scispace - formally typeset
Search or ask a question

Showing papers in "Naturwissenschaften in 2009"


Journal ArticleDOI
TL;DR: Besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.
Abstract: Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.

246 citations


Journal ArticleDOI
TL;DR: The state of the understanding of information acquisition via substrate-borne vibrations is reviewed with special attention to the most recent literature.
Abstract: Animal communication is a dynamic field that promotes cross-disciplinary study of the complex mechanisms of sending and receiving signals, the neurobiology of signal detection and processing, and the behaviors of animals creating and responding to encoded messages. Alongside visual signals, songs, or pheromones exists another major communication channel that has been rather neglected until recent decades: substrate-borne vibration. Vibrations carried in the substrate are considered to provide a very old and apparently ubiquitous communication channel that is used alone or in combination with other information channels in multimodal signaling. The substrate could be ‘the ground’, or a plant leaf or stem, or the surface of water, or a spider’s web, or a honeybee’s honeycomb. Animals moving on these substrates typically create incidental vibrations that can alert others to their presence. They also may use behaviors to create vibrational waves that are employed in the contexts of mate location and identification, courtship and mating, maternal care and sibling interactions, predation, predator avoidance, foraging, and general recruitment of family members to work. In fact, animals use substrate-borne vibrations to signal in the same contexts that they use vision, hearing, touch, taste, or smell. Study of vibrational communication across animal taxa provides more than just a more complete story. Communication through substrate-borne vibration has its own constraints and opportunities not found in other signaling modalities. Here, I review the state of our understanding of information acquisition via substrate-borne vibrations with special attention to the most recent literature.

166 citations


Journal ArticleDOI
TL;DR: Electroantennography and laboratory olfactometric behavioural observations showed that sulphur-containing chemicals are involved in mediating the fresh carcass attractiveness for N.vespillo and N. vespilloides.
Abstract: Chemical composition of volatiles emitted from fresh mouse carcasses (laboratory mice, Mus musculus) was studied using solid sample injection technique (solid-phase micro-extraction), two-dimensional gas chromatography with time of flight mass spectrometric detection and gas chromatography with electroantennographic detection. Electroantennography (EAG) and laboratory olfactometric behavioural observations were used to study the antennal sensitivity to identified infochemicals and their attractiveness for burying beetles Nicrophorus vespillo and Nicrophorus vespilloides (Silphidae: Nicrophorinae). Chemical analysis showed that immediately after death, emitted volatiles did not differ from those emitted by a living organism. However, in the course of time, sulphur-containing chemicals, specifically methanethiol, methyl thiolacetate, dimethyl sulphide, dimethyl disulphide and dimethyl trisulphide appear. EAG measurements revealed antennal sensitivity to these compounds. Behavioural tests in laboratory olfactometer showed that dimethyl sulphide, dimethyl disulphide and dimethyl trisulphide are highly attractive to both studied species. The data suggest that sulphur-containing chemicals are involved in mediating the fresh carcass attractiveness for N. vespillo and N. vespilloides.

138 citations


Journal ArticleDOI
TL;DR: Evidence is provided that almost all (93.5%) of 61 recently extinct mammal species were homeothermic, maintaining a constant high body temperature and thus energy expenditure, which demands a high intake of food, long foraging times, and thus exposure to predators.
Abstract: Small mammals appear to be less vulnerable to extinction than large species, but the underlying reasons are poorly understood. Here, we provide evidence that almost all (93.5%) of 61 recently extinct mammal species were homeothermic, maintaining a constant high body temperature and thus energy expenditure, which demands a high intake of food, long foraging times, and thus exposure to predators. In contrast, only 6.5% of extinct mammals were likely heterothermic and employed multi-day torpor (hibernation) or daily torpor, even though torpor is widespread within more than half of all mammalian orders. Torpor is characterized by substantial reductions of body temperature and energy expenditure and enhances survival during adverse conditions by minimizing food and water requirements, and consequently reduces foraging requirements and exposure to predators. Moreover, because life span is generally longer in heterothermic mammals than in related homeotherms, heterotherms can employ a ‘sit-and-wait’ strategy to withstand adverse periods and then repopulate when circumstances improve. Thus, torpor is a crucial but hitherto unappreciated attribute of small mammals for avoiding extinction. Many opportunistic heterothermic species, because of their plastic energetic requirements, may also stand a better chance of future survival than homeothermic species in the face of greater climatic extremes and changes in environmental conditions caused by global warming.

