scispace - formally typeset
Search or ask a question

Showing papers in "Nature in 1993"


Journal ArticleDOI
07 Jan 1993-Nature
TL;DR: The best understood form of long-term potentiation is induced by the activation of the N-methyl-d-aspartate receptor complex, which allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and post Synaptic mechanisms to generate a persistent increase in synaptic strength.
Abstract: Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-D-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.

11,123 citations


Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations


Journal ArticleDOI
Sumio Iijima1, Toshinari Ichihashi1
17 Jun 1993-Nature
TL;DR: In this article, the authors reported the synthesis of abundant single-shell tubes with diameters of about one nanometre, whereas the multi-shell nanotubes are formed on the carbon cathode.
Abstract: CARBON nanotubes1 are expected to have a wide variety of interesting properties. Capillarity in open tubes has already been demonstrated2–5, while predictions regarding their electronic structure6–8 and mechanical strength9 remain to be tested. To examine the properties of these structures, one needs tubes with well defined morphologies, length, thickness and a number of concentric shells; but the normal carbon-arc synthesis10,11 yields a range of tube types. In particular, most calculations have been concerned with single-shell tubes, whereas the carbon-arc synthesis produces almost entirely multi-shell tubes. Here we report the synthesis of abundant single-shell tubes with diameters of about one nanometre. Whereas the multi-shell nanotubes are formed on the carbon cathode, these single-shell tubes grow in the gas phase. Electron diffraction from a single tube allows us to confirm the helical arrangement of carbon hexagons deduced previously for multi-shell tubes1.

8,018 citations


Journal ArticleDOI
04 Mar 1993-Nature
TL;DR: Tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 is reported.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative disorder of motor neurons in the cortex, brainstem and spinal cord. Its cause is unknown and it is uniformly fatal, typically within five years. About 10% of cases are inherited as an autosomal dominant trait, with high penetrance after the sixth decade. In most instances, sporadic and autosomal dominant familial ALS (FALS) are clinically similar. We have previously shown that in some but not all FALS pedigrees the disease is linked to a genetic defect on chromosome 21q (refs 8, 9). Here we report tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O2.- to O2 and H2O2 (ref. 10). Given this linkage and the potential role of free radical toxicity in other neurodenegerative disorders, we investigated SOD1 as a candidate gene in FALS. We identified 11 different SOD1 missense mutations in 13 different FALS families.

6,733 citations


Journal ArticleDOI
28 Jan 1993-Nature
TL;DR: Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle.
Abstract: Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.

6,389 citations


Journal ArticleDOI
22 Apr 1993-Nature
TL;DR: The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.
Abstract: Although DNA is the carrier of genetic information, it has limited chemical stability. Hydrolysis, oxidation and nonenzymatic methylation of DNA occur at significant rates in vivo, and are counteracted by specific DNA repair processes. The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.

5,209 citations


Journal ArticleDOI
02 Sep 1993-Nature
TL;DR: The cloning of a receptor for cannabinoids is reported that is not expressed in the brain but rather in macrophages in the marginal zone of spleen, which helps clarify the non-psychoactive effects of cannabinoids.
Abstract: THE major active ingredient of marijuana, Δ9-tetrahydrocannabi-nol (Δ9-THC), has been used as a psychoactive agent for thousands of years. Marijuana, and Δ9-THC, also exert a wide range of other effects including analgesia, anti-inflammation, immunosuppression, anticonvulsion, alleviation of intraocular pressure in glaucoma, and attenuation of vomiting1. The clinical application of cannabinoids has, however, been limited by their psychoactive effects, and this has led to interest in the biochemical bases of their action. Progress stemmed initially from the synthesis of potent derivatives of δ9-THC4,5, and more recently from the cloning of a gene encoding a G-protein-coupled receptor for cannabinoids6. This receptor is expressed in the brain but not in the periphery, except for a low level in testes. It has been proposed that the non-psychoactive effects of cannabinoids are either mediated centrally or through direct interaction with other, non-receptor proteins1,7,8. Here we report the cloning of a receptor for cannabinoids that is not expressed in the brain but rather in macrophages in the marginal zone of spleen.

