scispace - formally typeset
Search or ask a question

Showing papers in "Nature Nanotechnology in 2010"


Journal ArticleDOI
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

7,709 citations


Journal ArticleDOI
TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Abstract: Graphene devices on standard SiO(2) substrates are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. Although suspending the graphene above the substrate leads to a substantial improvement in device quality, this geometry imposes severe limitations on device architecture and functionality. There is a growing need, therefore, to identify dielectrics that allow a substrate-supported geometry while retaining the quality achieved with a suspended sample. Hexagonal boron nitride (h-BN) is an appealing substrate, because it has an atomically smooth surface that is relatively free of dangling bonds and charge traps. It also has a lattice constant similar to that of graphite, and has large optical phonon modes and a large electrical bandgap. Here we report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal h-BN substrates, by using a mechanical transfer process. Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2). These devices also show reduced roughness, intrinsic doping and chemical reactivity. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics and allows for the realization of more complex graphene heterostructures.

6,261 citations


Journal ArticleDOI
TL;DR: This work demonstrates microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume higher than conventional supercapacitor.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices¹. By offering fast charging and discharging rates, and the ability to sustain millions of ²⁻⁵, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s⁻¹, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several micrometre-thick layer of nanostructured carbon onions⁶‚⁷ with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

2,469 citations


Journal ArticleDOI
TL;DR: A new type of transistor in which there are no junctions and no doping concentration gradients is proposed and demonstrated, which has near-ideal subthreshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.
Abstract: All existing transistors are based on the use of semiconductor junctions formed by introducing dopant atoms into the semiconductor material. As the distance between junctions in modern devices drops below 10 nm, extraordinarily high doping concentration gradients become necessary. Because of the laws of diffusion and the statistical nature of the distribution of the doping atoms, such junctions represent an increasingly difficult challenge for the semiconductor industry. Here, we propose and demonstrate a new type of transistor in which there are no junctions and no doping concentration gradients. These devices have full CMOS functionality and are made using silicon nanowires. They have near-ideal subthreshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.

2,090 citations


Journal ArticleDOI
TL;DR: In situ current-voltage and low-temperature conductivity measurements confirm that switching occurs by the formation and disruption of Ti(n)O(2n-1) (or so-called Magnéli phase) filaments, which will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films.
Abstract: Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO2/Pt system during resistive switching. In situ current–voltage and low-temperature (∼130 K) conductivity measurements confirm that switching occurs by the formation and disruption of TinO2n−1 (or so-called Magneli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications. Nanoscale filaments with a Magneli structure are shown to be responsible for resistance switching in thin films of TiO2, and the properties of the filaments are directly observed during the switching process.

1,880 citations


Journal ArticleDOI
TL;DR: This work demonstrates the vertical and lateral integration of ZnO nanowires into arrays that are capable of producing sufficient power to operate real devices and uses the vertically integrated nanogenerator to power a nanowire pH sensor and a Nanowire UV sensor, thus demonstrating a self-powered system composed entirely of nanowiring.
Abstract: The lateral and vertical integration of ZnO piezoelectric nanowires allows for voltage and power outputs sufficient to power nanowire-based sensors.

1,465 citations


Journal ArticleDOI
TL;DR: Different strategies for nanoparticle self-assembly, the properties of self-assembled structures of nanoparticles, and potential applications of such structures are reviewed.
Abstract: Just as nanoparticles display properties that differ from those of bulk samples of the same material, ensembles of nanoparticles can have collective properties that are different to those displayed by individual nanoparticles and bulk samples. Self-assembly has emerged as a powerful technique for controlling the structure and properties of ensembles of inorganic nanoparticles. Here we review different strategies for nanoparticle self-assembly, the properties of self-assembled structures of nanoparticles, and potential applications of such structures. Many of these properties and possible applications rely on our ability to control the interactions between the electronic, magnetic and optical properties of the individual nanoparticles. Self-assembly is a powerful technique for controlling the structure and properties of ensembles of inorganic nanoparticles. This article reviews the properties and potential applications of self-assembled structures made from nanoparticles.

1,441 citations


Journal ArticleDOI
TL;DR: A fundamentally different mechanism for photovoltaic charge separation is reported, which operates over a distance of 1-2 nm and produces voltages that are significantly higher than the bandgap.
Abstract: In conventional solid-state photovoltaics, electron-hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1-2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO(3). Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices.