137 citations


Journal ArticleDOI
Axel Kleidon1
TL;DR: This nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the planet as one system, and is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.
Abstract: The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.

132 citations


Journal ArticleDOI
TL;DR: It is suggested that isolated teeth originally referred as post-Cenomanian Carcharodontosauridae most probably belong to abelisaurids, and the development of horn-like structures and differential cranial thickening appear to be convergently acquired within Abelisauridae.
Abstract: A nearly complete skeleton of the new abelisaurid Skorpiovenator bustingorryi is reported here. The holotype was found in Late Cenomanian–Early Turonian outcrops of NW Patagonia, Argentina. This new taxon is deeply nested within a new clade of South American abelisaurids, named Brachyrostra. Within brachyrostrans, the skull shortening and hyperossification of the skull roof appear to be correlated with a progressive enclosure of the orbit, a set of features possibly related to shock-absorbing capabilities. Moreover, the development of horn-like structures and differential cranial thickening appear to be convergently acquired within Abelisauridae. Based on the similarities between Skorpiovenator and carcharodontosaurid tooth morphology, we suggest that isolated teeth originally referred as post-Cenomanian Carcharodontosauridae most probably belong to abelisaurids.

126 citations


Journal ArticleDOI
TL;DR: It is emphasised that many false dichotomies or categories have been applied to theropod form and function, and sometimes, these impede research progress, and a combination of techniques that emphasises integration of neontological and palaeontological evidence and quantitative assessment of limb function cautiously applied with validated techniques and sensitivity analysis of unknown variables are needed.
Abstract: The bipedal stance and gait of theropod dinosaurs evolved gradually along the lineage leading to birds and at some point(s), flight evolved. How and when did these changes occur? We review the evidence from neontology and paleontology, including pectoral and pelvic limb functional morphology, fossil footprints/trackways and biomechanical models and simulations. We emphasise that many false dichotomies or categories have been applied to theropod form and function, and sometimes, these impede research progress. For example, dichotomisation of locomotor function into 'non-avian' and 'avian' modes is only a conceptual crutch; the evidence supports a continuous transition. Simplification of pelvic limb function into cursorial/non-cursorial morphologies or flexed/columnar poses has outlived its utility. For the pectoral limbs, even the classic predatory strike vs. flight wing-stroke distinction and separation of theropods into non-flying and flying--or terrestrial and arboreal--categories may be missing important subtleties. Distinguishing locomotor function between taxa, even with quantitative approaches, will always be fraught with ambiguity, making it difficult to find real differences if that ambiguity is properly acknowledged. There must be an 'interpretive asymptote' for reconstructing dinosaur limb function that available methods and evidence cannot overcome. We may be close to that limit, but how far can it be stretched with improved methods and evidence, if at all? The way forward is a combination of techniques that emphasises integration of neontological and paleontological evidence and quantitative assessment of limb function cautiously applied with validated techniques and sensitivity analysis of unknown variables.

121 citations


Journal ArticleDOI
TL;DR: Adult cannibalism on juveniles may select for rapid growth, fuelled by high food abundance, setting thus the stage for the evolution of gigantism.
Abstract: Resource availability, competition, and predation commonly drive body size evolution. We assess the impact of high food availability and the consequent increased intraspecific competition, as expressed by tail injuries and cannibalism, on body size in Skyros wall lizards (Podarcis gaigeae). Lizard populations on islets surrounding Skyros (Aegean Sea) all have fewer predators and competitors than on Skyros but differ in the numbers of nesting seabirds. We predicted the following: (1) the presence of breeding seabirds (providing nutrients) will increase lizard population densities; (2) dense lizard populations will experience stronger intraspecific competition; and (3) such aggression, will be associated with larger average body size. We found a positive correlation between seabird and lizard densities. Cannibalism and tail injuries were considerably higher in dense populations. Increases in cannibalism and tail loss were associated with large body sizes. Adult cannibalism on juveniles may select for rapid growth, fuelled by high food abundance, setting thus the stage for the evolution of gigantism.