4,782 citations


Journal ArticleDOI
15 Jul 1993-Nature
TL;DR: In this paper, the authors present a detailed stable isotope record for the full length of the Greenland Ice-core Project Summit ice core, extending over the past 250 kyr according to a calculated timescale, and find that climate instability was not confined to the last glaciation, but appears also have been marked during the last interglacial (as explored more fully in a companion paper), and during the previous Saale-Holstein glacial cycle.
Abstract: RECENT results1,2 from two ice cores drilled in central Greenland have revealed large, abrupt climate changes of at least regional extent during the late stages of the last glaciation, suggesting that climate in the North Atlantic region is able to reorganize itself rapidly, perhaps even within a few decades. Here we present a detailed stable-isotope record for the full length of the Greenland Ice-core Project Summit ice core, extending over the past 250 kyr according to a calculated timescale. We find that climate instability was not confined to the last glaciation, but appears also to have been marked during the last interglacial (as explored more fully in a companion paper3) and during the previous Saale–Holstein glacial cycle. This is in contrast with the extreme stability of the Holocene, suggesting that recent climate stability may be the exception rather than the rule. The last interglacial seems to have lasted longer than is implied by the deep-sea SPECMAP record4, in agreement with other land-based observations5,6. We suggest that climate instability in the early part of the last interglacial may have delayed the melting of the Saalean ice sheets in America and Eurasia, perhaps accounting for this discrepancy.

4,367 citations


Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: It is demonstrated that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.
Abstract: The development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation. Blood vessel neoformation is also important in the pathogenesis of many disorders, particularly rapid growth and metastasis of solid tumours. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-alpha and transforming factors-alpha and -beta. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosarcoma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells in vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.

3,863 citations


Journal ArticleDOI
Donald S. Bethune1, C. H. Klang1, M.S. de Vries1, G. Gorman1, R. Savoy1, J. E. Vazquez1, Robert Beyers1 
17 Jun 1993-Nature
TL;DR: In this paper, it was shown that covaporizing carbon and cobalt in an arc generator leads to the formation of carbon nanotubes which all have very small diameters (about 1.2 nm) and walls only a single atomic layer thick.
Abstract: CARBON exhibits a unique ability to form a wide range of structures. In an inert atmosphere it condenses to form hollow, spheroidal fullerenes. Carbon deposited on the hot tip of the cathode of the arc-discharge apparatus used for bulk fullerene synthesis will form nested graphitic tubes and polyhedral particles. Electron irradiation of these nanotubes and polyhedra transforms them into nearly spherical carbon 'onions'. We now report that covaporizing carbon and cobalt in an arc generator leads to the formation of carbon nanotubes which all have very small diameters (about 1.2 nm) and walls only a single atomic layer thick. The tubes form a web-like deposit woven through the fullerene-containing soot, giving it a rubbery texture. The uniformity and single-layer structure of these nanotubes should make it possible to test their properties against theoretical predictions.

3,758 citations


Journal ArticleDOI
16 Dec 1993-Nature
TL;DR: P16 seems to act in a regulatory feedback circuit with CDK4, D-type cyclins and retinoblastoma protein, and inhibits the catalytic activity of theCDK4/cyclin D enzymes.
Abstract: The division cycle of eukaryotic cells is regulated by a family of protein kinases known as the cyclin-dependent kinases (CDKs). The sequential activation of individual members of this family and their consequent phosphorylation of critical substrates promotes orderly progression through the cell cycle. The complexes formed by CDK4 and the D-type cyclins have been strongly implicated in the control of cell proliferation during the G1 phase. CDK4 exists, in part, as a multi-protein complex with a D-type cyclin, proliferating cell nuclear antigen and a protein, p21 (refs 7-9). CDK4 associates separately with a protein of M(r) 16K, particularly in cells lacking a functional retinoblastoma protein. Here we report the isolation of a human p16 complementary DNA and demonstrate that p16 binds to CDK4 and inhibits the catalytic activity of the CDK4/cyclin D enzymes. p16 seems to act in a regulatory feedback circuit with CDK4, D-type cyclins and retinoblastoma protein.