1,434 citations


Journal ArticleDOI
TL;DR: Progress in light sensing using nanostructured materials is reviewed, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles.
Abstract: The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.

1,253 citations


Journal ArticleDOI
TL;DR: It is shown that superchiral electromagnetic fields, generated by the optical excitation of plasmonic planar chiral metamaterials, are highly sensitive probes of chiral supramolecular structure.
Abstract: The spectroscopic analysis of large biomolecules is important in applications such as biomedical diagnostics and pathogen detection, and spectroscopic techniques can detect such molecules at the nanogram level or lower. However, spectroscopic techniques have not been able to probe the structure of large biomolecules with similar levels of sensitivity. Here, we show that superchiral electromagnetic fields, generated by the optical excitation of plasmonic planar chiral metamaterials, are highly sensitive probes of chiral supramolecular structure. The differences in the effective refractive indices of chiral samples exposed to left- and right-handed superchiral fields are found to be up to 10(6) times greater than those observed in optical polarimetry measurements, thus allowing picogram quantities of adsorbed molecules to be characterized. The largest differences are observed for biomolecules that have chiral planar sheets, such as proteins with high β-sheet content, which suggests that this approach could form the basis for assaying technologies capable of detecting amyloid diseases and certain types of viruses.

964 citations


Journal ArticleDOI
TL;DR: In this article, layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multi-walled carbon nanotubes, which can store lithium up to a reversible gravimetric capacity of approximately 200 mA h g(-1) while also delivering 100 kW kg(electrode) of power and providing lifetimes in excess of thousands of cycles.
Abstract: Energy storage devices that can deliver high powers have many applications, including hybrid vehicles and renewable energy. Much research has focused on increasing the power output of lithium batteries by reducing lithium-ion diffusion distances, but outputs remain far below those of electrochemical capacitors and below the levels required for many applications. Here, we report an alternative approach based on the redox reactions of functional groups on the surfaces of carbon nanotubes. Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes. The electrode, which is several micrometres thick, can store lithium up to a reversible gravimetric capacity of approximately 200 mA h g(-1)(electrode) while also delivering 100 kW kg(electrode)(-1) of power and providing lifetimes in excess of thousands of cycles, both of which are comparable to electrochemical capacitor electrodes. A device using the nanotube electrode as the positive electrode and lithium titanium oxide as a negative electrode had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 times higher than conventional lithium-ion batteries.

Journal ArticleDOI
TL;DR: The realization of a one-dimensional topological defect in graphene, containing octagonal and pentagonal sp(2)-hybridized carbon rings embedded in a perfect graphene sheet is reported, which acts as a quasi-one-dimensional metallic wire.
Abstract: Many proposed applications of graphene require the ability to tune its electronic structure at the nanoscale1,2. Although charge transfer3 and field-effect doping4 can be applied to manipulate charge carrier concentrations, using them to achieve nanoscale control remains a challenge. An alternative approach is ‘self-doping’5, in which extended defects are introduced into the graphene lattice. The controlled engineering of these defects represents a viable approach to creation and nanoscale control of one-dimensional charge distributions with widths of several atoms6. However, the only experimentally realized extended defects so far have been the edges of graphene nanoribbons7,8,9,10, which show dangling bonds that make them chemically unstable11,12,13. Here, we report the realization of a one-dimensional topological defect in graphene, containing octagonal and pentagonal sp2-hybridized carbon rings embedded in a perfect graphene sheet. By doping the surrounding graphene lattice, the defect acts as a quasi-one-dimensional metallic wire. Such wires may form building blocks for atomic-scale, all-carbon electronics. A stable extended defect in graphene consisting of octagonal and pentagonal rings produces one-dimensional charge localization, allowing it to act as a metallic wire embedded in an otherwise perfect graphene sheet.

