scispace - formally typeset
Search or ask a question

Showing papers in "Nature Reviews Genetics in 2010"


Journal ArticleDOI
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

7,023 citations


Journal ArticleDOI
TL;DR: This work has shown that the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein–protein and protein–RNA interactions has an important role in the context-specific functions of miRNAs.
Abstract: MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are ~21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.

4,123 citations


Journal ArticleDOI
TL;DR: Drawing on insights from both plants and animals should deepen the understanding of the regulation and biological significance of DNA methylation.
Abstract: Cytosine DNA methylation is a stable epigenetic mark that is crucial for diverse biological processes, including gene and transposon silencing, imprinting and X chromosome inactivation. Recent findings in plants and animals have greatly increased our understanding of the pathways used to accurately target, maintain and modify patterns of DNA methylation and have revealed unanticipated mechanistic similarities between these organisms. Key roles have emerged for small RNAs, proteins with domains that bind methylated DNA and DNA glycosylases in these processes. Drawing on insights from both plants and animals should deepen our understanding of the regulation and biological significance of DNA methylation.

3,180 citations


Journal ArticleDOI
TL;DR: The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant–pathogen interaction from the perspective of both organisms, suggesting novel biotechnological approaches to crop protection.
Abstract: Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.

2,666 citations


Journal ArticleDOI
TL;DR: A broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair.
Abstract: Reverse genetics in model organisms such as Drosophila melanogaster, Arabidopsis thaliana, zebrafish and rats, efficient genome engineering in human embryonic stem and induced pluripotent stem cells, targeted integration in crop plants, and HIV resistance in immune cells - this broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair. Such 'genome editing' is now established in human cells and a number of model organisms, thus opening the door to a range of new experimental and therapeutic possibilities.

2,074 citations


Journal ArticleDOI
TL;DR: It is argued that batch effects (as well as other technical and biological artefacts) are widespread and critical to address and experimental and computational approaches for doing so are reviewed.
Abstract: High-throughput technologies are widely used, for example to assay genetic variants, gene and protein expression, and epigenetic modifications. One often overlooked complication with such studies is batch effects, which occur because measurements are affected by laboratory conditions, reagent lots and personnel differences. This becomes a major problem when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. Using both published studies and our own analyses, we argue that batch effects (as well as other technical and biological artefacts) are widespread and critical to address. We review experimental and computational approaches for doing so.

1,768 citations


Journal ArticleDOI
TL;DR: The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction, and the cilium represents a nexus for signalling pathways during development.
Abstract: The primary cilium has recently stepped into the spotlight, as a flood of data show that this organelle has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for hedgehog signal transduction. The formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The cilium therefore represents a nexus for signalling pathways during development. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction.

1,669 citations


Journal ArticleDOI
TL;DR: Seven leading geneticists offer their opinion about where the 'missing heritability' of complex diseases might be found, what this could tell us about the underlying genetic architecture of common diseases and how this could inform research strategies for uncovering genetic risk factors.
Abstract: Although recent genome-wide studies have provided valuable insights into the genetic basis of human disease, they have explained relatively little of the heritability of most complex traits, and the variants identified through these studies have small effect sizes. This has led to the important and hotly debated issue of where the 'missing heritability' of complex diseases might be found. Here, seven leading geneticists offer their opinion about where this heritability is likely to lie, what this could tell us about the underlying genetic architecture of common diseases and how this could inform research strategies for uncovering genetic risk factors.

1,653 citations


Journal ArticleDOI
TL;DR: The details of several different statistical methods for imputing genotypes are described, the factors that influence imputation performance are illustrated and discussed, and methods that can be used to assess imputations performance and test association at imputed SNPs are reviewed.
Abstract: In the past few years genome-wide association (GWA) studies have uncovered a large number of convincingly replicated associations for many complex human diseases. Genotype imputation has been used widely in the analysis of GWA studies to boost power, fine-map associations and facilitate the combination of results across studies using meta-analysis. This Review describes the details of several different statistical methods for imputing genotypes, illustrates and discusses the factors that influence imputation performance, and reviews methods that can be used to assess imputation performance and test association at imputed SNPs.

1,590 citations


Journal ArticleDOI
TL;DR: There is such a diversity of DNA methylation profiling techniques that it can be challenging to select one, and this Review discusses the different approaches and their relative merits and introduces considerations for data analysis.
Abstract: Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. Therefore, profiling DNA methylation across the genome is vital to understanding the influence of epigenetics. There has been a revolution in DNA methylation analysis technology over the past decade: analyses that previously were restricted to specific loci can now be performed on a genome-scale and entire methylomes can be characterized at single-base-pair resolution. However, there is such a diversity of DNA methylation profiling techniques that it can be challenging to select one. This Review discusses the different approaches and their relative merits and introduces considerations for data analysis.