Journal ArticleDOI
16 Dec 1993-Nature
TL;DR: It is found that over expression of p21 inhibits the activity of each member of the cyclin/CDK family, and this results indicate that p21 may be a universal inhibitor of cyclin kinases.
Abstract: Deregulation of cell proliferation is a hallmark of neoplastic transformation. Alteration in growth control pathways must translate into changes in the cell-cycle regulatory machinery, but the mechanism by which this occurs is largely unknown. Compared with normal human fibroblasts, cells transformed with a variety of viral oncoproteins show striking changes in the subunit composition of the cyclin-dependent kinases (CDKs). In normal cells, CDKs exist predominantly in multiple quaternary complexes, each containing a CDK, cyclin, proliferating cell nuclear antigen and the p21 protein. However, in many transformed cells, proliferating cell nuclear antigen and p21 are lost from these multiprotein enzymes. Here we have investigated the significance of this phenomenon by molecular cloning of p21 and in vitro reconstitution of the quaternary cell-cycle kinase complexes. We find that p21 inhibits the activity of each member of the cyclin/CDK family. Furthermore, overexpression of p21 inhibits the proliferation of mammalian cells. Our results indicate that p21 may be a universal inhibitor of cyclin kinases.

Journal ArticleDOI
09 Sep 1993-Nature
TL;DR: In this article, it was shown that the magnetization of the Mn12 cluster is highly anisotropic and the magnetisation relaxation time becomes very long below a temperature of 4 K, giving rise to pronounced hysteresis.
Abstract: MAGNETIC materials of mesoscopic dimensions (a few to many thousands of atoms) may exhibit novel and useful properties such as giant magnetostriction, magnetoresistivity and magnetocaloric effects1–4. Such materials also allow one to study the transition from molecular to bulk-like magnetic behaviour. One approach for preparing mesoscopic magnetic materials is to fragment bulk ferromagnets; a more controllable method is to take a 'bottom-up' approach, using chemistry to grow well defined clusters of metal ions5,6. Lis7 has described a twelve-ion manganese cluster in which eight of the Mn ions are in the +3 oxidation state (spin S=2) and four are in the +4 state (S=3/2). These ions are magnetically coupled to give an S=10 ground state8, giving rise to unusual magnetic relaxation properties8,9. Here we report that the magnetization of the Mn12 cluster is highly anisotropic and that the magnetization relaxation time becomes very long below a temperature of 4 K, giving rise to pronounced hysteresis. This behaviour is not, however, strictly analogous to that of a bulk ferromagnet, in which magnetization hysteresis results from the motion of domain walls. In principle, a bistable magnetic unit of this sort could act as a data storage device.

Journal ArticleDOI
25 Mar 1993-Nature
TL;DR: The existence of numerous SNARE-related proteins, each apparently specific for a single kind of vesicles or target membrane, indicates that NSF and SNAPs may be universal components of a vesicle fusion apparatus common to both constitutive and regulated fusion (including neurotransmitter release), in which the SNAREs may help to ensure vesICLE-to-target specificity.
Abstract: The N-ethylmaleimide-sensitive fusion protein (NSF) and the soluble NSF attachment proteins (SNAPs) appear to be essential components of the intracellular membrane fusion apparatus. An affinity purification procedure based on the natural binding of these proteins to their targets was used to isolate SNAP receptors (SNAREs) from bovine brain. Remarkably, the four principal proteins isolated were all proteins associated with the synapse, with one type located in the synaptic vesicle and another in the plasma membrane, suggesting a simple mechanism for vesicle docking. The existence of numerous SNARE-related proteins, each apparently specific for a single kind of vesicle or target membrane, indicates that NSF and SNAPs may be universal components of a vesicle fusion apparatus common to both constitutive and regulated fusion (including neurotransmitter release), in which the SNAREs may help to ensure vesicle-to-target specificity.

Journal ArticleDOI
22 Jul 1993-Nature
TL;DR: A new tectonic model, postulating the growth of giant subduction-accretion complexes along a single magmatic arc now found contorted between Siberia and Baltica, shows that Asia grew by 5.3 million square kilometres during the Palaeozoic era as mentioned in this paper.
Abstract: A new tectonic model, postulating the growth of giant subduction-accretion complexes along a single magmatic arc now found contorted between Siberia and Baltica, shows that Asia grew by 5.3 million square kilometres during the Palaeozoic era. Half of this growth may have occurred by the addition of juvenile crust newly extracted from the mantle, supporting models of considerable continental growth continuing throughout the Phanerozoic eon.

