scispace - formally typeset
Search or ask a question

Showing papers in "Nature in 1997"


Journal ArticleDOI
15 May 1997-Nature
TL;DR: In this paper, the authors have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations, for the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US $33 trillion per year.
Abstract: The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earth's life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US$33 trillion per year. Because of the nature of the uncertainties, this must be considered a minimum estimate. Global gross national product total is around US$18 trillion per year.

18,139 citations


Journal ArticleDOI
05 Jun 1997-Nature
TL;DR: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer that function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
Abstract: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer. It is proposed that these rafts function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.

9,436 citations


Journal ArticleDOI
22 Oct 1997-Nature
TL;DR: The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
Abstract: Capsaicin, the main pungent ingredient in 'hot' chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo

8,186 citations


Journal ArticleDOI
18 Sep 1997-Nature
TL;DR: The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it.
Abstract: The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it. Both histone/histone and histone/DNA interactions depend on the histone fold domains and additional, well ordered structure elements extending from this motif. Histone amino-terminal tails pass over and between the gyres of the DNA superhelix to contact neighbouring particles. The lack of uniformity between multiple histone/DNA-binding sites causes the DNA to deviate from ideal superhelix geometry.

7,841 citations


Journal ArticleDOI
28 Aug 1997-Nature
TL;DR: Strong staining of Lewy bodies from idiopathic Parkinson's disease with antibodies for α-synuclein, a presynaptic protein of unknown function which is mutated in some familial cases of the disease, indicates that the LewY bodies from these two diseases may have identical compositions.
Abstract: Lewy bodies, a defining pathological characteristic of Parkinson's disease and dementia with Lewy bodies (DLB)1,2,3,4, constitute the second most common nerve cell pathology, after the neurofibrillary lesions of Alzheimer's disease. Their formation may cause neurodegeneration, but their biochemical composition is unknown. Neurofilaments and ubiquitin are present5,6,7,8, but it is unclear whether they are major components of the filamentous material of the Lewy body9,10. Here we describe strong staining of Lewy bodies from idiopathic Parkinson's disease with antibodies for α-synuclein, a presynaptic protein of unknown function which is mutated in some familial cases of the disease11. α-Synuclein may be the main component of the Lewy body in Parkinson's disease. We also show staining for α-synuclein of Lewy bodies from DLB, indicating that the Lewy bodies from these two diseases may have identical compositions.

6,923 citations


Journal ArticleDOI
Werner Risau1
17 Apr 1997-Nature
TL;DR: Understanding of the molecular basis underlying angiogenesis, particularly from the study of mice lacking some of the signalling systems involved, has greatly improved, and may suggest new approaches for treating conditions such as cancer that depend onAngiogenesis.
Abstract: After the developing embryo has formed a primary vascular plexus by a process termed vasculogenesis, further blood vessels are generated by both sprouting and non-sprouting angiogenesis, which are progressively pruned and remodelled into a functional adult circulatory system. Recent results, particularly from the study of mice lacking some of the signalling systems involved, have greatly improved our understanding of the molecular basis underlying these events, and may suggest new approaches for treating conditions such as cancer that depend on angiogenesis.