118 citations


Journal ArticleDOI
TL;DR: Almost year-round torpor has evolved as a strategy to escape birds of prey, the major predators of this arboreal mammal, and clearly helps in explaining the unusually high longevity of dormice.
Abstract: Average longevity in free-living edible dormice (Glis glis) can reach 9 years, which is extremely high for a small rodent. This remarkable life span has been related to a peculiar life history strategy and the rarity of reproductive bouts in these seed eaters. Most females (96%) reproduce only once or twice in their lifetime, predominantly during years of mast seeding of, e.g., beech, but entire populations can skip reproduction in years of low seed availability. Surprisingly, in non-reproductive years, large fractions of populations apparently vanished and were never captured above ground. Therefore, we determined the duration of above-ground activity, and body temperature profiles in a subset of animals, of dormice under semi-natural conditions in outdoor enclosures. We found that non-reproductive dormice returned to dormancy in underground burrows throughout summer after active seasons as short as 10 months per year in dormancy. This exceeds dormancy duration of any other mammal under natural conditions. Summer dormancy was not caused by energy constraints, as it occurred in animals in good condition, fed ad libitum and without climatic stress. We suggest that almost year-round torpor has evolved as a strategy to escape birds of prey, the major predators of this arboreal mammal. This unique predator-avoidance strategy clearly helps in explaining the unusually high longevity of dormice.

111 citations


Journal ArticleDOI
TL;DR: It is found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times.
Abstract: An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

110 citations


Journal ArticleDOI
TL;DR: It is found that age does not affect learning and memory ability, while body size positively correlates with memory performance, and foraging experience seems not to be necessary for learning to occur, but it may contribute to learning performance as bumblebees with more foragingExperience on average were better learners.
Abstract: In many respects, the behavior of bumblebees is similar to that of the closely related honeybees, a long-standing model system for learning and memory research. Living in smaller and less regulated colonies, bumblebees are physiologically more robust and thus have advantages in particular for indoor experiments. Here, we report results on Pavlovian odor conditioning of bumblebees using the proboscis extension reflex (PER) that has been successfully used in honeybee learning research. We examine the effect of age, body size, and experience on learning and memory performance. We find that age does not affect learning and memory ability, while body size positively correlates with memory performance. Foraging experience seems not to be necessary for learning to occur, but it may contribute to learning performance as bumblebees with more foraging experience on average were better learners. The PER represents a reliable tool for learning and memory research in bumblebees and allows examining interspecific similarities and differences of honeybee and bumblebee behavior, which we discuss in the context of social organization.

Journal ArticleDOI
TL;DR: Five Rubrobacter strains were isolated from tombs in the Roman Necropolis of Carmona, Portugal and Spain and showed different physiology and migration in denaturing gradient gel electrophoresis, suggesting they might represent new species within this genus.
Abstract: In the last few years, the microbial colonisation of mural paintings in ancient monuments has been attracting the attention of microbiologists and conservators. The genus Rubrobacter is commonly found in biodeteriorated monuments, where it has been reported to cause rosy discolouration. However, to date, only three species of this genus have been isolated, all from thermophilic environments. In this paper, we studied three monuments: the Servilia and Postumio tombs in the Roman Necropolis of Carmona (Spain), and Vilar de Frades church (Portugal), in search of Rubrobacter strains. In all cases, biodeterioration and the formation of efflorescences were observed, and five Rubrobacter strains were isolated. These isolates showed different physiology and migration in denaturing gradient gel electrophoresis, suggesting they might represent new species within this genus. The isolates reproduced some biodeterioration processes in the laboratory and revealed their biomediation in crystal formation.