Journal ArticleDOI
02 Dec 1993-Nature
TL;DR: Finding that mutations in the gene daf-2 can cause fertile, active, adult Caenorhabditis elegans hermaphrodites to live more than twice as long as wild type raises the possibility that the longevity of the dauer is not simply a consequence of its arrested growth, but instead results from a regulated lifespan extension mechanism that can be uncoupled from other aspects of dauer formation.
Abstract: We have found that mutations in the gene daf-2 can cause fertile, active, adult Caenorhabditis elegans hermaphrodites to live more than twice as long as wild type. This lifespan extension, the largest yet reported in any organism, requires the activity of a second gene, daf-16. Both genes also regulate formation of the dauer larva, a developmentally arrested larval form that is induced by crowding and starvation and is very long-lived. Our findings raise the possibility that the longevity of the dauer is not simply a consequence of its arrested growth, but instead results from a regulated lifespan extension mechanism that can be uncoupled from other aspects of dauer formation. daf-2 and daf-16 provide entry points into understanding how lifespan can be extended.

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: It is demonstrated that immature thymocytes lacking p53 die normally when exposed to compounds that may mimic T-cell receptor engagement and to glucocorticoids but are resistant to the lethal effects of ionizing radiation.
Abstract: The p53 tumour suppressor gene is the most widely mutated gene in human tumorigenesis. p53 encodes a transcriptional activator whose targets may include genes that regulate genomic stability, the cellular response to DNA damage, and cell-cycle progression. Introduction of wild-type p53 into cell lines that have lost endogenous p53 function can cause growth arrest or induce a process of cell death known as apoptosis. During normal development, self-reactive thymocytes undergo negative selection by apoptosis, which can also be induced in immature thymocytes by other stimuli, including exposure to glucocorticoids and ionizing radiation. Although normal negative selection involves signalling through the T-cell receptor, the induction of apoptosis by other stimuli is poorly understood. We have investigated the requirement for p53 during apoptosis in mouse thymocytes. We report here that immature thymocytes lacking p53 die normally when exposed to compounds that may mimic T-cell receptor engagement and to glucocorticoids but are resistant to the lethal effects of ionizing radiation. These results demonstrate that p53 is required for radiation-induced cell death in the thymus but is not necessary for all forms of apoptosis.

Journal ArticleDOI
03 Jun 1993-Nature
TL;DR: The presence of considerable amounts of IgG-like material of Mr 100K in the serum of the camel, which is composed of heavy-chain dimers and devoid of light chains, but nevertheless have an extensive antigen-binding repertoire, opens new perspectives in the engineering of antibodies.
Abstract: Random association of VL and VH repertoires contributes considerably to antibody diversity. The diversity and the affinity are then increased by hypermutation in B cells located in germinal centres. Except in the case of 'heavy chain' disease, naturally occurring heavy-chain antibodies have not been described, although antigen binding has been demonstrated for separated heavy chains or cloned VH domains. Here we investigate the presence of considerable amounts of IgG-like material of M(r) 100K in the serum of the camel (Camelus dromedarius). These molecules are composed of heavy-chain dimers and are devoid of light chains, but nevertheless have an extensive antigen-binding repertoire, a finding that calls into question the role of light chains in the camel. Camel heavy-chain IgGs lack CH1, which in one IgG class might be structurally replaced by an extended hinge. Heavy-chain IgGs are a feature of all camelids. These findings open new perspectives in the engineering of antibodies.

