scispace - formally typeset

Showing papers in "Nature in 1998"


Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

35,972 citations


Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

14,583 citations


Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis and the realization that these cells are a powerful tool for manipulating the immune system is realized.
Abstract: B and T lymphocytes are the mediators of immunity, but their function is under the control of dendritic cells. Dendritic cells in the periphery capture and process antigens, express lymphocyte co-stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate immune responses. They not only activate lymphocytes, they also tolerize T cells to antigens that are innate to the body (self-antigens), thereby minimizing autoimmune reactions. Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis. With knowledge comes the realization that these cells are a powerful tool for manipulating the immune system.

14,094 citations


Journal ArticleDOI
11 Jun 1998-Nature
TL;DR: The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve the understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions.
Abstract: Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.

7,464 citations


Journal ArticleDOI
12 Feb 1998-Nature
TL;DR: In this article, the optical properties of submicrometre cylindrical cavities in metallic films were explored and it was shown that arrays of such holes display highly unusual zero-order transmission spectra at wavelengths larger than the array period, beyond which no diffraction occurs.
Abstract: The desire to use and control photons in a manner analogous to the control of electrons in solids has inspired great interest in such topics as the localization of light, microcavity quantum electrodynamics and near-field optics1,2,3,4,5,6. A fundamental constraint in manipulating light is the extremely low transmittivity of apertures smaller than the wavelength of the incident photon. While exploring the optical properties of submicrometre cylindrical cavities in metallic films, we have found that arrays of such holes display highly unusual zero-order transmission spectra (where the incident and detected light are collinear) at wavelengths larger than the array period, beyond which no diffraction occurs. In particular, sharp peaks in transmission are observed at wavelengths as large as ten times the diameter of the cylinders. At these maxima the transmission efficiency can exceed unity (when normalized to the area of the holes), which is orders of magnitude greater than predicted by standard aperture theory. Our experiments provide evidence that these unusual optical properties are due to the coupling of light with plasmons — electronic excitations — on the surface of the periodically patterned metal film. Measurements of transmission as a function of the incident light angle result in a photonic band diagram. These findings may find application in novel photonic devices.

7,135 citations


Journal ArticleDOI
10 Sep 1998-Nature
TL;DR: In this article, a host material doped with the phosphorescent dye PtOEP (PtOEP II) was used to achieve high energy transfer from both singlet and triplet states.
Abstract: The efficiency of electroluminescent organic light-emitting devices1,2 can be improved by the introduction3 of a fluorescent dye. Energy transfer from the host to the dye occurs via excitons, but only the singlet spin states induce fluorescent emission; these represent a small fraction (about 25%) of the total excited-state population (the remainder are triplet states). Phosphorescent dyes, however, offer a means of achieving improved light-emission efficiencies, as emission may result from both singlet and triplet states. Here we report high-efficiency (≳90%) energy transfer from both singlet and triplet states, in a host material doped with the phosphorescent dye 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II) (PtOEP). Our doped electroluminescent devices generate saturated red emission with peak external and internal quantum efficiencies of 4% and 23%, respectively. The luminescent efficiencies attainable with phosphorescent dyes may lead to new applications for organic materials. Moreover, our work establishes the utility of PtOEP as a probe of triplet behaviour and energy transfer in organic solid-state systems.

6,544 citations


Journal ArticleDOI
22 Oct 1998-Nature
TL;DR: The role of leptin in the control of body weight and its relevance to the pathogenesis of obesity are reviewed.
Abstract: The assimilation, storage and use of energy from nutrients constitute a homeostatic system that is essential for life In vertebrates, the ability to store sufficient quantities of energy-dense triglyceride in adipose tissue allows survival during the frequent periods of food deprivation encountered during evolution However, the presence of excess adipose tissue can be maladaptive A complex physiological system has evolved to regulate fuel stores and energy balance at an optimum level Leptin, a hormone secreted by adipose tissue, and its receptor are integral components of this system Leptin also signals nutritional status to several other physiological systems and modulates their function Here we review the role of leptin in the control of body weight and its relevance to the pathogenesis of obesity