Journal ArticleDOI
TL;DR: This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations, which means the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption.
Abstract: Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

Journal ArticleDOI
TL;DR: It is suggested that, as a result of years of benzalkonium chloride treatments, the indigenous microbial community has been replaced by microbial populations selected by biocide application.
Abstract: The Lascaux Cave contains a remarkable set of paintings from the Upper Palaeolithic. Shortly after discovery in 1940, the cave was modified for public viewing and, in 2001, was invaded by a Fusarium solani species complex. Benzalkonium chloride was used from 2001 to 2004 to eliminate the fungal outbreak. In this study, we carried out a sampling in most of the cave halls and galleries. Sequence analysis and isolation methods detected that the most abundant genera of bacteria were Ralstonia and Pseudomonas. We suggest that, as a result of years of benzalkonium chloride treatments, the indigenous microbial community has been replaced by microbial populations selected by biocide application.

Journal ArticleDOI
TL;DR: It was found that releasing floral scent in the air of the colony was sufficient to trigger learning and that learning performance was improved when the chemosensory cue was provided in the nectar in honeypots; probably because it guarantees a tighter link between scent and reward, and possibly because gustatory cues are involved in addition to olfaction.
Abstract: Recruitment in social insects often involves not only inducing nestmates to leave the nest, but also communicating crucial information about finding profitable food sources Although bumblebees transmit chemosensory information (floral scent), the transmission mechanism is unknown as mouth-to-mouth fluid transfer (as in honeybees) does not occur Because recruiting bumblebees release a pheromone in the nest that triggers foraging in previously inactive workers, we tested whether this pheromone helps workers learn currently rewarding floral odours, as found in food social learning in rats We exposed colonies to artificial recruitment pheromone, paired with anise scent The pheromone did not facilitate learning of floral scent However, we found that releasing floral scent in the air of the colony was sufficient to trigger learning and that learning performance was improved when the chemosensory cue was provided in the nectar in honeypots; probably because it guarantees a tighter link between scent and reward, and possibly because gustatory cues are involved in addition to olfaction Scent learning was maximal when anise-scented nectar was brought into the nest by demonstrator foragers, suggesting that previously unidentified cues provided by successful foragers play an important role in nestmates learning new floral odours

Journal ArticleDOI
TL;DR: Dental microwear is investigated for specimens of 17 extant species of murine and deomyine rodents in order to test the reliability of this method and infer dietary preferences on the fossil species Saïdomys afarensis.
Abstract: Extant species of Muridae occupy a wide array of habitats and have diverse dietary habits. Consequently, their dental microwear patterns represent a potential clue to better understand the paleoecology of their extinct relatives, which are abundant in many Old World Neogene localities. In this study, dental microwear is investigated for specimens of 17 extant species of murine and deomyine rodents in order to test the reliability of this method and infer dietary preferences on the fossil species Saidomys afarensis. This extinct form comes from a mid-Pliocene site (AL 327) located at the Hadar Formation (Ethiopia) known to have delivered many hominid specimens of Australopithecus afarensis. A significant correlation between microwear patterns and diet is detected. Thus, grass, fruit, and insect eaters display, respectively, high amounts of fine scratches, wide scratches, and large pits. Moreover, some aspects of the paleoecology of S. afarensis, including feeding habits, could be assessed in regard to its dental microwear pattern. Indeed, it probably had feeding habits similar to that of living grass eaters. These results concur with the presence of open to woodland areas covered by an herbaceous vegetal layer, including monocotyledons, in the vicinity of this mid-Pliocene locality.

