scispace - formally typeset
Search or ask a question

Showing papers in "Naturwissenschaften in 2014"


Journal ArticleDOI
TL;DR: The results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey and support an idea that breeding of novel honeybee lines expressing higher amounts of GOx could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.
Abstract: Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.

90 citations


Journal ArticleDOI
TL;DR: The palatal configuration suggests that the skull of Gobivenator would have been akinetic but had already acquired prerequisites for later evolution of cranial kinesis in birds, such as the loss of the epipterygoid and reduction in contact areas among bones.
Abstract: Troodontidae is a clade of small-bodied theropod dinosaurs. A new troodontid, Gobivenator mongoliensis gen. et sp. nov., is described based on the most complete skeleton of a Late Cretaceous member of this clade presently known, from the Campanian Djadokhta Formation in the central Gobi Desert. G. mongoliensis is different from other troodontids in possessing a pointed anterior end of the fused parietal and a fossa on the surangular in front of the posterior surangular foramen. The skull was superbly preserved in the specimen and provides detailed information of the entire configuration of the palate in Troodontidae. Overall morphology of the palate in Gobivenator resembles those of dromaeosaurids and Archaeopteryx, showing an apparent trend of elongation of the pterygoid process of the palatine and reduction of the pterygopalatine suture toward the basal Avialae. The palatal configuration suggests that the skull of Gobivenator would have been akinetic but had already acquired prerequisites for later evolution of cranial kinesis in birds, such as the loss of the epipterygoid and reduction in contact areas among bones.

67 citations


Journal ArticleDOI
TL;DR: This study describes carbonate materials from Devonian (Upper Givetian to Lower Frasnian) bioherms of northern France and Triassic microbialites of Poland that most likely represent fossil remnants of keratose demosponges and confirms the architecture of these fibrous networks, which indicate a likely verongid affinity.
Abstract: Fossil record of Phanerozoic non-spicular sponges, beside of being important with respect to the lineage evolution per se, could provide valuable references for the investigation of Precambrian ancestral animal fossils. However, although modern phylogenomic studies resolve non-spicular demosponges as the sister group of the remaining spiculate demosponges, the fossil record of the former is extremely sparse or unexplored compared to that of the latter; the Middle Cambrian Vauxiidae Walcott 1920, is the only confirmed fossil taxon of non-spicular demosponges. Here, we describe carbonate materials from Devonian (Upper Givetian to Lower Frasnian) bioherms of northern France and Triassic (Anisian) microbialites of Poland that most likely represent fossil remnants of keratose demosponges. These putative fossils of keratose demosponges are preserved as automicritic clumps. They are morphologically distinguishable from microbial fabrics but similar to other spiculate sponge fossils, except that the skeletal elements consist of fibrous networks instead of assembled spicules. Consistent with the immunological behavior of sponges, these fibrous skeletons often form a rim at the edge of the automicritic aggregate, separating the inner part of the aggregate from foreign objects. To confirm the architecture of these fibrous networks, two fossil specimens and a modern thorectid sponge for comparison were processed for three-dimensional (3-D) reconstruction using serial grinding tomography. The resulting fossil reconstructions are three-dimensionally anastomosing, like modern keratose demosponges, but their irregular and nonhierarchical meshes indicate a likely verongid affinity, although a precise taxonomic conclusion cannot be made based on the skeletal architecture alone. This study is a preliminary effort, but an important start to identify fossil non-spicular demosponges in carbonates and to re-evaluate their fossilization potential.