5,151 citations


Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,147 citations


Journal ArticleDOI
09 Apr 1998-Nature
TL;DR: Mutations in the newly identified gene appear to be responsible for the pathogenesis of Autosomal recessive juvenile parkinsonism, and the protein product is named ‘Parkin’.
Abstract: Parkinson's disease is a common neurodegenerative disease with complex clinical features1. Autosomal recessive juvenile parkinsonism (AR-JP)2,3 maps to the long arm of chromosome 6 (6q25.2-q27) and is linked strongly to the markers D6S305 and D6S253 (ref. 4); the former is deleted in one Japanese AR-JP patient5. By positional cloning within this microdeletion, we have now isolated a complementary DNA clone of 2,960 base pairs with a 1,395-base-pair open reading frame, encoding a protein of 465 amino acids with moderate similarity to ubiquitin at the amino terminus and a RING-finger motif at the carboxy terminus. The gene spans more than 500 kilobases and has 12 exons, five of which (exons 3–7) are deleted in the patient. Four other AR-JP patients from three unrelated families have a deletion affecting exon 4 alone. A 4.5-kilobase transcript that is expressed in many human tissues but is abundant in the brain, including the substantia nigra, is shorter in brain tissue from one of the groups of exon-4-deleted patients. Mutations in the newly identified gene appear to be responsible for the pathogenesis of AR-JP, and we have therefore named the protein product ‘Parkin’.

4,613 citations


Journal ArticleDOI
17 Dec 1998-Nature
TL;DR: There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels, and recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
Abstract: Whether and how human tumours are genetically unstable has been debated for decades. There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels. In a small subset of tumours, the instability is observed at the nucleotide level and results in base substitutions or deletions or insertions of a few nucleotides. In most other cancers, the instability is observed at the chromosome level, resulting in losses and gains of whole chromosomes or large portions thereof. Recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.

3,996 citations


Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: It is shown that PPAR-γ is markedly upregulated in activated macrophages and inhibits the expression of the inducible nitric oxide synthase, gelatinase B and scavenger receptor A genes in response to 15d-PGJ2 and synthetic PPar-γ ligands, suggesting that PPARS and locally produced prostaglandin D2 metabolites are involved in the regulation of inflammatory responses.
Abstract: The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors that is predominantly expressed in adipose tissue, adrenal gland and spleen PPAR-gamma has been demonstrated to regulate adipocyte differentiation and glucose homeostasis in response to several structurally distinct compounds, including thiazolidinediones and fibrates Naturally occurring compounds such as fatty acids and the prostaglandin D2 metabolite 15-deoxy-delta prostaglandin J2 (15d-PGJ2) bind to PPAR-gamma and stimulate transcription of target genes Prostaglandin D2 metabolites have not yet been identified in adipose tissue, but are major products of arachidonic-acid metabolism in macrophages, raising the possibility that they might serve as endogenous PPAR-gamma ligands in this cell type Here we show that PPAR-gamma is markedly upregulated in activated macrophages and inhibits the expression of the inducible nitric oxide synthase, gelatinase B and scavenger receptor A genes in response to 15d-PGJ2 and synthetic PPAR-gamma ligands PPAR-gamma inhibits gene expression in part by antagonizing the activities of the transcription factors AP-1, STAT and NF-kappaB These observations suggest that PPAR-gamma and locally produced prostaglandin D2 metabolites are involved in the regulation of inflammatory responses, and raise the possibility that synthetic PPAR-gamma ligands may be of therapeutic value in human diseases such as atherosclerosis and rheumatoid arthritis in which activated macrophages exert pathogenic effects

Journal ArticleDOI
08 Oct 1998-Nature
TL;DR: A dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (OMeTAD) was described in this article.
Abstract: Solar cells based on dye-sensitized mesoporous films of TiO2 arelow-cost alternatives to conventional solid-state devices1. Impressive solar-to-electrical energy conversion efficiencies have been achieved with such films when used in conjunction with liquid electrolytes2. Practical advantages may be gained by the replacement of the liquid electrolyte with a solid charge-transport material. Inorganic p-type semiconductors3,4 and organic materials5,6,7,8,9 have been tested in this regard, but in all cases the incident monochromatic photon-to-electron conversion efficiency remained low. Here we describe a dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (OMeTAD; refs. 10 and 11). Photoinduced charge-carrier generation at the heterojunction is very efficient. A solar cell based on OMeTAD converts photons to electric current with a high yield of 33%.

