3 gene expression, as well as the production and suppressive function of regulatory T cells (Treg cells). Although Treg cells express multiple HDACs, HDAC9 proved particularly important in regulating Foxp3-dependent suppression. Optimal Treg function required acetylation of several lysines in the forkhead domain of Foxp3, and Foxp3 acetylation enhanced binding of Foxp3 to the Il2 promoter and suppressed endogenous IL-2 production. HDACi therapy in vivo enhanced Treg-mediated suppression of homeostatic proliferation, decreased inflammatory bowel disease through Treg-dependent effects, and, in conjunction with a short course of low-dose rapamycin, induced permanent, Treg-dependent cardiac and islet allograft survival and donor-specific allograft tolerance. Our data show that use of HDACi allows the beneficial pharmacologic enhancement of both the numbers and suppressive function of Foxp3 + Treg cells. Eukaryotic DNA wound around histone octamers forms nucleosomes that are themselves folded into higher-ordered chromatin structures 1 . Core histones have N-terminal tails extending from compact nucleosomal cores that affect histone interaction and gene regulation. Histone acetyltransferases (HAT) acetylate, and histone/protein deacetylases (HDAC) deacetylate, e-acetyllysine residues of these histone tails. HATs generally increase accessibility and promote gene transcription, whereas HDACs typically dampen histone-DNA and histone– nonhistone protein interactions 2,3 , though exceptions occur 4–6 .H ATs and HDACs also regulate the functions of nonhistone proteins 7 ,a s first described for p53 (ref. 8). An HDACi occupies HDAC catalytic sites, blocking substrate access and causing increased histone acetylation and gene transcription. Although HDACis are under intensive study as anticancer therapies 2 , they also have antiinflammatory effects 9 .H ere we show that HDACi administration increases Foxp3 expression as well as the numbers and function of Foxp3-dependent Treg cells, providing a means to pharmacologically enhance the suppressive properties of Treg cells in vitro and in vivo. RESULTS HDACi use boosts thymic production of natural Foxp3 + Treg cells Treatment of mice with an HDACi, trichostatin-A (TSA) 10 ,i ncreased the proportions and absolute numbers of Foxp3 + CD4 + T cells in

Journal ArticleDOI
TL;DR: Findings identify transcriptional control of PTEN and regulation of the PI3K-AKT pathway as key elements of the leukemogenic program activated by NOTCH1 and provide the basis for the design of new therapeutic strategies for T-ALL.
Abstract: Gain-of-function mutations in NOTCH1 are common in T-cell lymphoblastic leukemias and lymphomas (T-ALL), making this receptor a promising target for drugs such as γ-secretase inhibitors, which block a proteolytic cleavage required for NOTCH1 activation. However, the enthusiasm for these therapies has been tempered by tumor resistance and the paucity of information on the oncogenic programs regulated by oncogenic NOTCH1. Here we show that NOTCH1 regulates the expression of PTEN (encoding phosphatase and tensin homolog) and the activity of the phosphoinositol-3 kinase (PI3K)-AKT signaling pathway in normal and leukemic T cells. Notch signaling and the PI3K-AKT pathway synergize in vivo in a Drosophila melanogaster model of Notch-induced tumorigenesis, and mutational loss of PTEN is associated with human T-ALL resistance to pharmacological inhibition of NOTCH1. Overall, these findings identify transcriptional control of PTEN and regulation of the PI3K-AKT pathway as key elements of the leukemogenic program activated by NOTCH1 and provide the basis for the design of new therapeutic strategies for T-ALL.

Journal ArticleDOI
TL;DR: In lymphoma-bearing mice injected intravenously with hyperpolarized [1-13C]pyruvate, it is shown that the lactate dehydrogenase–catalyzed flux of 13C label between the carboxyl groups of pyruvates and lactate in the tumor can be measured using 13C magnetic resonance spectroscopy and spectroscopic imaging, and that this flux is inhibited within 24 h of chemotherapy.
Abstract: Measurements of early tumor responses to therapy have been shown, in some cases, to predict treatment outcome. We show in lymphoma-bearing mice injected intravenously with hyperpolarized [1-(13)C]pyruvate that the lactate dehydrogenase-catalyzed flux of (13)C label between the carboxyl groups of pyruvate and lactate in the tumor can be measured using (13)C magnetic resonance spectroscopy and spectroscopic imaging, and that this flux is inhibited within 24 h of chemotherapy. The reduction in the measured flux after drug treatment and the induction of tumor cell death can be explained by loss of the coenzyme NAD(H) and decreases in concentrations of lactate and enzyme in the tumors. The technique could provide a new way to assess tumor responses to treatment in the clinic.