5,793 citations


Journal ArticleDOI
24 Jul 1997-Nature
TL;DR: The cloning and characterization of a human homologue of the Drosophila toll protein (Toll) is reported, which has been shown to induce the innate immune response in adult Dosophila.
Abstract: . Like Drosophila Toll, human Toll is a type I transmembrane protein with an extracellular domain consisting of a leucine-rich repeat (LRR) domain, and a cytoplasmic domain homologous to the cytoplasmic domain of the human interleukin (IL)-1 receptor. Both Drosophila Toll and the IL-1 receptor are known to signal through the NF-kB pathway 5-7 . We show that a constitutively active mutant of human Toll transfected into human cell lines can induce the activation of NF-kB and the expression of NF-kB-controlled genes for the inflammatory cyto- kines IL-1, IL-6 and IL-8, as well as the expression of the co- stimulatory molecule B7.1, which is required for the activation of naive T cells. The Toll protein controls dorsal-ventral patterning in Drosophila embryos and activates the transcription factor Dorsal upon binding to its ligand Spatzle 8 . In adult Drosophila, the Toll/Dorsal signalling pathway participates in an anti-fungal immune response 2 . Signal- ling through Toll parallels the signalling pathway induced by the IL- 1 receptor (IL-1R) in mammalian cells: IL-1R signals through the NF-kB pathway, and Dorsal and its inhibitor Cactus are homo- logous to NF-kB and I-kB proteins, respectively 5,6 . Moreover, the cytoplasmic domain of Drosophila Toll is homologous to the cytoplasmic domain of IL-1R (ref. 9). Remarkably, the tobacco- virus-resistance gene that encodes N-protein is also similar to Toll in that it contains both a Toll signalling domain and an LRR domain 10 . It thus appears that the immune-response system mediated by Toll represents an ancient host defence mechanism 6 (Fig. 1). To inves- tigate the possibility that this pathway has been retained in the immune system of vertebrates, we used sequence and pattern searches 11 of the expressed-sequence tag (EST) database at the fragment was used to probe northern blots containing poly(A) + RNA from several organs. Most organs expressed two mRNA species: one of ,5 kilobases (kb) was predominant in most tissues except peripheral blood leukocytes (PBL), and corresponded to the length of the cDNA that we cloned. The lower band was ,4 kb long and this band was predominant in the PBL. The 4-kb band was not detectable in kidney, and liver did not contain any mRNA at all (Fig. 3). We also tested different mouse and human cell lines for expression of hToll mRNA by using PCR with reverse transcription (RT-PCR). We found mRNA for hToll in monocytes, macrophages, dendritic cells, g/d T cells, Th1 and Th2 a/b T cells, a small intestinal epithelial cell line, and a B-cell line (data not shown). The hToll gene is expressed most strongly in spleen and PBL (Fig. 3); its expression in other tissues may be due to the presence of macrophages and dendritic cells, in which it could act as an early-warning system for infection. Alternatively, hToll may be widely expressed because hToll signals through the conserved NF-kB pathway (see below) and NF- kB is a ubiquitous transcription factor. To characterize hToll functions and see whether it can induce transcription of immune response genes like dToll, we generated a dominant-positive mutant of hToll because the natural ligand of hToll is unknown. To produce a constitutively active mutant of hToll, we made use of genetic information from dToll: analysis of ventra- lizing mutants in Drosophila embryos had identified the function of the ectodomain C-flanking cysteine-rich region in dToll 16 as control- ling the activity of dToll in signal transduction. In three dominant

5,625 citations


Journal ArticleDOI
23 Oct 1997-Nature
TL;DR: In this article, the authors ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior.
Abstract: When a spilled drop of coffee dries on a solid surface, it leaves a dense, ring-like deposit along the perimeter (Fig 1a) The coffee—initially dispersed over the entire drop—becomes concentrated into a tiny fraction of it Such ring deposits are common wherever drops containing dispersed solids evaporate on a surface, and they influence processes such as printing, washing and coating1,2,3,4,5 Ring deposits also provide a potential means to write or deposit a fine pattern onto a surface Here we ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior The resulting outward flow can carry virtually all the dispersed material to the edge This mechanism predicts a distinctive power-law growth of the ring mass with time—a law independent of the particular substrate, carrier fluid or deposited solids We have verified this law by microscopic observations of colloidal fluids

5,553 citations


Journal ArticleDOI
27 Feb 1997-Nature
TL;DR: The birth of lambs from differentiated fetal and adult cells confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term and reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.
Abstract: Fertilization of mammalian eggs is followed by successive cell divisions and progressive differentiation, first into the early embryo and subsequently into all of the cell types that make up the adult animal. Transfer of a single nucleus at a specific stage of development, to an enucleated unfertilized egg, provided an opportunity to investigate whether cellular differentiation to that stage involved irreversible genetic modification. The first offspring to develop from a differentiated cell were born after nuclear transfer from an embryo-derived cell line that had been induced to become quiescent. Using the same procedure, we now report the birth of live lambs from three new cell populations established from adult mammary gland, fetus and embryo. The fact that a lamb was derived from an adult cell confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term. The birth of lambs from differentiated fetal and adult cells also reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.