Journal ArticleDOI
28 May 1998-Nature
TL;DR: The data suggest that two global mechanisms of gene regulation, DNA methylation and histone deacetylation, can be linked by MeCP2, an abundant nuclear protein that is essential for mouse embryogenesis.
Abstract: Cytosine residues in the sequence 5'CpG (cytosine-guanine) are often postsynthetically methylated in animal genomes. CpG methylation is involved in long-term silencing of certain genes during mammalian development and in repression of viral genomes. The methyl-CpG-binding proteins MeCP1 and MeCP2 interact specifically with methylated DNA and mediate transcriptional repression. Here we study the mechanism of repression by MeCP2, an abundant nuclear protein that is essential for mouse embryogenesis. MeCP2 binds tightly to chromosomes in a methylation-dependent manner. It contains a transcriptional-repression domain (TRD) that can function at a distance in vitro and in vivo. We show that a region of MeCP2 that localizes with the TRD associates with a corepressor complex containing the transcriptional repressor mSin3A and histone deacetylases. Transcriptional repression in vivo is relieved by the deacetylase inhibitor trichostatin A, indicating that deacetylation of histones (and/or of other proteins) is an essential component of this repression mechanism. The data suggest that two global mechanisms of gene regulation, DNA methylation and histone deacetylation, can be linked by MeCP2.

Journal ArticleDOI
18 Jun 1998-Nature
TL;DR: In this paper, the authors sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon in
Abstract: Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17)(1-9), historically termed Pick's disease(10) Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics(1-8,12) Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q2111; the tau gene also lies within this region We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon in The splice-site mutations all destabilize a potential stem-loop structure which is probably involved in regulating the alternative splicing of exon10 (ref 13) This causes more frequent usage of the 5' splice site and an increased proportion of tan transcripts that include exon 10 The increase in exon 10(+) messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17 (refs 12, 14)

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: A caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD) have now been identified in the cytoplasmic fraction of mouse lymphoma cells and seems to function as a chaperone for CAD during its synthesis, remaining complexed with CAD to inhibit its DNase activity.
Abstract: The homeostasis of animals is regulated not only by the growth and differentiation of cells, but also by cell death through a process known as apoptosis. Apoptosis is mediated by members of the caspase family of proteases, and eventually causes the degradation of chromosomal DNA. A caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD) have now been identified in the cytoplasmic fraction of mouse lymphoma cells. CAD is a protein of 343 amino acids which carries a nuclear-localization signal; ICAD exists in a long and a short form. Recombinant ICAD specifically inhibits CAD-induced degradation of nuclear DNA and its DNase activity. When CAD is expressed with ICAD in COS cells or in a cell-free system, CAD is produced as a complex with ICAD: treatment with caspase 3 releases the DNase activity which causes DNA fragmentation in nuclei. ICAD therefore seems to function as a chaperone for CAD during its synthesis, remaining complexed with CAD to inhibit its DNase activity; caspases activated by apoptotic stimuli then cleave ICAD, allowing CAD to enter the nucleus and degrade chromosomal DNA.