Journal ArticleDOI
TL;DR: It is emphasized that hibernation is an important measure to counter environmental challenge for more tropical species than previously thought, including primates, and evidence that tropical hibernation is functionally similar among tropical species is provided.
Abstract: The spiny forest of southwestern Madagascar is the driest and most unpredictable region of the island. It is characterized by a pronounced seasonality with high fluctuations in ambient temperature, low availability of food, and a lack of water during the cool dry season and, additionally, by changes in environmental conditions between years. One of the few mammalian species that manages to inhabit this challenging habitat is the reddish-gray mouse lemur (Microcebus griseorufus). The aim of our study was to determine whether this small primate uses continuous hibernation as an energy saving strategy, and if so, to characterize its physiological properties. We measured skin temperature of 16 free-ranging individuals continuously over 3 months during the cool dry season using collar temperature data loggers. Prolonged hibernation was found in three mouse lemurs and was not sex dependent (one male, two females). Skin temperature of hibernating individuals tracked ambient temperature passively with a minimum skin temperature of 6.5°C and fluctuated strongly each day (up to 20°C), depending on the insulation capacity of the hibernacula. Individuals remained in continuous hibernation even at an ambient temperature of 37°C. The animals hibernated continuously during the dry season, and hibernation bouts were only interrupted by short spontaneous arousals. The study emphasizes that hibernation is an important measure to counter environmental challenge for more tropical species than previously thought, including primates. It furthermore provides evidence that tropical hibernation is functionally similar among tropical species.

Journal ArticleDOI
TL;DR: These findings provide the first physiological confirmation that free-ranging individuals of M. murinus from the humid evergreen littoral rain forest have the option to utilize short torpor bouts or hibernation under the same conditions as two alternative energy-conserving physiological solutions to environmental constraints.
Abstract: Among the order of primates, torpor has been described only for the small Malagasy cheirogaleids Microcebus and Cheirogaleus The nocturnal, gray mouse lemur, Microcebus murinus (approx 60 g), is capable of entering into and spontaneously arousing from apparently daily torpor during the dry season in response to reduced temperatures and low food and water sources Mark–recapture studies indicated that this primate species might also hibernate for several weeks, although physiological evidence is lacking In the present study, we investigated patterns of body temperature in two free-ranging M murinus during the austral winter using temperature-sensitive data loggers implanted subdermally One lemur hibernated and remained inactive for 4 weeks During this time, body temperature followed the ambient temperature passively with a minimum body temperature of 115°C, interrupted by irregular arousals to normothermic levels Under the same conditions, the second individual displayed only short bouts of torpor in the early morning hours but maintained stable normothermic body temperatures throughout its nocturnal activity Reduction of body temperature was less pronounced in the mouse lemur that utilized short bouts of torpor with a minimum value of 27°C Despite the small sample size, our findings provide the first physiological confirmation that free-ranging individuals of M murinus from the humid evergreen littoral rain forest have the option to utilize short torpor bouts or hibernation under the same conditions as two alternative energy-conserving physiological solutions to environmental constraints

Journal ArticleDOI
TL;DR: This first study of some of the effects on the hydrophobicity of translucency through scales’ cover reduction in butterfly wings and on the morphology associated with improved waterproofing suggests P. sita can be translucent without losing its waterproof properties.
Abstract: Although the colour of butterflies attracts the most attention, the waterproofing properties of their wings are also extremely interesting Most butterfly wings are considered “super-hydrophobic” because the contact angle (CA) with a water drop exceeds 150° Usually, butterfly wings are covered with strongly overlapping scales; however, in the case of transparent or translucent wings, scale cover is reduced; thus, the hydrophobicity could be affected Here, we present a comparative analysis of wing hydrophobicity and its dependence on morphology for two species with translucent wings Parantica sita (Nymphalidae) and Parnassius glacialis (Papilionidae) These species have very different life histories: P sita lives for up to 6 months as an adult and migrates over long distance, whereas P glacialis lives for less than 1 month and does not migrate We measured the water CA and analysed wing morphology with scanning electron microscopy and atomic force microscopy P sita has super-hydrophobic wing surfaces, with CA > 160°, whereas P glacialis did not (CA = 100–135°) Specialised scales were found on the translucent portions of P sita wings These scales were ovoid and much thinner than common scales, erect at about 30°, and leaving up to 80% of the wing surface uncovered The underlying bare wing surface had a remarkable pattern of ridges and knobs P glacialis also had over 80% of the wing surface uncovered, but the scales were either setae-like or spade-like The bare surface of the wing had an irregular wavy smooth pattern We suggest a mode of action that allows this super-hydrophobic effect with an incompletely covered wing surface The scales bend, but do not collapse, under the pressure of a water droplet, and the elastic recovery of the structure at the borders of the droplet allows a high apparent CA Thus, P sita can be translucent without losing its waterproof properties This characteristic is likely necessary for the long life and migration of this species This is the first study of some of the effects on the hydrophobicity of translucency through scales’ cover reduction in butterfly wings and on the morphology associated with improved waterproofing