4,721 citations


Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is proposed that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.
Abstract: The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins. The Mdm2 oncoprotein is a potent inhibitor of p53. Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes and to exert antiproliferative effects. On the other hand, p53 activates the expression of the mdm2 gene in an autoregulatory feedback loop. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.

4,311 citations


Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: In this article, the authors demonstrated the feasibility of quantum teleportation over arbitrary distances of the state of a quantum system by using a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon.
Abstract: Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

Journal ArticleDOI
01 May 1997-Nature
TL;DR: Results suggest that GDF-8 functions specifically as a negative regulator of skeletal muscle growth, which is significantly larger than wild-type animals and show a large and widespread increase in skeletal muscle mass.
Abstract: The transforming growth factor-beta (TGF-beta) superfamily encompasses a large group of growth and differentiation factors playing important roles in regulating embryonic development and in maintaining tissue homeostasis in adult animals. Using degenerate polymerase chain reaction, we have identified a new murine TGF-beta family member, growth/differentiation factor-8 (GDF-8), which is expressed specifically in developing and adult skeletal muscle. During early stages of embryogenesis, GDF-8 expression is restricted to the myotome compartment of developing somites. At later stages and in adult animals, GDF-8 is expressed in many different muscles throughout the body. To determine the biological function of GDF-8, we disrupted the GDF-8 gene by gene targeting in mice. GDF-8 null animals are significantly larger than wild-type animals and show a large and widespread increase in skeletal muscle mass. Individual muscles of mutant animals weigh 2-3 times more than those of wild-type animals, and the increase in mass appears to result from a combination of muscle cell hyperplasia and hypertrophy. These results suggest that GDF-8 functions specifically as a negative regulator of skeletal muscle growth.

Journal ArticleDOI
16 Oct 1997-Nature
TL;DR: It is shown that chronic activation of both human and murine CD4+T cells in the presence of interleukin (IL)-10 gives rise to CD4-T-cell clones with low proliferative capacity, producing high levels ofIL-10, low levels of IL-2 and no IL-4.
Abstract: Induction and maintenance of peripheral tolerance are important mechanisms to maintain the balance of the immune system. In addition to the deletion of T cells and their failure to respond in certain circumstances, active suppression mediated by T cells or T-cell factors has been proposed as a mechanism for maintaining peripheral tolerance. However, the inability to isolate and clone regulatory T cells involved in antigen-specific inhibition of immune responses has made it difficult to understand the mechanisms underlying such active suppression. Here we show that chronic activation of both human and murine CD4+ T cells in the presence of interleukin (IL)-10 gives rise to CD4+ T-cell clones with low proliferative capacity, producing high levels of IL-10, low levels of IL-2 and no IL-4. These antigen-specific T-cell clones suppress the proliferation of CD4+ T cells in response to antigen, and prevent colitis induced in SCID mice by pathogenic CD4+CD45RB(high) splenic T cells. Thus IL-10 drives the generation of a CD4+ T-cell subset, designated T regulatory cells 1 (Tr1), which suppresses antigen-specific immune responses and actively downregulates a pathological immune response in vivo.

Journal ArticleDOI
F. Kunst1, Naotake Ogasawara2, Ivan Moszer1, Alessandra M. Albertini3  +151 moreInstitutions (30)
20 Nov 1997-Nature
TL;DR: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Abstract: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.

Journal ArticleDOI
20 Nov 1997-Nature
TL;DR: It is demonstrated that it is possible to retain information about only four colours or orientations in visual working memory at one time, but it is also possible to retaining both the colour and the orientation of four objects, indicating that visual workingMemory stores integrated objects rather than individual features.
Abstract: Short-term memory storage can be divided into separate subsystems for verbal information and visual information, and recent studies have begun to delineate the neural substrates of these working-memory systems. Although the verbal storage system has been well characterized, the storage capacity of visual working memory has not yet been established for simple, suprathreshold features or for conjunctions of features. Here we demonstrate that it is possible to retain information about only four colours or orientations in visual working memory at one time. However, it is also possible to retain both the colour and the orientation of four objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing sixteen individual features to be retained when distributed across four objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features, which places significant constraints on cognitive and neurobiological models of the temporary storage of visual information.