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, a scheme for implementing a quantum-mechanical computer is presented, where information is encoded onto the nuclear spins of donor atoms in doped silicon electronic devices.
Abstract: Quantum computers promise to exceed the computational efficiency of ordinary classical machines because quantum algorithms allow the execution of certain tasks in fewer steps. But practical implementation of these machines poses a formidable challenge. Here I present a scheme for implementing a quantum-mechanical computer. Information is encoded onto the nuclear spins of donor atoms in doped silicon electronic devices. Logical operations on individual spins are performed using externally applied electric fields, and spin measurements are made using currents of spin-polarized electrons. The realization of such a computer is dependent on future refinements of conventional silicon electronics.

Journal ArticleDOI
05 Nov 1998-Nature
TL;DR: It is shown that below-ground diversity of arbuscular mycorrhizal fungi (AMF) is a major factor contributing to the maintenance of plant biodiversity and to ecosystem functioning, and that microbial interactions can drive ecosystem functions such as plant biodiversity, productivity and variability.
Abstract: The functioning and stability of terrestrial ecosystems are determined by plant biodiversity and species composition1,2,3,4,5 However, the ecological mechanisms by which plant biodiversity and species composition are regulated and maintained are not well understood These mechanisms need to be identified to ensure successful management for conservation and restoration of diverse natural ecosystems Here we show, by using two independent, but complementary, ecological experiments, that below-ground diversity of arbuscular mycorrhizal fungi (AMF) is a major factor contributing to the maintenance of plant biodiversity and to ecosystem functioning At low AMF diversity, the plant species composition and overall structure of microcosms that simulate European calcareous grassland fluctuate greatly when the AMF taxa that are present are changed Plant biodiversity, nutrient capture and productivity in macrocosms that simulate North American old-fields increase significantly with increasing AMF-species richness These results emphasize the need to protect AMF and to consider these fungi in future management practices in order to maintain diverse ecosystems Our results also show that microbial interactions can drive ecosystem functions such as plant biodiversity, productivity and variability

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: An illusion in which tactile sensations are referred to an alien limb is reported, which reveals a three-way interaction between vision, touch and proprioception, and may supply evidence concerning the basis of bodily self-identification.
Abstract: Illusions have historically been of great use to psychology for what they can reveal about perceptual processes. We report here an illusion in which tactile sensations are referred to an alien limb. The effect reveals a three-way interaction between vision, touch and proprioception, and may supply evidence concerning the basis of bodily self-identification.

Journal ArticleDOI
18 Jun 1998-Nature
TL;DR: The structure reveals a cavity-laden CD4–gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion.
Abstract: The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gp120 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 A resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: Inhibition of cytokine production may help to explain the incremental therapeutic benefit of NSAIDs observed in the treatment of rheumatoid arthritis at plasma drug concentrations substantially higher than are required to inhibit prostaglandin G/H synthase (cyclooxygenase).
Abstract: The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor family of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression Expression of PPAR-gamma is an early and pivotal event in the differentiation of adipocytes Several agents that promote differentiation of fibroblast lines into adipocytes have been shown to be PPAR-gamma agonists, including several prostanoids, of which 15-deoxy-delta-prostaglandin J2 is the most potent, as well as members of a new class of oral antidiabetic agents, the thiazolidinediones, and a variety of non-steroidal anti-inflammatory drugs (NSAIDs) Here we show that PPAR-gamma agonists suppress monocyte elaboration of inflammatory cytokines at agonist concentrations similar to those found to be effective for the promotion of adipogenesis Inhibition of cytokine production may help to explain the incremental therapeutic benefit of NSAIDs observed in the treatment of rheumatoid arthritis at plasma drug concentrations substantially higher than are required to inhibit prostaglandin G/H synthase (cyclooxygenase)

Journal ArticleDOI
09 Apr 1998-Nature
TL;DR: Over the past ten years, numerous chemokines have been identified as attractants of different types of blood leukocytes to sites of infection and inflammation and are now known to also function as regulatory molecules in leukocyte maturation, traffic and homing of lymphocytes, and the development of lymphoid tissues.
Abstract: Over the past ten years, numerous chemokines have been identified as attractants of different types of blood leukocytes to sites of infection and inflammation. They are produced locally in the tissues and act on leukocytes through selective receptors. Chemokines are now known to also function as regulatory molecules in leukocyte maturation, traffic and homing of lymphocytes, and the development of lymphoid tissues.