Journal ArticleDOI
TL;DR: It is concluded that moderate heating of bone may enhance the retention of DNA fragments in a medieval cattle bone assemblage from Coppergate, York, UK and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.
Abstract: Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils In fact, a greater number of template molecules could be extracted from bones with damaged collagen We conclude that moderate heating of bone may enhance the retention of DNA fragments Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival

Journal ArticleDOI
TL;DR: It is found that males with the redder plumage preferred by females had similar overall bacterial loads, but lower feather-degradingacterial loads, than males with less red plumage, which suggests that plumage color can signal abundance of feather- degrading bacteria to potential mates.
Abstract: Models of parasite-mediated sexual selection propose that males with more elaborate sexual traits will have fewer parasites. These models have generally been tested using metazoan or protozoan parasites of the blood, gut, or integument. Fewer studies have examined sexual ornaments in relation to bacterial infections. While most surface bacteria are harmless or beneficial, feather-degrading bacteria may have detrimental effects. In this study, we examined the relationships between overall bacterial load, feather-degrading bacterial load, and sexually selected carotenoid-based plumage color in a wild population of house finches (Carpodacus mexicanus). We found that males with the redder plumage preferred by females had similar overall bacterial loads, but lower feather-degrading bacterial loads, than males with less red plumage. These data suggest that plumage color can signal abundance of feather-degrading bacteria to potential mates. It remains unclear whether feather-degrading bacteria directly or indirectly affect plumage color, but the observed correlations suggest that feather-degrading bacteria may play some role in sexual selection.

Journal ArticleDOI
TL;DR: In this review, this review has concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in previous understanding of this multifaceted field.
Abstract: All known cosmic and geological conditions and laws of chemistry and thermodynamics allow that complex organic matter could have formed spontaneously on pristine planet Earth about 4,000 mya. Simple gasses and minerals on the surface and in oceans of the early Earth reacted and were eventually organized in supramolecular aggregates and enveloped cells that evolved into primitive forms of life. Chemical evolution, which preceded all species of extant organisms, is a fact. In this review, we have concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in our previous understanding of this multifaceted field. Recent exciting progress in the molecular and genetic analyses of existing life, in particular microorganisms of ancient origin, even supports the possibility that a cellular, self-reproducing common ancestor might be assembled and resurrected in anaerobic cultures at some time in the future. Charles Darwin did not, and indeed, could not, address and specify the earliest phases of life which preceded the Origin of Species. However, in a famous letter, he sketched “a warm little pond with all sorts of… (chemicals, in which) …a protein was chemically formed.” We try to trace the impact of his charming clear-sighted metaphor up to the present time.

Journal ArticleDOI
TL;DR: The skull of C. morrisi has several features associated with predatory behaviour, indicating that this dissorophid may have been one of the top terrestrial predators of its time.
Abstract: Cacops, one of the most distinctive Paleozoic amphibians, is part of a clade of dissorophoid temnospondyls that diversified in the equatorial region of Pangea during the Late Carboniferous and Early Permian, persisting into the Late Permian in Central Russia and China. Dissorophids were a successful group of fully terrestrial, often spectacularly armoured predators, the only amphibians apparently able to coexist with amniotes when the latter started to dominate terrestrial ecosystems. In this paper, we describe excellent new skulls from the Early Permian of Oklahoma attributed to Cacops, Cacops morrisi sp. nov. and provide for the first time detailed information about this iconic dissorophid. These specimens show anatomical and ontogenetic features that will impact on future studies on the evolution of terrestriality in tetrapods. For example, the large, posteriorly closed tympanic embayment has fine striations on an otherwise smooth surface, documenting the oldest known clear evidence for the presence of a tympanic membrane in the fossil record, a structure that is used for hearing airborne sound in extant tetrapods. The skull of C. morrisi also has several features associated with predatory behaviour, indicating that this dissorophid may have been one of the top terrestrial predators of its time.