Journal ArticleDOI
TL;DR: Three-dimensional percolation theory reveals that Poisson's ratio for the composite is a key parameter in determining how the conductivity changes upon stretching, and highly conductive, printable and stretchable hybrid composites composed of micrometre-sized silver flakes and multiwalled carbon nanotubes decorated with self-assembled silver nanoparticles are presented.
Abstract: highly conductive, printable and stretchable hybrid composites composed of micrometre-sized silver flakes and multiwalled carbon nanotubes decorated with self-assembled silver nanoparticles. The nanotubes were used as one-dimensional, flexible and conductive scaffolds to construct effective electrical networks among the silver flakes. The nanocomposites, which included polyvinylidenefluoride copolymer, were created with a hot-rolling technique, and the maximum conductivities of the hybrid silver–nanotube composites were 5,710 S cm 21 at 0% strain and 20 S cm 21 at 140% strain, at which point the film ruptured. Three-dimensional percolation theory reveals that Poisson’s ratio for the composite is a key parameter in determining how the conductivity changes upon stretching. Useful combinations of conductivity and stretchability have been observed in vertically aligned multiwalled carbon nanotube (MWNT) forest/polyurethane films (� 0.5–1 S cm 21 at 0% strain and electrical resistance increased upon stretching 12 ) and in textiles

Journal ArticleDOI
TL;DR: A single-photon source composed of a nitrogen-vacancy centre in a diamond nanowire, which produces ten times greater flux than bulk diamond devices, while using ten times less power, enables a new class of devices for photonic and quantum information processing based on nanostructured diamond.
Abstract: The development of a robust light source that emits one photon at a time will allow new technologies such as secure communication through quantum cryptography. Devices based on fluorescent dye molecules, quantum dots and carbon nanotubes have been demonstrated, but none has combined a high single-photon flux with stable, room-temperature operation. Luminescent centres in diamond have recently emerged as a stable alternative, and, in the case of nitrogen-vacancy centres, offer spin quantum bits with optical readout. However, these luminescent centres in bulk diamond crystals have the disadvantage of low photon out-coupling. Here, we demonstrate a single-photon source composed of a nitrogen-vacancy centre in a diamond nanowire, which produces ten times greater flux than bulk diamond devices, while using ten times less power. This result enables a new class of devices for photonic and quantum information processing based on nanostructured diamond, and could have a broader impact in nanoelectromechanical systems, sensing and scanning probe microscopy.

Journal ArticleDOI
TL;DR: This work proposes a spintronic device that uses spin at every stage of its operation and shows the five essential characteristics for logic applications: concatenability, nonlinearity, feedback elimination, gain and a complete set of Boolean operations.
Abstract: A spintronic device in which the input, output and internal states are all represented by spin, and that shows the five essential characteristics necessary for logic applications, is proposed.

Journal ArticleDOI
Liying Jiao1, Xinran Wang1, Georgi Diankov1, Hailiang Wang1, Hongjie Dai1 
TL;DR: It is shown that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotubes using mechanical sonication in an organic solvent, significantly higher than previous methods capable of producing high-quality narrow nanoriberbons.
Abstract: Graphene nanoribbons have attracted attention because of their novel electronic and spin transport properties1,2,3,4,5,6, and also because nanoribbons less than 10 nm wide have a bandgap that can be used to make field-effect transistors1,2,3. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotubes using mechanical sonication in an organic solvent. The nanoribbons are of very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported so far (up to 5e2/h and 1,500 cm2 V−1 s−1 for ribbons 10–20 nm in width). Furthermore, at low temperatures, the nanoribbons show phase-coherent transport and Fabry–Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons is ∼2% of the starting raw nanotube soot material, significantly higher than previous methods capable of producing high-quality narrow nanoribbons1. The relatively high-yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications. Unzipping carbon nanotubes that have been mildly gas-phase oxidized results in graphene nanoribbons of very high quality.

Journal ArticleDOI
TL;DR: It is shown that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogel, which can be compacted into a stiff magnetic nanopaper.
Abstract: Nanostructured biological materials inspire the creation of materials with tunable mechanical properties. Strong cellulose nanofibrils derived from bacteria or wood can form ductile or tough networks that are suitable as functional materials. Here, we show that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogels, which can be compacted into a stiff magnetic nanopaper. The 20-70-nm-thick cellulose nanofibrils act as templates for the non-agglomerated growth of ferromagnetic cobalt ferrite nanoparticles (diameter, 40-120 nm). Unlike solvent-swollen gels and ferrogels, our magnetic aerogel is dry, lightweight, porous (98%), flexible, and can be actuated by a small household magnet. Moreover, it can absorb water and release it upon compression. Owing to their flexibility, high porosity and surface area, these aerogels are expected to be useful in microfluidics devices and as electronic actuators.

Journal ArticleDOI
TL;DR: The fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres were found and the thermal conductivity was found to be as high as approximately 104 W m(-1) K(-1), which is larger than the conductivities of about half of the pure metals.
Abstract: Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m(-1) K(-1). However, recent work suggests that individual chains of polyethylene--the simplest and most widely used polymer--can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as approximately 104 W m(-1) K(-1), which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an 'ideal' single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging.