Journal ArticleDOI
04 Dec 1997-Nature
TL;DR: Inhibitory SMADs have been identified that block the activation of these pathway-restricted SMADS that direct transcription to effect the cell's response to TGF-β.
Abstract: The recent identification of the SMAD family of signal transducer proteins has unravelled the mechanisms by which transforming growth factor-beta (TGF-beta) signals from the cell membrane to the nucleus. Pathway-restricted SMADs are phosphorylated by specific cell-surface receptors that have serine/threonine kinase activity, then they oligomerize with the common mediator Smad4 and translocate to the nucleus where they direct transcription to effect the cell's response to TGF-beta. Inhibitory SMADs have been identified that block the activation of these pathway-restricted SMADs.

Journal ArticleDOI
07 Aug 1997-Nature
TL;DR: Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification, and consistent with its restricted niche, it has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity.
Abstract: Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.

Journal ArticleDOI
27 Mar 1997-Nature
TL;DR: In this article, a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs) under conditions that do not induce adsorption within a standard mesoporous activated carbon.
Abstract: Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

Journal ArticleDOI
03 Apr 1997-Nature
TL;DR: It is shown that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages, and that the enriched mice have a larger hippocampal granule cell layer and 15 per cent moregranule cell neurons in the Dentate Gyrus.
Abstract: Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.

Journal ArticleDOI
17 Apr 1997-Nature
TL;DR: In this paper, the authors present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season.
Abstract: Variations in the amplitude and timing of the seasonal cycle of atmospheric CO2 have shown an association with surface air temperature consistent with the hypothesis that warmer temperatures have promoted increases in plant growth during summer1 and/or plant respiration during winter2 in the northern high latitudes. Here we present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season. The regions exhibiting the greatest increase lie between 45°N and 70°N, where marked warming has occurred in the spring time3 due to an early disappearance of snow4. The satellite data are concordant with an increase in the amplitude of the seasonal cycle of atmospheric carbon dioxide exceeding 20% since the early 1970s, and an advance of up to seven days in the timing of the drawdown of CO2 in spring and early summer1. Thus, both the satellite data and the CO2 record indicate that the global carbon cycle has responded to interannual fluctuations in surface air temperature which, although small at the global scale, are regionally highly significant.

Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is shown that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation, which may contribute to the maintenance of low p53 concentrations in normal cells.
Abstract: The tumour-suppressor p53 is a short-lived protein that is maintained at low, often undetectable, levels in normal cells. Stabilization of the protein in response to an activating signal, such as DNA damage, results in a rapid rise in p53 levels and subsequent inhibition of cell growth. Tight regulation of p53 function is critical for normal cell growth and development, and one mechanism by which p53 function is controlled is through interaction with the Mdm2 protein. Mdm2 inhibits p53 cell-cycle arrest and apoptic functions and we show here that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation. Endogenous levels of Mdm2 are sufficient to regulate p53 stability, and overexpression of Mdm2 can reduce the amount of endogenous p53. Because mdm2 is transcriptionally activated by p53, this degradative pathway may contribute to the maintenance of low p53 concentrations in normal cells. Furthermore, mechanisms regulating the Mdm2-induced degradation of p53 may play a role in controlling the extent and duration of the p53 response.

Journal ArticleDOI
16 Oct 1997-Nature
TL;DR: The crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17β-oestradiol, and the selective antagonist raloxifene provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties.
Abstract: Oestrogens are involved in the growth, development and homeostasis of a number of tissues. The physiological effects of these steroids are mediated by a ligand-inducible nuclear transcription factor, the oestrogen receptor (ER). Hormone binding to the ligand-binding domain (LBD) of the ER initiates a series of molecular events culminating in the activation or repression of target genes. Transcriptional regulation arises from the direct interaction of the ER with components of the cellular transcription machinery. Here we report the crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17beta-oestradiol, and the selective antagonist raloxifene, at resolutions of 3.1 and 2.6 A, respectively. The structures provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties. Agonist and antagonist bind at the same site within the core of the LBD but demonstrate different binding modes. In addition, each class of ligand induces a distinct conformation in the transactivation domain of the LBD, providing structural evidence of the mechanism of antagonism.