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: In this paper, the results of scanning tunnelling microscopy and spectroscopy on individual single-walled nanotubes from which atomically resolved images allow us to examine electronic properties as afunction of tube diameter and wrapping angle.
Abstract: Carbon nanotubes can be thought of as graphitic sheets with a hexagonal lattice that have been wrapped up into a seamless cylinder. Since their discovery in 19911, the peculiar electronic properties of these structures have attracted much attention. Their electronic conductivity, for example, has been predicted2,3,4 to depend sensitively on tube diameter and wrapping angle (a measure of the helicity of the tube lattice), with only slight differences in these parameters causing a shift from a metallic to a semiconducting state. In other words, similarly shaped molecules consisting of only one element (carbon) may have very different electronic behaviour. Although the electronic properties of multi-walled and single-walled nanotubes5,6,7,8,9,10,11,12 have been probed experimentally, it has not yet been possible to relate these observations to the corresponding structure. Here we present the results of scanning tunnelling microscopy and spectroscopy on individual single-walled nanotubes from which atomically resolved images allow us to examine electronic properties as afunction of tube diameter and wrapping angle. We observe bothmetallic and semiconducting carbon nanotubes and find thatthe electronic properties indeed depend sensitively on thewrapping angle. The bandgaps of both tube types are consistent with theoretical predictions. We also observe van Hove singularities at the onset of one-dimensional energy bands, confirming the strongly one-dimensional nature of conduction within nanotubes.

Journal ArticleDOI
09 Apr 1998-Nature
TL;DR: Evidence is presented that a particular area within human parahippocampal cortex is involved in a critical component of navigation: perceiving the local visual environment, and it is proposed that the PPA represents places by encoding the geometry of the local environment.
Abstract: Medial temporal brain regions such as the hippocampal formation and parahippocampal cortex have been generally implicated in navigation and visual memory. However, the specific function of each of these regions is not yet clear. Here we present evidence that a particular area within human parahippocampal cortex is involved in a critical component of navigation: perceiving the local visual environment. This region, which we name the 'parahippocampal place area' (PPA), responds selectively and automatically in functional magnetic resonance imaging (fMRI) to passively viewed scenes, but only weakly to single objects and not at all to faces. The critical factor for this activation appears to be the presence in the stimulus of information about the layout of local space. The response in the PPA to scenes with spatial layout but no discrete objects (empty rooms) is as strong as the response to complex meaningful scenes containing multiple objects (the same rooms furnished) and over twice as strong as the response to arrays of multiple objects without three-dimensional spatial context (the furniture from these rooms on a blank background). This response is reduced if the surfaces in the scene are rearranged so that they no longer define a coherent space. We propose that the PPA represents places by encoding the geometry of the local environment.

Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: In this paper, it was shown that signalling through CD40 can replace CD4+ T-helper cells in priming of helper-dependent CD8+ CTL responses.
Abstract: Although in vivo priming of CD8+ cytotoxic T lymphocytes (CTLs) generally requires the participation of CD4+ T-helper lymphocytes, the nature of the 'help' provided to CTLs is unknown. One widely held view is that help for CTLs is mediated by cytokines produced by T-helper cells activated in proximity to the CTL precursor at the surface of an antigen-presenting cell (APC). An alternative theory is that, rather than being directly supplied to the CTL by the helper cell, help is delivered through activation of the APC, which can then prime the CTL directly. CD40 and its ligand, CD40L, may activate the APC to allow CTL priming. CD40L is expressed on the surface of activated CD4+ T-helper cells and is involved in their activation and in the development of their effector functions. Ligation of CD40 on the surface of APCs such as dendritic cells, macrophages and B cells greatly increases their antigen-presentation and co-stimulatory capacity. Here we report that signalling through CD40 can replace CD4+ T-helper cells in priming of helper-dependent CD8+ CTL responses. Blockade of CD40L inhibits CTL priming; this inhibition is overcome by signalling through CD40. CD40-CD40L interactions are therefore vital in the delivery of T-cell help for CTL priming.