Journal ArticleDOI
TL;DR: It is shown that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages.
Abstract: We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase1. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.

Journal ArticleDOI
TL;DR: A process for converting sea water to fresh water in which a continuous stream of sea water is divided into desalted and concentrated streams by ion concentration polarization, which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods.
Abstract: A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity approximately 500 mM or approximately 30,000 mg l(-1)) to fresh water (salinity <10 mM or <600 mg l(-1)) in which a continuous stream of sea water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (approximately 99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l(-1), which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.

Journal ArticleDOI
TL;DR: This study shows that quantum dots functionalized with high-affinity small-molecule ligands that target tumours can also be cleared by the kidneys if their hydrodynamic diameter is less than this value, which sets an upper limit of 5-10 ligands per quantum dot for renal clearance.
Abstract: Inorganic/organic hybrid nanoparticles are potentially useful in biomedicine, but to avoid non-specific background fluorescence and long-term toxicity, they need to be cleared from the body within a reasonable timescale 1 . Previously, we have shown that rigid spherical nanoparticles such as quantum dots can be cleared by the kidneys if they have a hydrodynamic diameter of approximately 5.5 nm and a zwitterionic surface charge 2 . Here, we show that quantum dots functionalized with highaffinity small-molecule ligands that target tumours can also be cleared by the kidneys if their hydrodynamic diameter is less than this value, which sets an upper limit of 5–10 ligands per quantum dot for renal clearance. Animal models of prostate cancer and melanoma show receptor-specific imaging and renal clearance within 4 h post-injection. This study suggests a set of design rules for the clinical translation of targeted nanoparticles that can be eliminated through the kidneys. Although many classes of biocompatible, inorganic-based nanomaterials have been developed for medical diagnostics and therapeutics 3–7 , many presently available formulations require potentially toxic elements 8 . Efforts have been made to reduce toxicity by modulating the composition, particle shape, physical size and surface coating of the nanoparticles 9 . One common strategy is to engineer nanoparticles using biocompatible and biodegradable polymeric coatings 10–13 . However, polymer coatings generally increase particle

Journal ArticleDOI
TL;DR: It is shown that application of a 20-fold salt gradient enables detection of picomolar DNA concentrations at high throughput, and the salt gradients enhance the electric field, focusing more molecules into the pore, thereby advancing the possibility of analyzing unamplified DNA samples using nanopores.
Abstract: Solid-state nanopores are sensors capable of analysing individual unlabelled DNA molecules in solution. Although the critical information obtained from nanopores (for example, DNA sequence) comes from the signal collected during DNA translocation, the throughput of the method is determined by the rate at which molecules arrive and thread into the pores. Here, we study the process of DNA capture into nanofabricated SiN pores of molecular dimensions. For fixed analyte concentrations we find an increase in capture rate as the DNA length increases from 800 to 8,000 base pairs, a length-independent capture rate for longer molecules, and increasing capture rates when ionic gradients are established across the pore. Furthermore, we show that application of a 20-fold salt gradient allows the detection of picomolar DNA concentrations at high throughput. The salt gradients enhance the electric field, focusing more molecules into the pore, thereby advancing the possibility of analysing unamplified DNA samples using nanopores.

Journal ArticleDOI
TL;DR: A platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA is presented, in which a target microRNA is first hybridized to a probe and enriched through binding to the viral protein p19.
Abstract: Small RNA molecules have an important role in gene regulation and RNA silencing therapy, but it is challenging to detect these molecules without the use of time-consuming radioactive labelling assays or error-prone amplification methods. Here, we present a platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA. In this platform, a target microRNA is first hybridized to a probe. This probe:microRNA duplex is then enriched through binding to the viral protein p19. Finally, the abundance of the duplex is quantified using a nanopore. Reducing the thickness of the membrane containing the nanopore to 6 nm leads to increased signal amplitudes from biomolecules, and reducing the diameter of the nanopore to 3 nm allows the detection and discrimination of small nucleic acids based on differences in their physical dimensions. We demonstrate the potential of this approach by detecting picogram levels of a liver-specific miRNA from rat liver RNA.