Journal ArticleDOI
28 Aug 1997-Nature
TL;DR: New fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations are constructed and dubbed ‘cameleons’.
Abstract: Important Ca2+ signals in the cytosol and organelles are often extremely localized and hard to measure. To overcome this problem we have constructed new fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations. We have dubbed these fluorescent indicators 'cameleons'. They consist of tandem fusions of a blue- or cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13, and an enhanced green- or yellow-emitting GFP. Binding of Ca2+ makes calmodulin wrap around the M13 domain, increasing the fluorescence resonance energy transfer (FRET) between the flanking GFPs. Calmodulin mutations can tune the Ca2+ affinities to measure free Ca2+ concentrations in the range 10(-8) to 10(-2) M. We have visualized free Ca2+ dynamics in the cytosol, nucleus and endoplasmic reticulum of single HeLa cells transfected with complementary DNAs encoding chimaeras bearing appropriate localization signals. Ca2+ concentration in the endoplasmic reticulum of individual cells ranged from 60 to 400 microM at rest, and 1 to 50 microM after Ca2+ mobilization. FRET is also an indicator of the reversible intermolecular association of cyan-GFP-labelled calmodulin with yellow-GFP-labelled M13. Thus FRET between GFP mutants can monitor localized Ca2+ signals and protein heterodimerization in individual live cells.

Journal ArticleDOI
31 Jul 1997-Nature
TL;DR: In this paper, the photogeneration of a highly amphiphilic (both hydrophilic and oleophilic) titanium dioxide surface was reported, and the unique character of this surface was ascribed to the microstructured composition of hydrophilicity of the phases, produced by ultraviolet irradiation.
Abstract: The ability to control the surface wettability of solid substrates is important in many situations. Here we report the photogeneration of a highly amphiphilic (both hydrophilic and oleophilic) titanium dioxide surface. The unique character of this surface is ascribed to the microstructured composition of hydrophilic and oleophilic phases, produced by ultraviolet irradiation. The result is a TiO2-coated glass which is antifogging and self-cleaning.

Journal ArticleDOI
06 Nov 1997-Nature
TL;DR: A new gene, termed klotho, has been identified that is involved in the suppression of several ageing phenotypes in the mouse, and may function as part of a signalling pathway that regulates ageing in vivo and morbidity in age-related diseases.
Abstract: A new gene, termed klotho, has been identified that is involved in the suppression of several ageing phenotypes. A defect in klotho gene expression in the mouse results in a syndrome that resembles human ageing, including a short lifespan, infertility, arteriosclerosis, skin atrophy, osteoporosis and emphysema. The gene encodes a membrane protein that shares sequence similarity with the β-glucosidase enzymes. The klotho gene product may function as part of a signalling pathway that regulates ageing in vivo and morbidity in age-related diseases.

Journal ArticleDOI
20 Feb 1997-Nature
TL;DR: The results should facilitate the development of therapeutically useful inhibitors of TNF-α release, and they indicate that an important function of adamalysins may be to shed cell-surface proteins.
Abstract: Mammalian cells proteolytically release (shed) the extracellular domains of many cell-surface proteins. Modification of the cell surface in this way can alter the cell's responsiveness to its environment and release potent soluble regulatory factors. The release of soluble tumour-necrosis factor-alpha (TNF-alpha) from its membrane-bound precursor is one of the most intensively studied shedding events because this inflammatory cytokine is so physiologically important. The inhibition of TNF-alpha release (and many other shedding phenomena) by hydroxamic acid-based inhibitors indicates that one or more metalloproteinases is involved. We have now purified and cloned a metalloproteinase that specifically cleaves precursor TNF-alpha. Inactivation of the gene in mouse cells caused a marked decrease in soluble TNF-alpha production. This enzyme (called the TNF-alpha-converting enzyme, or TACE) is a new member of the family of mammalian adamalysins (or ADAMs), for which no physiological catalytic function has previously been identified. Our results should facilitate the development of therapeutically useful inhibitors of TNF-alpha release, and they indicate that an important function of adamalysins may be to shed cell-surface proteins.