64 citations


Journal ArticleDOI
TL;DR: Topology indicates that many purported chelicerate features, such as lamellar gills, and a differentiated posterior abdomen evolved sequentially in the chelicerates stem-lineage.
Abstract: The morphology of the arthropod Sanctacaris uncata, from the Middle Cambrian Burgess Shale of Canada, is reinterpreted based on a restudy of previously described material. Although originally considered a chelicerate-like arthropod, these affinities were dismissed based primarily on interpretations of the anterior appendages and hypotheses which considered the megacheirans (‘great-appendage’ arthropods) as putative ancestors of chelicerates. The similarities between megacheirans and chelicerates appear to be overstated however, and this study instead reaffirms the identity of putative chelicerate feature in S. uncata and similar arthropods such as Sidneyia and Emeraldella, both also from the Middle Cambrian Burgess Shale. Newly interpreted features, including the presence of pediform exites, multi-partite trunk exopods, and a trunk differentiated into an anterior limb-bearing area and a differentiated posterior limbless abdomen, were coded into an extensive phylogenetic data set of fossil and recent arthropods. In all analyses, Sanctacaris resolved as the basal-most member of total-group Euchelicerata (the least inclusive group including horseshoe crabs and arachnids but not pycnogonids), thus making it the oldest chelicerate in the fossil record. The vicissicaudates (including Sidneyia, Emeraldella, aglaspidids, and cheloniellids—all of which have previously been allied to chelicerates) resolved as sister-taxon to crown-group Chelicerata. This topology indicates that many purported chelicerate features, such as lamellar gills, and a differentiated posterior abdomen evolved sequentially in the chelicerate stem-lineage.

58 citations


Journal ArticleDOI
TL;DR: The results argue that females are selective in their choice of nursing partners and provide further support that communal nursing with the right partner is adaptive.
Abstract: Communal nursing, the provision of milk to non-offspring, has been argued to be a non-adaptive by-product of group living. We used 2 years of field data from a wild house mouse population to investigate this question. Communal nursing never occurred among females that previously lacked overlap in nest box use. Females nursed communally in only 33% of cases in which there was a communal nursing partner available from the same social group. Solitarily nursing females were not socially isolated in their group; nevertheless, high spatial associations prior to reproduction predict which potential female partner was chosen for communal nursing. An increase in partner availability increased the probability of communal nursing, but population density itself had a negative effect, which may reflect increased female reproductive competition during summer. These results argue that females are selective in their choice of nursing partners and provide further support that communal nursing with the right partner is adaptive.

53 citations


Journal ArticleDOI
TL;DR: This study provides the first evidence of extensive heat tolerance in free-ranging desert microbats and shows that these bats can tolerate the most extreme Tskin range known for mammals and delay regulation of Tskin by thermoconforming over a wide temperature range and thus decrease the risks of dehydration and consequently death.
Abstract: Climate changeispredicted toincrease temperature extremesandthusthermalstressonorganisms.Animalsliving in hot deserts are already exposed to high ambient tempera- tures (Ta) making them especially vulnerable to further warming. However, little is known about the effect of extreme heat events on small desert mammals, especially tree-roosting microbats that are not strongly protected from environmental temperature fluctuations. During a heat wave with record Tas at Sturt National Park, we quantified the thermal physiology and behaviour of a single free-ranging little broad-nosed (Scotorepens greyii, henceforth Scotorepens) and two inland freetail bats (Mormopterus species 3, henceforth Mormopterus) using temperature telemetry over 3 days. On 11 and 13 January, maximum Ta was ∼45.0 °C, and all monitored bats were thermoconforming. On 12 January 2013, when Ta exceeded 48.0 °C, Scotorepens abandoned its poorly insulated roost during the daytime, whereas both Mormopterus remained in their better insulated roosts and were mostly thermoconforming. Maximum skin temperatures (Tskin) ranged from 44.0 to 44.3 °C in Scotorepens and from 40.0to45.8°CinMormopterus,andthesearethehighestTskin values reported for any free-ranging bat. Our study provides the first evidence of extensive heat tolerance in free-ranging desert microbats. It shows that these bats can tolerate the most extreme Tskin range known for mammals (3.3 to 45.8 °C) and delay regulation of Tskin by thermoconforming over a wide temperature range and thus decrease the risks of dehydration and consequently death.