Journal ArticleDOI
TL;DR: Monoterpene synthase activity associated with GPPS of I. pini possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.
Abstract: Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography–mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

PatentDOI
TL;DR: The first contact sex pheromone was identified in the Emerald Ash Borer (EAB), Agrilus planipennis Fairmaire (Coleoptra: B - prestidae ) and in particular the use of contact sex phenomones therefor as mentioned in this paper.
Abstract: The invention disclosed relates to the detection of the Emerald Ash Borer (EAB), Agrilus planipennis Fairmaire (Coleoptra: B - prestidae ) and in particular to the use of contact sex phenomones therefor. Analysis of the elytral hydrocarbons from male and female emerald ash borer, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C 25 ), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with (n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C 25 , which matched the natural compound by GC/MS (retention time and EI-mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular hydrocarbons. Hexane-washed females to which 9-Me-C 25 had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex-pheromone component of A. planipennis . This is the first contact sex pheromone identified in the Buprestidae.

Journal ArticleDOI
TL;DR: Noise-induced changes in the rhythmic firing activity of single Hodgkin–Huxley neurons are investigated, finding that the firing rate is greatly reduced by noise, even of quite small amplitudes.
Abstract: The effects of noise on neuronal dynamical systems are of much current interest. Here, we investigate noise-induced changes in the rhythmic firing activity of single Hodgkin–Huxley neurons. With additive input current, there is, in the absence of noise, a critical mean value µ = µ c above which sustained periodic firing occurs. With initial conditions as resting values, for a range of values of the mean µ near the critical value, we have found that the firing rate is greatly reduced by noise, even of quite small amplitudes. Furthermore, the firing rate may undergo a pronounced minimum as the noise increases. This behavior has the opposite character to stochastic resonance and coherence resonance. We found that these phenomena occurred even when the initial conditions were chosen randomly or when the noise was switched on at a random time, indicating the robustness of the results. We also examined the effects of conductance-based noise on Hodgkin–Huxley neurons and obtained similar results, leading to the conclusion that the phenomena occur across a wide range of neuronal dynamical systems. Further, these phenomena will occur in diverse applications where a stable limit cycle coexists with a stable focus.

Journal ArticleDOI
TL;DR: This study shows that for wild stripe-faced dunnarts daily torpor is an essential mechanism for overcoming energetic challenges during winter and that torpor data obtained in the laboratory can substantially underestimate the ecological significance ofdaily torpor in the wild.
Abstract: Mammalian hibernation, which lasts on average for about 6 months, can reduce energy expenditure by >90% in comparison to active individuals. In contrast, the widely held view is that daily torpor reduces energy expenditure usually by about 30%, is employed for a few hours every few days, and often occurs only under acute energetic stress. This interpretation is largely based on laboratory studies, whereas knowledge on daily torpor in the field is scant. We used temperature telemetry to quantify thermal biology and activity patterns of a small arid-zone marsupial, the stripe-faced dunnart Sminthopsis macroura (16.9 g), in the wild and to test the hypothesis that daily torpor is a crucial survival strategy of this species in winter. All individuals entered torpor daily with the exception of a single male that remained normothermic for a single day (torpor on 212 of 213 observation days, 99.5%). Torpor was employed at air temperatures (T (a)) ranging from approximately -1 degrees C to 36 degrees C. Dunnarts usually entered torpor during the night and aroused at midday with the daily increase of T (a). Torpor was on average about twice as long (mean 11.0 +/- 4.7 h, n = 8) than in captivity. Animals employed sun basking during rewarming, reduced foraging time significantly, and occasionally omitted activity for several days in sequence. Consequently, we estimate that daily torpor in this species can reduce daily energy expenditure by up to 90%. Our study shows that for wild stripe-faced dunnarts daily torpor is an essential mechanism for overcoming energetic challenges during winter and that torpor data obtained in the laboratory can substantially underestimate the ecological significance of daily torpor in the wild.