Journal ArticleDOI
06 Aug 1998-Nature
TL;DR: The design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules that create specific periodic patterns on the nanometre scale are reported.
Abstract: Molecular self-assembly presents a `bottom-up' approach to the fabrication of objects specified with nanometre precision. DNA molecular structures and intermolecular interactions are particularly amenable to the design and synthesis of complex molecular objects. We report the design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules. Intermolecular interactions between the structural units are programmed by the design of `sticky ends' that associate according to Watson-Crick complementarity, enabling us to create specific periodic patterns on the nanometre scale. The patterned crystals have been visualized by atomic force microscopy.

Journal ArticleDOI
11 Jun 1998-Nature
TL;DR: This is the first demonstration of the involvement of a G-protein-coupled chemokine receptor in neuronal cell migration and patterning in the central nervous system and may be important for designing strategies to block HIV entry into cells and for understanding mechanisms of pathogenesis in AIDS dementia.
Abstract: Chemokines and their receptors are important in cell migration during inflammation, in the establishment of functional lymphoid microenvironments, and in organogenesis. The chemokine receptor CXCR4 is broadly expressed in cells of both the immune and the central nervous systems and can mediate migration of resting leukocytes and haematopoietic progenitors in response to its ligand, SDF-1. CXCR4 is also a major receptor for strains of human immunodeficiency virus-1 (HIV-1) that arise during progression to immunodeficiency and AIDS dementia. Here we show that mice lacking CXCR4 exhibit haematopoietic and cardiac defects identical to those of SDF-1-deficient mice, indicating that CXCR4 may be the only receptor for SDF-1. Furthermore, fetal cerebellar development in mutant animals is markedly different from that in wild-type animals, with many proliferating granule cells invading the cerebellar anlage. This is, to our knowledge, the first demonstration of the involvement of a G-protein-coupled chemokine receptor in neuronal cell migration and patterning in the central nervous system. These results may be important for designing strategies to block HIV entry into cells and for understanding mechanisms of pathogenesis in AIDS dementia.

Journal ArticleDOI
01 Jul 1998-Nature
TL;DR: In this article, the authors showed that nanometre-sized ceramic powders can be used as solid plasticizers for polyethylene oxide (PEO) electrolytes to prevent crystallization on annealing from amorphous state above 60°C.
Abstract: Ionically conducting polymer membranes (polymer electrolytes) might enhance lithium-battery technology by replacing the liquid electrolyte currently in use and thereby enabling the fabrication of flexible, compact, laminated solid-state structures free from leaks and available in varied geometries1. Polymer electrolytes explored for these purposes are commonly complexes of a lithium salt (LiX) with a high-molecular-weight polymer such as polyethylene oxide (PEO). But PEO tends to crystallize below 60 °C, whereas fast ion transport is a characteristic of the amorphous phase. So the conductivity of PEO–LiX electrolytes reaches practically useful values (of about 10−4 S cm−1) only at temperatures of 60–80 °C. The most common approach for lowering the operational temperature has been to add liquid plasticizers, but this promotes deterioration of the electrolyte's mechanical properties and increases its reactivity towards the lithium metal anode. Here we show that nanometre-sized ceramic powders can perform as solid plasticizers for PEO, kinetically inhibiting crystallization on annealing from the amorphous state above 60 °C. We demonstrate conductivities of around 10−4 S cm−1 at 50 °C and 10−5 S cm−1 at 30 °C in a PEO–LiClO4 mixture containing powders of TiO2 and Al2O3 with particle sizes of 5.8–13 nm. Further optimization might lead to practical solid-state polymer electrolytes for lithium batteries.

Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: It is found that the three cells need not meet simultaneously but that the helper cell can first engage and ‘condition’ the dendritic cell, which then becomes empowered to stimulate a killer cell.
Abstract: To generate an immune response, antigen-specific T-helper and T-killer cells must find each other and, because they cannot detect each other's presence, they are brought together by an antigen-loaded dendritic cell that displays antigens to both1,2,3. This three-cell interaction, however, seems nearly impossible because all three cell types are rare and migratory. Here we provide a potential solution to this conundrum. We found that the three cells need not meet simultaneously but that the helper cell can first engage and ‘condition’ the dendritic cell, which then becomes empowered to stimulate a killer cell. The first step (help) can be bypassed by modulation of the surface molecule CD40, or by viral infection of dendritic cells. These results may explain the longstanding paradoxical observation that responses to some viruses are helper-independent, and they evoke the possibility that dendritic cells may take on different functions in response to different conditioning signals.

Journal ArticleDOI
05 Mar 1998-Nature
TL;DR: It is shown that human dendritic cells, but not macrophages, efficiently present antigen derived from apoptotic cells, stimulating class I-restricted CD8+ CTLs, suggesting a mechanism by which potent APCs acquire antigens from tumours, transplants, infected cells, or even self-tissue, for stimulation or tolerization of C TLs.
Abstract: CD8+ cytotoxic T lymphocytes (CTLs) mediate resistance to infectious agents and tumours. Classically, CTLs recognize antigens that are localized in the cytoplasm of target cells, processed and presented as peptide complexes with class I molecules of the major histocompatibility complex (MHC). However, there is evidence for an exogenous pathway whereby antigens that are not expected to gain access to the cytoplasm are presented on MHC class I molecules. The most dramatic example is the in vivo phenomenon of cross-priming: antigens from donor cells are acquired by bone-marrow-derived host antigen-presenting cells (APCs) and presented on MHC class I molecules. Two unanswered questions concern the identity of this bone-marrow-derived cell and how such antigens are acquired. Here we show that human dendritic cells, but not macrophages, efficiently present antigen derived from apoptotic cells, stimulating class I-restricted CD8+ CTLs. Our findings suggest a mechanism by which potent APCs acquire antigens from tumours, transplants, infected cells, or even self-tissue, for stimulation or tolerization of CTLs.

Journal ArticleDOI
30 Jul 1998-Nature
TL;DR: It is shown that hypoxia and hypoglycaemia reduce proliferation and increase apoptosis in wild-type (Hif-1α+/+) embryonic stem (ES) cells, but not in ES cells with inactivated HIF-1 α genes (HIF- 1α−/−), suggesting that there are at least two different adaptive responses to being deprived of oxygen and nutrients.
Abstract: As a result of deprivation of oxygen (hypoxia) and nutrients, the growth and viability of cells is reduced. Hypoxia-inducible factor (HIF)-1alpha helps to restore oxygen homeostasis by inducing glycolysis, erythropoiesis and angiogenesis. Here we show that hypoxia and hypoglycaemia reduce proliferation and increase apoptosis in wild-type (HIF-1alpha+/+) embryonic stem (ES) cells, but not in ES cells with inactivated HIF-1alpha genes (HIF-1alpha-/-); however, a deficiency of HIF-1alpha does not affect apoptosis induced by cytokines. We find that hypoxia/hypoglycaemia-regulated genes involved in controlling the cell cycle are either HIF-1alpha-dependent (those encoding the proteins p53, p21, Bcl-2) or HIF-1alpha-independent (p27, GADD153), suggesting that there are at least two different adaptive responses to being deprived of oxygen and nutrients. Loss of HIF-1alpha reduces hypoxia-induced expression of vascular endothelial growth factor, prevents formation of large vessels in ES-derived tumours, and impairs vascular function, resulting in hypoxic microenvironments within the tumour mass. However, growth of HIF-1alpha tumours was not retarded but was accelerated, owing to decreased hypoxia-induced apoptosis and increased stress-induced proliferation. As hypoxic stress contributes to many (patho)biological disorders, this new role for HIF-1alpha in hypoxic control of cell growth and death may be of general pathophysiological importance.