52 citations


Journal ArticleDOI
TL;DR: Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants.
Abstract: The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on (13)C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ(13)C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

46 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.
Abstract: The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

45 citations


Journal ArticleDOI
TL;DR: It is demonstrated that juveniles reared in a group grow on average faster compared to juveniles rearing in isolation under standardized laboratory conditions without predation risk, and genetic relatedness influenced social behavior in group-reared fish as well.
Abstract: Living in groups is a widespread phenomenon in many animal taxa. The reduction of predation risk is thought to be an important cause for the formation of groups. Consequently, grouping behavior is particularly pronounced during vulnerable life stages, i.e., as juveniles. However, group living does not only provide benefits but also imposes costs on group members, e.g., increased competition for food. Thus, benefits of grouping behavior might not be evident when predation risk is absent. The adaptive significance of living and also developing in a group independent from predation risk has received relatively little attention although this might have important implications on the evolution and maintenance of group living. The first aim of the present study was to examine whether the social environment affects juvenile performance in the cichlid fish Pelvicachromis taeniatus and, secondly, whether kinship affects social behavior. Kin selection theory predicts benefits from grouping with kin. Here, we demonstrate that juveniles reared in a group grow on average faster compared to juveniles reared in isolation under standardized laboratory conditions without predation risk. Furthermore, we found significant differences in social behavior between juveniles reared in a group and reared in isolation. Fish reared in isolation were significantly more aggressive and less willing to shoal than group-reared fish. As expected, genetic relatedness influenced social behavior in group-reared fish as well: dyads of juveniles consisting of kin showed increased group cohesiveness compared to non-kin dyads. We discuss the potential benefits of group living in general and living with kin in particular.

43 citations


Journal ArticleDOI
TL;DR: This study significantly improves knowledge of intraspecific variation in antiparasitism behavior of hosts between single- and multi-cuckoo systems and supports the strategy facilitation hypothesis.
Abstract: Parasites may, in multi-parasite systems, block the defenses of their hosts and thus thwart host recognition of parasites by frequency-dependent selection. Nest defenses as frontline may block or promote the subsequent stage of defenses such as egg recognition. We conducted comparative studies of the defensive strategies of a host of the Oriental cuckoo Cuculus optatus, the yellow-bellied prinia Prinia flaviventris, in mainland China with multiple species of cuckoos and in Taiwan with a single cuckoo species. Cuckoo hosts did not exhibit aggression toward cuckoos in the presence of multiple cuckoo species but showed strong aggressive defenses of hosts directed toward cuckoos in Taiwan. Furthermore, the cuckoo host in populations with a single cuckoo species was able to distinguish adults of its brood parasite, the Oriental cuckoo, from adult common cuckoos (Cuculus canorus). This represents the first case in which a cuckoo host has been shown to specifically distinguish Oriental cuckoo, from other Cuculus species. Hosts ejected eggs at a higher rate in a single cuckoo species system than in a multi-species cuckoo system, which supports the strategy facilitation hypothesis. Granularity analysis of variation in egg phenotype based on avian vision modeling supported the egg signature hypothesis in hosts because Taiwanese prinias increased consistency in the appearance of their eggs within individual hosts thus favoring efficient discrimination against cuckoo eggs. This study significantly improves our knowledge of intraspecific variation in antiparasitism behavior of hosts between single- and multi-cuckoo systems.

43 citations


Journal ArticleDOI
TL;DR: This study uses foetal/neonatal specimens of known species of living baleen whales to show how juvenile morphology of extant species affects phylogenetic placement of the species and provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included.
Abstract: Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

Journal ArticleDOI
TL;DR: This functional study on the teeth of Late Jurassic Dryolestes leiriensis and the living marsupial Monodelphis domestica shows that pretribosphenic and tribosphenIC molars show fundamental differences of food reduction strategies, representing a shift in dental function during the transition of tribospenic mammals.
Abstract: Appearance of the tribosphenic molar in the Late Jurassic (160 Ma) is a crucial innovation for food processing in mammalian evolution. This molar type is characterized by a protocone, a talonid basin and a two-phased chewing cycle, all of which are apomorphic. In this functional study on the teeth of Late Jurassic Dryolestes leiriensis and the living marsupial Monodelphis domestica, we demonstrate that pretribosphenic and tribosphenic molars show fundamental differences of food reduction strategies, representing a shift in dental function during the transition of tribosphenic mammals. By using the Occlusal Fingerprint Analyser (OFA), we simulated the chewing motions of the pretribosphenic Dryolestes that represents an evolutionary precursor condition to such tribosphenic mammals as Monodelphis. Animation of chewing path and detection of collisional contacts between virtual models of teeth suggests that Dryolestes differs from the classical two-phased chewing movement of tribosphenidans, due to the narrowing of the interdental space in cervical (crown–root transition) direction, the inclination angle of the hypoflexid groove, and the unicuspid talonid. The pretribosphenic chewing cycle is equivalent to phase I of the tribosphenic chewing cycle, but the former lacks phase II of the tribosphenic chewing. The new approach can analyze the chewing cycle of the jaw by using polygonal 3D models of tooth surfaces, in a way that is complementary to the electromyography and strain gauge studies of muscle function of living animals. The technique allows alignment and scaling of isolated fossil teeth and utilizes the wear facet orientation and striation of the teeth to reconstruct the chewing path of extinct mammals.