Journal ArticleDOI
31 Jul 1997-Nature
TL;DR: A new metal-ion transporter in the rat, DCT1, which has an unusually broad substrate range that includes Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+ and Pb2+.
Abstract: Metal ions are essential cofactors for a wealth of biological processes, including oxidative phosphorylation, gene regulation and free-radical homeostasis. Failure to maintain appropriate levels of metal ions in humans is a feature of hereditary haemochromatosis, disorders of metal-ion deficiency, and certain neurodegenerative diseases. Despite their pivotal physiological roles, however, there is no molecular information on how metal ions are actively absorbed by mammalian cells. We have now identified a new metal-ion transporter in the rat, DCT1, which has an unusually broad substrate range that includes Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+ and Pb2+. DCT1 mediates active transport that is proton-coupled and depends on the cell membrane potential. It is a 561-amino-acid protein with 12 putative membrane-spanning domains and is ubiquitously expressed, most notably in the proximal duodenum. DCT1 is upregulated by dietary iron deficiency, and may represent a key mediator of intestinal iron absorption. DCT1 is a member of the 'natural-resistance-associated macrophage protein' (Nramp) family and thus its properties provide insight into how these proteins confer resistance to pathogens.

Journal ArticleDOI
26 Jun 1997-Nature
TL;DR: The severe obesity found in two severely obese children who are members of the same highly consanguineous pedigree provides the first genetic evidence that leptin is an important regulator of energy balance in humans.
Abstract: The extreme obesity of the obese (ob/ob) mouse is attributable to mutations in the gene encoding leptin, an adipocyte-specific secreted protein which has profound effects on appetite and energy expenditure We know of no equivalent evidence regarding leptin's role in the control of fat mass in humans We have examined two severely obese children who are members of the same highly consanguineous pedigree Their serum leptin levels were very low despite their markedly elevated fat mass and, in both, a homozygous frame-shift mutation involving the deletion of a single guanine nucleotide in codon 133 of the gene for leptin was found The severe obesity found in these congenitally leptin-deficient subjects provides the first genetic evidence that leptin is an important regulator of energy balance in humans

Journal ArticleDOI
30 Oct 1997-Nature
TL;DR: Pyridine derivative Y-27632 consistently suppresses Rho-induced, p160ROCK-mediated formation of stress fibres in cultured cells and dramatically corrects hypertension in several hypertensive rat models, suggesting that compounds that inhibit this process might be useful therapeutically.
Abstract: Abnormal smooth-muscle contractility may be a major cause of disease states such as hypertension, and a smooth-muscle relaxant that modulates this process would be useful therapeutically. Smooth-muscle contraction is regulated by the cytosolic Ca2+ concentration and by the Ca2+ sensitivity of myofilaments: the former activates myosin light-chain kinase and the latter is achieved partly by inhibition of myosin phosphatase. The small GTPase Rho and its target, Rho-associated kinase, participate in this latter mechanism in vitro, but their participation has not been demonstrated in intact muscles. Here we show that a pyridine derivative, Y-27632, selectively inhibits smooth-muscle contraction by inhibiting Ca2+ sensitization. We identified the Y-27632 target as a Rho-associated protein kinase, p160ROCK. Y-27632 consistently suppresses Rho-induced, p160ROCK-mediated formation of stress fibres in cultured cells and dramatically corrects hypertension in several hypertensive rat models. Our findings indicate that p160ROCK-mediated Ca2+ sensitization is involved in the pathophysiology of hypertension and suggest that compounds that inhibit this process might be useful therapeutically.

Journal ArticleDOI
13 Mar 1997-Nature
TL;DR: In this article, the authors describe the photonic bandgap as a periodicity in dielectric constant, which can create a range of 'forbidden' frequencies called a photonic Bandgap.
Abstract: Photonic crystals are materials patterned with a periodicity in dielectric constant, which can create a range of 'forbidden' frequencies called a photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. This provides the opportunity to shape and mould the flow of light for photonic information technology.