Journal ArticleDOI
TL;DR: An approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film is demonstrated, suggesting that this development is a step towards a coherent mechanism for lowering thermal conductivity.
Abstract: Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

Journal ArticleDOI
TL;DR: This work shows an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely activate temperature-sensitive cation channels in cells, which triggers action potentials in cultured neurons without observable toxic effects.
Abstract: Recently, optical stimulation has begun to unravel the neuronal processing that controls certain animal behaviours. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Here, we show an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely activate temperature-sensitive cation channels in cells. Superparamagnetic ferrite nanoparticles were targeted to specific proteins on the plasma membrane of cells expressing TRPV1, and heated by a radio-frequency magnetic field. Using fluorophores as molecular thermometers, we show that the induced temperature increase is highly localized. Thermal activation of the channels triggers action potentials in cultured neurons without observable toxic effects. This approach can be adapted to stimulate other cell types and, moreover, may be used to remotely manipulate other cellular machinery for novel therapeutics.

Journal ArticleDOI
TL;DR: In this paper, the authors review techniques for constructing RNA nanoparticles from different building blocks, describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine.
Abstract: Like DNA, RNA can be designed and manipulated to produce a variety of different nanostructures. Moreover, RNA has a flexible structure and possesses catalytic functions that are similar to proteins. Although RNA nanotechnology resembles DNA nanotechnology in many ways, the base-pairing rules for constructing nanoparticles are different. The large variety of loops and motifs found in RNA allows it to fold into numerous complicated structures, and this diversity provides a platform for identifying viable building blocks for various applications. The thermal stability of RNA also allows the production of multivalent nanostructures with defined stoichiometry. Here we review techniques for constructing RNA nanoparticles from different building blocks, we describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine. We also offer some perspectives on the yield and cost of RNA production.

Journal ArticleDOI
TL;DR: Using computer simulations, this work investigates the physical translocation processes of nanoparticles with different shapes and volumes and finds that the shape anisotropy and initial orientation of the particle are crucial to the nature of the interaction between the particle and lipid bilayer.
Abstract: Understanding how nanoparticles with different shapes interact with cell membranes is important in drug and gene delivery, but this interaction remains poorly studied. Using computer simulations, we investigate the physical translocation processes of nanoparticles with different shapes (for example, spheres, ellipsoids, rods, discs and pushpin-like particles) and volumes across a lipid bilayer. We find that the shape anisotropy and initial orientation of the particle are crucial to the nature of the interaction between the particle and lipid bilayer. The penetrating capability of a nanoparticle across a lipid bilayer is determined by the contact area between the particle and lipid bilayer, and the local curvature of the particle at the contact point. Particle volume affects translocation indirectly, and particle rotation can complicate the penetration process. Our results provide a practical guide to geometry considerations when designing nanoscale cargo carriers.

Journal ArticleDOI
TL;DR: A general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami-a technique in which a long single strand of DNA is folded into a predetermined shape to allow the rapid prototyping of complex nanotube-based structures.
Abstract: A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami—a technique in which a long single strand of DNA is folded into a predetermined shape. We synthesize rectangular origami templates (~75 nm × 95 nm) that display two lines of single-stranded DNA ‘hooks’ in a cross pattern with ~6 nm resolution. The perpendicular lines of hooks serve as sequence-specific binding sites for two types of nanotubes, each functionalized non-covalently with a distinct DNA linker molecule. The hook-binding domain of each linker is protected to ensure efficient hybridization. When origami templates and DNA-functionalized nanotubes are mixed, strand displacement-mediated deprotection and binding aligns the nanotubes into cross-junctions. Of several cross-junctions synthesized by this method, one demonstrated stable field-effect transistor-like behaviour. In such organizations of electronic components, DNA origami serves as a programmable nanobreadboard; thus, DNA origami may allow the rapid prototyping of complex nanotube-based structures.