1,521 citations


Journal ArticleDOI
TL;DR: The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.
Abstract: Synthetic biology is bringing together engineers and biologists to design and build novel biomolecular components, networks and pathways, and to use these constructs to rewire and reprogram organisms. These re-engineered organisms will change our lives over the coming years, leading to cheaper drugs, 'green' means to fuel our cars and targeted therapies for attacking 'superbugs' and diseases, such as cancer. The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.

Journal ArticleDOI
TL;DR: This work identifies and discusses those problems for which genomics will be most valuable for curbing the accelerating worldwide loss of biodiversity and provides guidance on whichgenomics tools and approaches will bemost appropriate to use for different aspects of conservation.
Abstract: We will soon have complete genome sequences from thousands of species, as well as from many individuals within species. This coming explosion of information will transform our understanding of the amount, distribution and functional significance of genetic variation in natural populations. Now is a crucial time to explore the potential implications of this information revolution for conservation genetics and to recognize limitations in applying genomic tools to conservation issues. We identify and discuss those problems for which genomics will be most valuable for curbing the accelerating worldwide loss of biodiversity. We also provide guidance on which genomics tools and approaches will be most appropriate to use for different aspects of conservation.

Journal ArticleDOI
TL;DR: A comprehensive classification of the models that are relevant to all stages of the evolution of gene duplications is presented, each of which predicts a unique combination of evolutionary dynamics and functional properties.
Abstract: Gene duplications and their subsequent divergence play an important part in the evolution of novel gene functions. Several models for the emergence, maintenance and evolution of gene copies have been proposed. However, a clear consensus on how gene duplications are fixed and maintained in genomes is lacking. Here, we present a comprehensive classification of the models that are relevant to all stages of the evolution of gene duplications. Each model predicts a unique combination of evolutionary dynamics and functional properties. Setting out these predictions is an important step towards identifying the main mechanisms that are involved in the evolution of gene duplications.

Journal ArticleDOI
TL;DR: Progress is reviewed on methods that correct for stratification while accounting for these additional complexities in genome-wide association studies.
Abstract: Genome-wide association (GWA) studies are an effective approach for identifying genetic variants associated with disease risk. GWA studies can be confounded by population stratification--systematic ancestry differences between cases and controls--which has previously been addressed by methods that infer genetic ancestry. Those methods perform well in data sets in which population structure is the only kind of structure present but are inadequate in data sets that also contain family structure or cryptic relatedness. Here, we review recent progress on methods that correct for stratification while accounting for these additional complexities.

Journal ArticleDOI
TL;DR: The evidence for an important role of rare gene variants of major effect in common diseases is evaluated and discovery strategies for their identification are outlined.
Abstract: Although genome-wide association (GWA) studies for common variants have thus far succeeded in explaining only a modest fraction of the genetic components of human common diseases, recent advances in next-generation sequencing technologies could rapidly facilitate substantial progress. This outcome is expected if much of the missing genetic control is due to gene variants that are too rare to be picked up by GWA studies and have relatively large effects on risk. Here, we evaluate the evidence for an important role of rare gene variants of major effect in common diseases and outline discovery strategies for their identification.

Journal ArticleDOI
TL;DR: This Review focuses on the methodological considerations for characterizing somatic genome alterations in cancer and the future prospects for these approaches.
Abstract: Cancer is fundamentally a disease of the genome and so high-throughput sequencing technologies offer great potential for improving our understanding of the biology and treatment of cancer Experimental strategies, computational approaches and cancer-specific considerations for detecting different types of genomic alterations are discussed Cancers are caused by the accumulation of genomic alterations Therefore, analyses of cancer genome sequences and structures provide insights for understanding cancer biology, diagnosis and therapy The application of second-generation DNA sequencing technologies (also known as next-generation sequencing) — through whole-genome, whole-exome and whole-transcriptome approaches — is allowing substantial advances in cancer genomics These methods are facilitating an increase in the efficiency and resolution of detection of each of the principal types of somatic cancer genome alterations, including nucleotide substitutions, small insertions and deletions, copy number alterations, chromosomal rearrangements and microbial infections This Review focuses on the methodological considerations for characterizing somatic genome alterations in cancer and the future prospects for these approaches

Journal ArticleDOI
TL;DR: Phenomics should be recognized and pursued as an independent discipline to enable the development and adoption of high-throughput and high-dimensional phenotyping.
Abstract: A key goal of biology is to understand phenotypic characteristics, such as health, disease and evolutionary fitness. Phenotypic variation is produced through a complex web of interactions between genotype and environment, and such a 'genotype-phenotype' map is inaccessible without the detailed phenotypic data that allow these interactions to be studied. Despite this need, our ability to characterize phenomes - the full set of phenotypes of an individual - lags behind our ability to characterize genomes. Phenomics should be recognized and pursued as an independent discipline to enable the development and adoption of high-throughput and high-dimensional phenotyping.