Journal ArticleDOI
TL;DR: The greater-than-expected photon counts compared with raw measures through the various filters, which also function as reflective material to other photons, suggest that photons of different wavelengths might be self-stimulatory and could play a significant role in cell-to-cell communication.
Abstract: During the first 24 h after removal from incubation, melanoma cells in culture displayed reliable increases in emissions of photons of specific wavelengths during discrete portions of this interval. Applications of specific filters revealed marked and protracted increases in infrared (950 nm) photons about 7 h after removal followed 3 h later by marked and protracted increases in near ultraviolet (370 nm) photon emissions. Specific wavelengths within the visible (400 to 800 nm) peaked 12 to 24 h later. Specific activators or inhibitors for specific wavelengths based upon Cosic’s resonant recognition model elicited either enhancement or diminishment of photons at the specific wavelength as predicted. Inhibitors or activators predicted for other wavelengths, even within 10 nm, were less or not effective. There is now evidence for quantitative coupling between the wavelength of photon emissions and intrinsic cellular chemistry. The results are consistent with initial activation of signaling molecules associated with infrared followed about 3 h later by growth and protein-structural factors associated with ultraviolet. The greater-than-expected photon counts compared with raw measures through the various filters, which also function as reflective material to other photons, suggest that photons of different wavelengths might be self-stimulatory and could play a significant role in cell-to-cell communication.

Journal ArticleDOI
TL;DR: The phylogenetic analysis that includes the two new findings support the view that procyonids dispersed from North America in two separate events, which involved reciprocal lineage migrations from North to South America, and included the evolution of South American endemic forms.
Abstract: We report two fossil procyonids, Cyonasua sp. and Chapalmalania sp., from the late Pliocene of Venezuela (Vergel Member, San Gregorio Formation) and Colombia (Ware Formation), respectively. The occurrence of these pre-Holocene procyonids outside Argentina and in the north of South America provides further information about the Great American Biotic Interchange (GABI). The new specimens are recognized in the same monophyletic group as procyonids found in the southern part of the continent, the “Cyonasua group,” formed by species of Cyonasua and Chapalmalania. The phylogenetic analysis that includes the two new findings support the view that procyonids dispersed from North America in two separate events (initially, previous to the first major migration wave—GABI 1—and then within the last major migration wave—GABI 4—). This involved reciprocal lineage migrations from North to South America, and included the evolution of South American endemic forms.

Journal ArticleDOI
TL;DR: The relationship between facial attractiveness and body height was found to be non-linear, with a positive relationship up to a height of 188 cm, but an inverse relationship in taller men as discussed by the authors.
Abstract: Health, facial and vocal attributes and body height of men may affect a diverse range of social outcomes such as attractiveness to potential mates and competition for resources. Despite evidence that each parameter plays a role in mate choice, the relative role of each and inter-relationships between them, is still poorly understood. In this study, we tested relationships both between these parameters and with testosterone and immune function. We report positive relationships between testosterone with facial masculinity and attractiveness, and we found that facial masculinity predicted facial attractiveness and antibody response to a vaccine. Moreover, the relationship between antibody response to a hepatitis B vaccine and body height was found to be non-linear, with a positive relationship up to a height of 188 cm, but an inverse relationship in taller men. We found that vocal attractiveness was dependent upon vocal masculinity. The relationship between vocal attractiveness and body height was also non-linear, with a positive relationship of up to 178 cm, which then decreased in taller men. We did not find a significant relationship between body height and the fundamental frequency of vowel sounds provided by young men, while body height negatively correlated with the frequency of second formant. However, formant frequency was not associated with the strength of immune response. Our results demonstrate the potential of vaccination research to reveal costly traits that govern evolution of mate choice in humans and the importance of trade-offs among these traits.