Journal ArticleDOI
TL;DR: Analysis of cuticular hydrocarbon profiles between queens and workers of the basal drywood termite Cryptotermes secundus provides deeper insights into how termites might have socially exploited these signatures from sexual communication in their cockroach-like ancestor.
Abstract: In social insects, it is assumed that signals of the queen inform nestmates about her reproductive status. Thus, workers forego their own reproduction if the queen signals high fertility. In hemimetabolous termites, little is known about reproductive inhibition, but evidence exists for a royal-pair control. Workers of lower termites exhibit a high developmental flexibility and are potentially able to become reproductives, but the presence of a fertile reproductive restrains them from reaching sexual maturity. The nature of this control, however, remains unknown. Here, we report on qualitative differences in cuticular hydrocarbon profiles between queens and workers of the basal drywood termite Cryptotermes secundus. Queens were characterized by a shift to long-chained and branched hydrocarbons. Most remarkably, similar chemical patterns are regarded as fertility cues of reproductives in social Hymenoptera. This might suggest that both groups of social insects convergently evolved similar chemical signatures. The present study provides deeper insights into how termites might have socially exploited these signatures from sexual communication in their cockroach-like ancestor.

Journal ArticleDOI
TL;DR: The frequencies of interspecies mating between B. terrestris males and native bumblebee queens in the wild on the islands of Hokkaido and Honshu are determined by analyzing the DNA sequences of spermatozoa stored in spermathecae of native queens.
Abstract: The European bumblebee, Bombus terrestris, is an invasive eusocial species whose distribution is expanding greatly beyond its native range because numerous colonies are imported to or locally produced in non-native countries for pollination of agricultural crops. Closely related species exist in Japan where the unrestricted import and use of B. terrestris has resulted in the establishment of wild colonies. Laboratory studies previously showed that B. terrestris and Japanese native species can copulate and produce fertilized eggs. Although these eggs do not hatch, the interspecific mating can cause a serious reproductive disturbance to native bumblebees. In this study, we determined the frequencies of interspecies mating between B. terrestris males and native bumblebee queens in the wild on the islands of Hokkaido and Honshu by analyzing the DNA sequences of spermatozoa stored in spermathecae of native queens. We found that 20.2% of B. hypocrita hypocrita queens and 30.2% of B. hypocrita sapporoensis queens had spermatozoa of B. terrestris males in their spermathecae. Given that a Bombus queen generally mates only once in her life, such high frequencies of interspecific mating with B. terrestris pose serious threats to the populations of native bumblebees in Japan.

Journal ArticleDOI
TL;DR: The discovery of an Asian carcharodontosaurid indicates that this clade was cosmopolitan in the Early to mid Cretaceous and that Asian large-bodied theropod faunas were no longer endemic at this time, and may suggest that the ascent of tyrannosaurids into theLarge-bodied dinosaurian predator niche was a late event that occurred towards the end of the Cret Jurassic.
Abstract: Little is known about the evolution of large-bodied theropod dinosaurs during the Early to mid Cretaceous in Asia. Prior to this time, Asia was home to an endemic fauna of basal tetanurans, whereas terminal Cretaceous ecosystems were dominated by tyrannosaurids, but the intervening 60 million years left a sparse fossil record. Here, we redescribe the enigmatic large-bodied Chilantaisaurus maortuensis from the Turonian of Inner Mongolia, China. We refer this species to a new genus, Shaochilong, and analyze its systematic affinities. Although Shaochilong has previously been allied with several disparate theropod groups (Megalosauridae, Allosauridae, Tyrannosauroidea, Maniraptora), we find strong support for a derived carcharodontosaurid placement. As such, Shaochilong is the first unequivocal Asian member of Carcharodontosauridae, which was once thought to be restricted to Gondwana. The discovery of an Asian carcharodontosaurid indicates that this clade was cosmopolitan in the Early to mid Cretaceous and that Asian large-bodied theropod faunas were no longer endemic at this time. It may also suggest that the ascent of tyrannosaurids into the large-bodied dinosaurian predator niche was a late event that occurred towards the end of the Cretaceous, between the Turonian and the Campanian.