Journal ArticleDOI
TL;DR: Owing to a high surface area to volume ratio, the effectiveness of nanofertilizers may surpass the most innovative polymer-coated conventional fertilizers, which have seen little improvement in the past ten years.
Abstract: To the Editor — Nitrogen, which is a key nutrient source for food, biomass, and fibre production in agriculture, is by far the most important element in fertilizers when judged in terms of the energy required for its synthesis, tonnage used and monetary value. However, compared with amounts of nitrogen applied to soil, the nitrogen use efficiency (NUE) by crops is very low. Between 50 and 70% of the nitrogen applied using conventional fertilizers — plant nutrient formulations with dimensions greater than 100 nm — is lost owing to leaching in the form of water soluble nitrates, emission of gaseous ammonia and nitrogen oxides, and long-term incorporation of mineral nitrogen into soil organic matter by soil microorganisms1. Numerous attempts to increase the NUE have so far met with little success, and the time may have come to apply nanotechnology to solve some of these problems. Carbon nanotubes were recently shown to penetrate tomato seeds2, and zinc oxide nanoparticles were shown to enter the root tissue of ryegrass3 (Fig. 1). This suggests that new nutrient delivery systems that exploit the nanoscale porous domains on plant surfaces can be developed. The potential use of nanotechnology to improve fertilizer formulations, however, may have been hindered by reduced research funding and the lack of clear regulations and innovation policies. Current patent literature shows that the use of nanotechnology in fertilizer development remains relatively low (about 100 patents and patent applications between 1998 and 2008) compared with pharmaceuticals (more than 6,000 patents and patent applications over the same period)4. A nanofertilizer refers to a product that delivers nutrients to crops in one of three ways. The nutrient can be encapsulated inside nanomaterials such as nanotubes or nanoporous materials, coated with a thin protective polymer film, or delivered as particles or emulsions of nanoscale dimensions. Owing to a high surface area to volume ratio, the effectiveness of nanofertilizers may surpass the most innovative polymer-coated conventional fertilizers, which have seen little improvement in the past ten years. Ideally, nanotechnology could provide devices and mechanisms to synchronize the release of nitrogen (from fertilizers) with its uptake by crops; the nanofertilizers should release the nutrients on-demand while preventing them from prematurely converting into chemical/gaseous forms that cannot be absorbed by plants. This can be achieved by preventing nutrients from interacting with soil, water and microorganisms, and releasing nutrients only when they can be directly internalized by the plant. Examples of these nanostrategies are beginning to emerge. Zinc–aluminiumlayered double-hydroxide nanocomposites have been used for the controlled release of chemical compounds that regulate plant growth5. Improved yields have been claimed for fertilizers that are incorporated into cochleate nanotubes (rolled-up lipid bilayer sheets)6. The release of nitrogen by urea hydrolysis has been controlled through the insertion of urease enzymes into nanoporous silica7. Although these approaches are promising, they lack mechanisms that can recognize and respond to the needs of the plant and changes in nitrogen levels in the soil. The development of functional nanoscale films8 and devices has the potential to produce significant gains in the NUE and crop production. In addition to increasing the NUE, nanotechnology might be able to improve the performance of fertilizers in other ways. For example, owing to its photocatalytic property, nanosize titanium dioxide has been incorporated into fertilizers as a bactericidal additive. Moreover, titanium dioxide may also lead to improved crop yield through the photoreduction of nitrogen gas9. Furthermore, nanosilica particles absorbed by roots have been shown to form films at the cell walls, which can enhance the plant’s resistance to stress and lead to improved yields10. Clearly, there is an opportunity for nanotechnology to have a profound impact on energy, the economy and the environment, by improving fertilizer products. New prospects for integrating nanotechnologies into fertilizers should be explored, cognizant of any potential risk to the environment or to human health. With targeted efforts by governments and academics in developing such enabled agriproducts, we believe that nanotechnology will be transformative in this field. ❐

Journal ArticleDOI
TL;DR: It is shown that graphite spontaneously exfoliates into single-layer graphene in chlorosulphonic acid, and dissolves at isotropic concentrations as high as approximately 2 mg ml(-1), which is an order of magnitude higher than previously reported values.
Abstract: Graphene combines unique electronic properties and surprising quantum effects with outstanding thermal and mechanical properties. Many potential applications, including electronics and nanocomposites, require that graphene be dispersed and processed in a fluid phase. Here, we show that graphite spontaneously exfoliates into single-layer graphene in chlorosulphonic acid, and dissolves at isotropic concentrations as high as approximately 2 mg ml(-1), which is an order of magnitude higher than previously reported values. This occurs without the need for covalent functionalization, surfactant stabilization, or sonication, which can compromise the properties of graphene or reduce flake size. We also report spontaneous formation of liquid-crystalline phases at high concentrations ( approximately 20-30 mg ml(-1)). Transparent, conducting films are produced from these dispersions at 1,000 Omega square(-1) and approximately 80% transparency. High-concentration solutions, both isotropic and liquid crystalline, could be particularly useful for making flexible electronics as well as multifunctional fibres.