Journal ArticleDOI
TL;DR: The current knowledge of alternative splicing and evolution is summarized and insights into some of these unresolved questions are provided.
Abstract: Over the past decade, it has been shown that alternative splicing (AS) is a major mechanism for the enhancement of transcriptome and proteome diversity, particularly in mammals. Splicing can be found in species from bacteria to humans, but its prevalence and characteristics vary considerably. Evolutionary studies are helping to address questions that are fundamental to understanding this important process: how and when did AS evolve? Which AS events are functional? What are the evolutionary forces that shaped, and continue to shape, AS? And what determines whether an exon is spliced in a constitutive or alternative manner? In this Review, we summarize the current knowledge of AS and evolution and provide insights into some of these unresolved questions.

Journal ArticleDOI
TL;DR: The mechanisms of CRISPR interference and its roles in microbial physiology and evolution are reviewed and potential applications of this novel interference pathway are discussed.
Abstract: Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs — small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway.

Journal ArticleDOI
TL;DR: Although dissection of the mechanism or mechanisms of ALT has been challenging, recent advances have led to the identification of several genes that are required for ALT and the elucidation of the biological significance of some phenotypic markers of ALTs, which has enabled development of a rapid assay ofALT activity levels and the construction of molecular models of ALt.
Abstract: Unlimited cellular proliferation depends on counteracting the telomere attrition that accompanies DNA replication. In human cancers this usually occurs through upregulation of telomerase activity, but in 10-15% of cancers - including some with particularly poor outcome - it is achieved through a mechanism known as alternative lengthening of telomeres (ALT). ALT, which is dependent on homologous recombination, is therefore an important target for cancer therapy. Although dissection of the mechanism or mechanisms of ALT has been challenging, recent advances have led to the identification of several genes that are required for ALT and the elucidation of the biological significance of some phenotypic markers of ALT. This has enabled development of a rapid assay of ALT activity levels and the construction of molecular models of ALT.

Journal ArticleDOI
TL;DR: The development of pathway-based approaches for GWA studies are reviewed, their practical use and caveats are discussed, and it is suggested that pathway- based approaches may also be useful for future GWA study data sets with sequencing data.
Abstract: Genome-wide association (GWA) studies have typically focused on the analysis of single markers, which often lacks the power to uncover the relatively small effect sizes conferred by most genetic variants. Recently, pathway-based approaches have been developed, which use prior biological knowledge on gene function to facilitate more powerful analysis of GWA study data sets. These approaches typically examine whether a group of related genes in the same functional pathway are jointly associated with a trait of interest. Here we review the development of pathway-based approaches for GWA studies, discuss their practical use and caveats, and suggest that pathway-based approaches may also be useful for future GWA studies with sequencing data.

Journal ArticleDOI
TL;DR: Insight is offered into the latest advances in this field of adaptive immune system research and speculate on the selective pressures that led to the emergence and maintenance of the AIS.
Abstract: The adaptive immune system (AIS) in mammals, which is centred on lymphocytes bearing antigen receptors that are generated by somatic recombination, arose approximately 500 million years ago in jawed fish. This intricate defence system consists of many molecules, mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary events are believed to have contributed to the genesis of the AIS: the emergence of the recombination-activating gene (RAG) transposon, and two rounds of whole-genome duplication. It has recently been discovered that a non-RAG-based AIS with similarities to the jawed vertebrate AIS — including two lymphoid cell lineages — arose in jawless fish by convergent evolution. We offer insights into the latest advances in this field and speculate on the selective pressures that led to the emergence and maintenance of the AIS.

Journal ArticleDOI
TL;DR: The multiple mechanisms that potentially affect the inheritance of epigenetic information in somatic cells are reviewed and the importance of positive-feedback loops, long-range gene interactions and the complex network of trans-acting factors in the transmission of chromatin states is discussed.
Abstract: Although it is widely accepted that the regulation of the chromatin landscape is pivotal to conveying the epigenetic program, it is still unclear how a defined chromatin domain is reproduced following DNA replication and transmitted from one cell generation to the next. Here, we review the multiple mechanisms that potentially affect the inheritance of epigenetic information in somatic cells. We consider models of how histones might be recycled following replication, and discuss the importance of positive-feedback loops, long-range gene interactions and the complex network of trans-acting factors in the transmission of chromatin states.

