scispace - formally typeset
Search or ask a question
JournalISSN: 1759-4812

Nature Reviews Urology 

Nature Portfolio
About: Nature Reviews Urology is an academic journal published by Nature Portfolio. The journal publishes majorly in the area(s): Prostate cancer & Medicine. It has an ISSN identifier of 1759-4812. Over the lifetime, 2865 publications have been published receiving 51568 citations. The journal is also known as: Nature Reviews. Urology.


Papers
More filters
Journal ArticleDOI
TL;DR: Treatment of UTIs with antibiotics leads to a more rapid resolution of symptoms and is more likely to clear bacteriuria, but also selects for resistant uropathogens and commensal bacteria and adversely affects the gut and vaginal microbiota.
Abstract: Urinary tract infections (UTIs) are among the most common bacterial infections acquired in the community and in hospitals. In individuals without anatomical or functional abnormalities, UTIs are generally self limiting, but have a propensity to recur. Uropathogens have specialized characteristics, such as the production of adhesins, siderophores and toxins that enable them to colonize and invade the urinary tract, and are transmitted between individuals both through person-to-person contact and possibly via food or water. Although generally self limiting, treatment of UTIs with antibiotics leads to a more rapid resolution of symptoms and is more likely to clear bacteriuria, but also selects for resistant uropathogens and commensal bacteria and adversely affects the gut and vaginal microbiota. As uropathogens are increasingly becoming resistant to currently available antibiotics, it may be time to explore alternative strategies for managing UTI.

1,298 citations

Journal ArticleDOI
TL;DR: Accumulating evidence suggests an etiologic role in RCC for physical activity, alcohol consumption, occupational exposure to trichloroethylene, and high parity among women, but further research is needed into the potential causal effects of these factors.
Abstract: After more than two decades of rising rates, in recent years the total kidney cancer incidence worldwide has shown signs of stabilizing, or even decreasing. In adults, kidney cancer consists of renal cell carcinoma (RCC), the predominant form, and renal transitional cell carcinoma (RTCC); these types primarily arise in the renal parenchyma and renal pelvis, respectively. Although temporal trends by kidney cancer type are not well established worldwide, incidence of RCC in the US has continued to rise, mainly for early-stage tumors, while that of RTCC has declined, and total kidney cancer mortality rates have leveled. Stabilization of kidney cancer mortality rates has also been reported in Europe. These trends are consistent with reports of increasing incidental diagnoses and a downward shift in tumor stage and size in clinical series. The changing prevalence of known risk factors for RCC, including cigarette smoking, obesity, and hypertension, is also likely to affect incidence trends, although their relative impact may differ between populations. Accumulating evidence suggests an etiologic role in RCC for physical activity, alcohol consumption, occupational exposure to trichloroethylene, and high parity among women, but further research is needed into the potential causal effects of these factors. Genetic factors and their interaction with environmental exposures are believed to influence risk of developing RCC, but a limited number of studies using candidate-gene approaches have not produced conclusive results. Large consortium efforts employing genome-wide scanning technology are underway, which hold promise for novel discoveries in renal carcinogenesis.

1,086 citations

Journal ArticleDOI
TL;DR: Mutations in each of these kidney cancer genes result in dysregulation of metabolic pathways involved in oxygen, iron, energy or nutrient sensing, suggesting that kidney cancer is a disease of cell metabolism.
Abstract: Kidney cancer is not a single disease but comprises a number of different types of cancer that occur in the kidney, each caused by a different gene with a different histology and clinical course that responds differently to therapy. Each of the seven known kidney cancer genes, VHL, MET, FLCN, TSC1, TSC2, FH and SDH, is involved in pathways that respond to metabolic stress or nutrient stimulation. The VHL protein is a component of the oxygen and iron sensing pathway that regulates hypoxia-inducible factor (HIF) levels in the cell. HGF-MET signaling affects the LKB1-AMPK energy sensing cascade. The FLCN-FNIP1-FNIP2 complex binds AMPK and, therefore, might interact with the cellular energy and nutrient sensing pathways AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR. TSC1-TSC2 is downstream of AMPK and negatively regulates mTOR in response to cellular energy deficit. FH and SDH have a central role in the mitochondrial tricarboxylic acid cycle, which is coupled to energy production through oxidative phosphorylation. Mutations in each of these kidney cancer genes result in dysregulation of metabolic pathways involved in oxygen, iron, energy or nutrient sensing, suggesting that kidney cancer is a disease of cell metabolism. Targeting the fundamental metabolic abnormalities in kidney cancer provides a unique opportunity for the development of more-effective forms of therapy for this disease.

648 citations

Journal ArticleDOI
TL;DR: Lifestyle interventions including yoga and meditation can substantially improve the integrity of sperm DNA by reducing levels of oxidative DNA damage, regulating oxidative stress and by increasing the expression of genes responsible for DNA repair, cell-cycle control and anti-inflammatory effects.
Abstract: Male infertility accounts for up to half of the infertility cases and affects 13–15% couples worldwide. An optimal level of reactive oxygen species is crucial for maintaining spermatogenesis and sperm functions. However, excessive production of reactive oxygen species may cause oxidative stress. Oxidative stress has been identified as one of the major risk factors which affects the fertilizing potential of spermatozoa. Oxidative stress occurs due to excessive production of ROS and causes germ cell DNA damage, sperm fragility and defects in motility, culminating in infertility. Poor sperm quality and DNA damage may also result in pregnancy loss. This article highlights the significance of ROS in human male fertility and that of oxidative stress in infertility.

537 citations

Journal ArticleDOI
TL;DR: Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.
Abstract: Male infertility is a multifactorial pathological condition affecting approximately 7% of the male population. The genetic landscape of male infertility is highly complex as semen and testis histological phenotypes are extremely heterogeneous, and at least 2,000 genes are involved in spermatogenesis. The highest frequency of known genetic factors contributing to male infertility (25%) is in azoospermia, but the number of identified genetic anomalies in other semen and aetiological categories is constantly growing. Genetic screening is relevant for its diagnostic value, clinical decision making, and appropriate genetic counselling. Anomalies in sex chromosomes have major roles in severe spermatogenic impairment. Autosome-linked gene mutations are mainly involved in central hypogonadism, monomorphic teratozoospermia or asthenozoospermia, congenital obstructive azoospermia, and familial cases of quantitative spermatogenic disturbances. Results from whole-genome association studies suggest a marginal role for common variants as causative factors; however, some of these variants can be important for pharmacogenetic purposes. Results of studies on copy number variations (CNVs) demonstrate a considerably higher CNV load in infertile patients than in normozoospermic men, whereas whole-exome analysis has proved to be a highly successful diagnostic tool in familial cases of male infertility. Despite such efforts, the aetiology of infertility remains unknown in about 40% of patients, and the discovery of novel genetic factors in idiopathic infertility is a major challenge for the field of androgenetics. Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.

488 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202395
2022148
2021141
2020137
2019141
2018195