Journal ArticleDOI
10 Jun 1993-Nature
TL;DR: It is shown that 12 per cent of colorectal carcinomas carry somatic deletions in poly(dA . dT) sequences and other simple repeats, and it is concluded that these mutations reflect a previously undescribed form of carcinogenesis in the colon mediated by a mutation in a DNA replication factor resulting in reduced fidelity for replication or repair (a 'mutator mutation').
Abstract: Spontaneous errors in DNA replication have been suggested to play a significant role in neoplastic transformation and to explain the chromosomal alterations seen in cancer cells. A defective replication factor could increase the mutation rate in clonal variants arising during tumour progression, but despite intensive efforts, increases in tumour cell mutation rates have not been unambiguously shown. Here we use an unbiased genomic fingerprinting technique to show that 12 per cent of colorectal carcinomas carry somatic deletions in poly(dA.dT) sequences and other simple repeats. We estimate that cells from these tumours can carry more than 100,000 such mutations. Only tumours with affected poly(dA.dT) sequences carry mutations in the other simple repeats examined, and such mutations can be found in all neoplastic regions of multiple tumours from the same patient, including adenomas. Tumours with these mutations show distinctive genotypic and phenotypic features. We conclude that these mutations reflect a previously undescribed form of carcinogenesis in the colon (predisposition to which may be inherited) mediated by a mutation in a DNA replication factor resulting in reduced fidelity for replication or repair (a 'mutator mutation').

Journal ArticleDOI
09 Dec 1993-Nature
TL;DR: The cloning of complementary DNA encoding an extracellular Ca2+ -sensing receptor from bovine parathyroid is reported with pharmacological and functional properties nearly identical to those of the native receptor.
Abstract: Maintenance of a stable internal environment within complex organisms requires specialized cells that sense changes in the extracellular concentration of specific ions (such as Ca2+). Although the molecular nature of such ion sensors is unknown, parathyroid cells possess a cell surface Ca(2+)-sensing mechanism that also recognizes trivalent and polyvalent cations (such as neomycin) and couples by changes in phosphoinositide turnover and cytosolic Ca2+ to regulation of parathyroid hormone secretion. The latter restores normocalcaemia by acting on kidney and bone. We now report the cloning of complementary DNA encoding an extracellular Ca(2+)-sensing receptor from bovine parathyroid with pharmacological and functional properties nearly identical to those of the native receptor. The novel approximately 120K receptor shares limited similarity with the metabotropic glutamate receptors and features a large extracellular domain, containing clusters of acidic amino-acid residues possibly involved in calcium binding, coupled to a seven-membrane-spanning domain like those in the G-protein-coupled receptor superfamily.

Journal ArticleDOI
12 Aug 1993-Nature
TL;DR: It is reported that NO.-mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O.-2), apparently leading to formation of peroxynitrite (ONOO−), and not by NO.
Abstract: Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage.
Abstract: Death by apoptosis is characteristic of cells undergoing deletion during embryonic development, T- and B-cell maturation and endocrine-induced atrophy. Apoptosis can be initiated by various agents and may be a result of expression of the oncosuppressor gene p53 (refs 6-8). Here we study the dependence of apoptosis on p53 expression in cells from the thymus cortex. Short-term thymocyte cultures were prepared from mice constitutively heterozygous or homozygous for a deletion in the p53 gene introduced into the germ line after gene targeting. Wild-type thymocytes readily undergo apoptosis after treatment with ionizing radiation, the glucocorticoid methylprednisolone, or etoposide (an inhibitor of topoisomerase II), or after Ca(2+)-dependent activation by phorbol ester and a calcium ionophore. In contrast, homozygous null p53 thymocytes are resistant to induction of apoptosis by radiation or etoposide, but retain normal sensitivity to glucocorticoid and calcium. The time-dependent apoptosis that occurs in untreated cultures is unaffected by p53 status. Cells heterozygous for p53 deletion are partially resistant to radiation and etoposide. Our results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage.

Journal ArticleDOI
07 Oct 1993-Nature
TL;DR: It is reported here that PNA containing all four natural nucleobases hybridizes to complementary oligonucleotides obeying the Watson–Crick base-pairing rules, and thus is a true DNA mimic in terms of base- Pair recognition.
Abstract: DNA analogues are currently being intensely investigated owing to their potential as gene-targeted drugs. Furthermore, their properties and interaction with DNA and RNA could provide a better understanding of the structural features of natural DNA that determine its unique chemical, biological and genetic properties. We recently designed a DNA analogue, PNA, in which the backbone is structurally homomorphous with the deoxyribose backbone and consists of N-(2-aminoethyl)glycine units to which the nucleobases are attached. We showed that PNA oligomers containing solely thymine and cytosine can hybridize to complementary oligonucleotides, presumably by forming Watson-Crick-Hoogsteen (PNA)2-DNA triplexes, which are much more stable than the corresponding DNA-DNA duplexes, and bind to double-stranded DNA by strand displacement. We report here that PNA containing all four natural nucleobases hybridizes to complementary oligonucleotides obeying the Watson-Crick base-pairing rules, and thus is a true DNA mimic in terms of base-pair recognition.