Journal ArticleDOI
TL;DR: The considerable potential for cross-disciplinary exchange is highlighted to provide novel insights into how culture has shaped the human genome, supported by recent analyses of human genetic variation, which reveal that hundreds of genes have been subject to recent positive selection.
Abstract: Researchers from diverse backgrounds are converging on the view that human evolution has been shaped by gene-culture interactions. Theoretical biologists have used population genetic models to demonstrate that cultural processes can have a profound effect on human evolution, and anthropologists are investigating cultural practices that modify current selection. These findings are supported by recent analyses of human genetic variation, which reveal that hundreds of genes have been subject to recent positive selection, often in response to human activities. Here, we collate these data, highlighting the considerable potential for cross-disciplinary exchange to provide novel insights into how culture has shaped the human genome.

Journal ArticleDOI
TL;DR: The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes in metazoan cells and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin.
Abstract: The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.

Journal ArticleDOI
TL;DR: Advances in technologies for characterizing RNA populations are revealing increasingly complete descriptions of RNA regulation and complexity, yielding transcriptome-wide insights into mechanisms of RNA processing and providing new insights into molecular cell biology and disease.
Abstract: In recent years views of eukaryotic gene expression have been transformed by the finding that enormous diversity can be generated at the RNA level. Advances in technologies for characterizing RNA populations are revealing increasingly complete descriptions of RNA regulation and complexity; for example, through alternative splicing, alternative polyadenylation and RNA editing. New biochemical strategies to map protein-RNA interactions in vivo are yielding transcriptome-wide insights into mechanisms of RNA processing. These advances, combined with bioinformatics and genetic validation, are leading to the generation of functional RNA maps that reveal the rules underlying RNA regulation and networks of biologically coherent transcripts. Together these are providing new insights into molecular cell biology and disease.

Journal ArticleDOI
TL;DR: This Review provides a tutorial on the available epidemiological designs and statistical analysis approaches for studying specific G×E interactions and choosing the most appropriate methods.
Abstract: Despite the yield of recent genome-wide association (GWA) studies, the identified variants explain only a small proportion of the heritability of most complex diseases. This unexplained heritability could be partly due to gene--environment (G×E) interactions or more complex pathways involving multiple genes and exposures. This Review provides a tutorial on the available epidemiological designs and statistical analysis approaches for studying specific G×E interactions and choosing the most appropriate methods. I discuss the approaches that are being developed for studying entire pathways and available techniques for mining interactions in GWA data. I also explore methods for marrying hypothesis-driven pathway-based approaches with 'agnostic' GWA studies.

Journal ArticleDOI
TL;DR: How to master the different types of computational environments that exist — such as cloud and heterogeneous computing — to successfully tackle the authors' big data problems is discussed.
Abstract: Today we can generate hundreds of gigabases of DNA and RNA sequencing data in a week for less than US$5,000. The astonishing rate of data generation by these low-cost, high-throughput technologies in genomics is being matched by that of other technologies, such as real-time imaging and mass spectrometry-based flow cytometry. Success in the life sciences will depend on our ability to properly interpret the large-scale, high-dimensional data sets that are generated by these technologies, which in turn requires us to adopt advances in informatics. Here we discuss how we can master the different types of computational environments that exist — such as cloud and heterogeneous computing — to successfully tackle our big data problems.

Journal ArticleDOI
TL;DR: This Review discusses emerging issues and strategies related to data integration in the era of next-generation genomics.
Abstract: Integrating results from diverse experiments is an essential process in our effort to understand the logic of complex systems, such as development, homeostasis and responses to the environment. With the advent of high-throughput methods--including genome-wide association (GWA) studies, chromatin immunoprecipitation followed by sequencing (ChIP-seq) and RNA sequencing (RNA-seq)--acquisition of genome-scale data has never been easier. Epigenomics, transcriptomics, proteomics and genomics each provide an insightful, and yet one-dimensional, view of genome function; integrative analysis promises a unified, global view. However, the large amount of information and diverse technology platforms pose multiple challenges for data access and processing. This Review discusses emerging issues and strategies related to data integration in the era of next-generation genomics.

Journal ArticleDOI
TL;DR: Quantitative studies of shape can characterize developmental and genetic effects and discover their relative importance, which integrate evo-devo and related disciplines into a coherent understanding of evolutionary processes from populations to large-scale evolutionary radiations.
Abstract: Morphological traits have long been a focus of evolutionary developmental biology ('evo-devo'), but new methods for quantifying shape variation are opening unprecedented possibilities for investigating the developmental basis of evolutionary change. Morphometric analyses are revealing that development mediates complex interactions between genetic and environmental factors affecting shape. Evolution results from changes in those interactions, as natural selection favours shapes that more effectively perform some fitness-related functions. Quantitative studies of shape can characterize developmental and genetic effects and discover their relative importance. They integrate evo-devo and related disciplines into a coherent understanding of evolutionary processes from populations to large-scale evolutionary radiations.