Journal ArticleDOI
TL;DR: Sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators.
Abstract: Long-tubed hawkmoth-pollinated species present some of the most remarkable examples of floral specialization depending exclusively on long-tongued hawkmoths for sexual reproduction. Nonetheless, long-tongued hawkmoths do not rely exclusively on specialized plants as nectar sources, which may limit sexual reproduction through pollen limitation. However, very few studies have quantified the level of pollen limitation in plants with highly specialized floral traits in tropical regions. In this context, we studied four sympatric hawkmoth-pollinated species in a highland Atlantic Rain forest and assessed pollen limitation and their dependence on pollinators by analyzing the floral biology, breeding system, pollination mechanisms, and abundance of long-tongued pollinators. We showed that the four species are self-compatible, but are completely dependent on long-tongued hawkmoths to set fruits, and that flower visitation was infrequent in all plant species. Pollen limitation indices ranged from 0.53 to 0.96 showing that fruit set is highly limited by pollen receipt. Long-tongued moths are much less abundant and comprise only one sixth of the hawkmoth fauna. Pollen analyses of 578 sampled moths revealed that hawkmoths visited ca. 80 plant species in the community, but only two of the four species studied. Visited plants included a long-tubed hawkmoth-pollinated species endemic to the lowland forest ca. 15–20 km away from the study site. Specialization index (H 2 ′ = 0.20) showed that community-level interactions between hawkmoths and plants are generalized. We suggest that sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators.

Journal ArticleDOI
TL;DR: Although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component, suggesting species differences in pollination buzzes may have important implications for foraging preferences in bumblebees.
Abstract: Bees produce vibrations in many contexts, including for defense and while foraging. Buzz pollination is a unique foraging behavior in which bees vibrate the anthers of flowers to eject pollen which is then collected and used as food. The relationships between buzzing properties and pollen release are well understood, but it is less clear to what extent buzzing vibrations vary among species, even though such information is crucial to understanding the functional relationships between bees and buzz-pollinated plants. Our goals in this study were (1) to examine whether pollination buzzes differ from those produced during defense, (2) to evaluate the similarity of buzzes between different species of bumblebees (Bombus spp.), and (3) to determine if body size affects the expression of buzzing properties. We found that relative peak amplitude, peak frequency, and duration were significantly different between species, but only relative peak amplitude differed between pollination and defensive buzzes. There were significant interactions between species and buzz type for peak frequency and duration, revealing that species differed in their patterns of expression in these buzz properties depending on the context. The only parameter affected by body size was duration, with larger bees producing shorter buzzes. Our findings suggest that although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component. Species differences in pollination buzzes may have important implications for foraging preferences in bumblebees, especially if bees select flowers best matched to release pollen for their specific buzzing characteristics.

Journal ArticleDOI
TL;DR: It is discovered here that specialised capture combined with very effective venom enables the capture of giant prey.
Abstract: It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.

Journal ArticleDOI
TL;DR: The population variability of M. subnitida is characterized using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing and molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya.
Abstract: Melipona subnitida, a tropical stingless bee, is an endemic species of the Brazilian northeast and exhibits great potential for honey and pollen production in addition to its role as one of the main pollinators of the Caatinga biome. To understand the genetic structure and better assist in the conservation of this species, we characterized the population variability of M. subnitida using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing. We collected workers from six localities in the northernmost distribution. Both methodologies indicated that the variability among the sampled populations is related both to the environment in which samples were collected and the geographical distance between the sampling sites, indicating that differentiation among the populations is due to the existence of at least evolutionary lineages. Molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya. The conservation of all evolutionary lineages is important since they can present differential resistance to environmental changes, as resistance to drought and diseases.