Journal ArticleDOI
01 Jul 1993-Nature
TL;DR: A dimer of the class II αβ heterodimers is seen in the crystal forms of HLA-DR1, suggesting class II HLA dimerization as a mechanism for initiating the cytoplasmic signalling events in T-cell activation.
Abstract: The three-dimensional structure of the class II histocompatibility glycoprotein HLA-DR1 from human B-cell membranes has been determined by X-ray crystallography and is similar to that of class I HLA. Peptides are bound in an extended conformation that projects from both ends of an 'open-ended' antigen-binding groove. A prominent non-polar pocket into which an 'anchoring' peptide side chain fits is near one end of the binding groove. A dimer of the class II alpha beta heterodimers is seen in the crystal forms of HLA-DR1, suggesting class II HLA dimerization as a mechanism for initiating the cytoplasmic signalling events in T-cell activation.

Journal ArticleDOI
25 Mar 1993-Nature
TL;DR: Comparisons of distribution of cerebral blood flow in these conditions localized the phonological store to the left supramarginal gyrus whereas the subvocal rehearsal system was associated with Broca's area, the first demonstration of the normal anatomy of the components of the 'articulatory loop'.
Abstract: By repeating words 'in our head', verbal material (such as telephone numbers) can be kept in working memory almost indefinitely. This 'articulatory loop' includes a subvocal rehearsal system and a phonological store. Little is known about neural correlates of this model of verbal short-term memory. We therefore measured regional cerebral blood flow, an index of neuronal activity, in volunteers performing a task engaging both components of the articulatory loop (short-term memory for letters) and a task which engages only the subvocal rehearsal system (rhyming judgement for letters). Stimuli were presented visually and the subjects did not speak. We report here that comparisons of distribution of cerebral blood flow in these conditions localized the phonological store to the left supramarginal gyrus whereas the subvocal rehearsal system was associated with Broca's area. This is, to our knowledge, the first demonstration of the normal anatomy of the components of the 'articulatory loop'.

Journal ArticleDOI
09 Sep 1993-Nature
TL;DR: In this article, the authors present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard-Oeschger events.
Abstract: OXYGEN isotope measurements in Greenland ice demonstrate that a series of rapid warm-cold oscillations—called Dansgaard–Oeschger events—punctuated the last glaciation1. Here we present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard–Oeschger events2,3. Moreover, we show that between 20 and 80 kyr ago, the shifts in ocean-atmosphere temperature are bundled into cooling cycles, lasting on average 10 to 15 kyr, with asymmetrical saw-tooth shapes. Each cycle culminated in an enormous discharge of icebergs into the North Atlantic (a 'Hein-rich event'4,5), followed by an abrupt shift to a warmer climate. These cycles document a previously unrecognized link between ice sheet behaviour and ocean–atmosphere temperature changes. An important question that remains to be resolved is whether the cycles are driven by external factors, such as orbital forcing, or by inter-nal ice-sheet dynamics.

Journal ArticleDOI
25 Nov 1993-Nature
TL;DR: It is demonstrated that a normal level of DNA methylation is required for controlling differential expression of the paternal and maternal alleles of imprinted genes in mutant mice that are deficient in DNA methyltransferase activity.
Abstract: The paternal and maternal genomes are not equivalent and both are required for mammalian development. The difference between the parental genomes is believed to be due to gamete-specific differential modification, a process known as genomic imprinting. The study of transgene methylation has shown that methylation patterns can be inherited in a parent-of-origin-specific manner, suggesting that DNA methylation may play a role in genomic imprinting. The functional significance of DNA methylation in genomic imprinting was strengthened by the recent finding that CpG islands (or sites) in three imprinted genes, H19, insulin-like growth factor 2 (Igf-2), and Igf-2 receptor (Igf-2r), are differentially methylated depending on their parental origin. We have examined the expression of these three imprinted genes in mutant mice that are deficient in DNA methyltransferase activity. We report here that expression of all three genes was affected in mutant embryos: the normally silent paternal allele of the H19 gene was activated, whereas the normally active paternal allele of the Igf-2 gene and the active maternal allele of the Igf-2r gene were repressed. Our results demonstrate that a normal level of DNA methylation is required for controlling differential expression of the paternal and maternal alleles of imprinted genes.

Journal ArticleDOI
28 Oct 1993-Nature
TL;DR: It is proposed that CBP may participate in cAMP-regulated gene expression by interacting with the activated phosphorylated form of CREB, which is activated as a result of phosphorylation by protein kinase A7.
Abstract: Cyclic AMP-regulated gene expression frequently involves a DNA element known as the cAMP-regulated enhancer (CRE). Many transcription factors bind to this element, including the protein CREB, which is activated as a result of phosphorylation by protein kinase A. This modification stimulates interaction with one or more of the general transcription factors or, alternatively, allows recruitment of a co-activator. Here we report that CREB phosphorylated by protein kinase A binds specifically to a nuclear protein of M(r) 265K which we term CBP (for CREB-binding protein). Fusion of a heterologous DNA-binding domain to the amino terminus of CBP enables the chimaeric protein to function as a protein kinase A-regulated transcriptional activator. We propose that CBP may participate in cAMP-regulated gene expression by interacting with the activated phosphorylated form of CREB.

Journal ArticleDOI
08 Jul 1993-Nature
TL;DR: In this article, the authors used Synthetic Aperture Radar (SAR) interferometry to capture the movements produced by the 1992 earthquake in Landers, California, by combining topographic information with SAR images obtained by the ERS-1 satellite before and after the earthquake.
Abstract: GEODETIC data, obtained by ground- or space-based techniques, can be used to infer the distribution of slip on a fault that has ruptured in an earthquake. Although most geodetic techniques require a surveyed network to be in place before the earthquake1–3, satellite images, when collected at regular intervals, can capture co-seismic displacements without advance knowledge of the earthquake's location. Synthetic aperture radar (SAR) interferometry, first introduced4 in 1974 for topographic mapping5–8 can also be used to detect changes in the ground surface, by removing the signal from the topography9,10. Here we use SAR interferometry to capture the movements produced by the 1992 earthquake in Landers, California11. We construct an interferogram by combining topographic information with SAR images obtained by the ERS-1 satellite before and after the earthquake. The observed changes in range from the ground surface to the satellite agree well with the slip measured in the field, with the displacements measured by surveying, and with the results of an elastic dislocation model. As a geodetic tool, the SAR interferogram provides a denser spatial sampling (100 m per pixel) than surveying methods1–3 and a better precision (∼3 cm) than previous space imaging techniques12,13.

Journal ArticleDOI
26 Aug 1993-Nature
TL;DR: The findings suggest that the Fas antigen is important in programmed cell death in the liver, and may be involved in fulminant hepatitis in some cases.
Abstract: DURING mammalian development, many cells are programmed to die1,2 most mediated by apoptosis3. The Fas antigen4 coded by the structural gene for mouse lymphoproliferation mutation (lpr)5,6, is a cell surface protein belonging to the tumour necrosis factor/nerve growth factor receptor family7,8, and mediates apoptosis7. The Fas antigen messenger RNA is expressed in the thymus, liver, heart, lung and ovary8. We prepared a monoclonal antibody against mouse Fas antigen, which immunoprecipitated the antigen (Mr 45K) and had cytolytic activity against cell lines expressing mouse Fas antigen. We report here that staining of mouse thymocytes with the antibody indicated that thymocytes from the wild-type and lprcg mice expressed the Fas antigen, whereas little expression of the Fas antigen was found in lpr mice. Intraperitoneal administration of the anti-Fas antibody into mice rapidly killed the wild-type mice but neither lpr nor lprcg mice. Biochemical, histological and electron microscope analyses indicated severe damage of the liver by apoptosis. These findings suggest that the Fas antigen is important in programmed cell death in the liver, and may be involved in fulminant hepatitis in some cases.