Journal ArticleDOI
TL;DR: A new specimen of the stem physeteroid Acrophyseter is reported, from the late middle to early late Miocene of Peru, displaying unusual bony outgrowths along some of the upper alveoli, identified as buccal maxillary exostoses, which support a raptorial feeding technique for Acphyseter and, indirectly, for other extinct sperm whales with a similar oral apparatus.
Abstract: Several extinct sperm whales (stem Physeteroidea) were recently proposed to differ markedly in their feeding ecology from the suction-feeding modern sperm whales Kogia and Physeter. Based on cranial, mandibular, and dental morphology, these Miocene forms were tentatively identified as macroraptorial feeders, able to consume proportionally large prey using their massive teeth and robust jaws. However, until now, no corroborating evidence for the use of teeth during predation was available. We report on a new specimen of the stem physeteroid Acrophyseter, from the late middle to early late Miocene of Peru, displaying unusual bony outgrowths along some of the upper alveoli. Considering their position and outer shape, these are identified as buccal maxillary exostoses. More developed along posterior teeth and in tight contact with the high portion of the dental root outside the bony alveoli, the exostoses are hypothesized to have developed during powerful bites; they may have worked as buttresses, strengthening the teeth when facing intense occlusal forces. These buccal exostoses further support a raptorial feeding technique for Acrophyseter and, indirectly, for other extinct sperm whales with a similar oral apparatus (Brygmophyseter, Livyatan, Zygophyseter). With a wide size range, these Miocene stem physeteroids were major marine macropredators, occupying ecological niches nowadays mostly taken by killer whales.

Journal ArticleDOI
TL;DR: Although the causes for low anguillid larval abundances in 2011 are unclear, the fact that there are presently fewer European and American eel larvae in the spawning area than during previous time periods indicates that decreased larval abundance and lower eventual recruitment begin within the spawn area.
Abstract: The European eel Anguilla anguilla has shown decreased recruitment in recent decades. Despite increasing efforts to establish species recovery measures, it is unclear if the decline was caused by reduced numbers of reproductive-stage silver eels reaching the spawning area, low early larval survival, or increased larval mortality during migration to recruitment areas. To determine if larval abundances in the spawning area significantly changed over the past three decades, a plankton trawl sampling survey for anguillid leptocephali was conducted in March and April 2011 in the spawning area of the European eel that was designed to directly compare to collections made in the same way in 1983 and 1985. The catch rates of most anguilliform leptocephali were lower in 2011, possibly because of the slightly smaller plankton trawl used, but the relative abundances of European eel and American eel, Anguilla rostrata, leptocephali were much lower in 2011 than in 1983 and 1985 when compared to catches of other common leptocephali. The leptocephali assemblage was the same in 2011 as in previous years, but small larvae of mesopelagic snipe eels, Nemichthys scolopaceus, which spawn sympatrically with anguillid eels, were less abundant. Temperature fronts in the spawning area were also poorly defined compared to previous years. Although the causes for low anguillid larval abundances in 2011 are unclear, the fact that there are presently fewer European and American eel larvae in the spawning area than during previous time periods indicates that decreased larval abundance and lower eventual recruitment begin within the spawning area.

Journal ArticleDOI
TL;DR: It is found that eggs stayed bluish-gray in nests where female access to the uropygial secretion was experimentally blocked, which strongly support the hypothesis that female hoopoes use their uropgial gland secretion to color the eggs.
Abstract: Uropygial gland secretions are used as cosmetics by some species of birds to color and enhance properties of feathers and teguments, which may signal individual quality. Uropygial secretions also reach eggshells during incubation and, therefore, may influence the coloration of birds' eggs, a trait that has attracted the attention of evolutionary biologists for more than one century. The color of hoopoe eggs typically changes along incubation, from bluish-gray to greenish-brown. Here, we test experimentally the hypothesis that dark uropygial secretion of females is responsible for such drastic color change. Moreover, since uropygial secretion of hoopoes has antimicrobial properties, we also explore the association between color and antimicrobial activity of the uropygial secretion of females. We found that eggs stayed bluish-gray in nests where female access to the uropygial secretion was experimentally blocked. Furthermore, experimental eggs that were maintained in incubators and manually smeared with uropygial secretion experienced similar color changes that naturally incubated eggs did, while control eggs that were not in contact with the secretions did not experience such color changes. All these results strongly support the hypothesis that female hoopoes use their uropygial gland secretion to color the eggs. Moreover, saturation of the uropygial secretion was associated with antimicrobial activity against Bacillus licheniformis. Given the known antimicrobial potential of uropygial secretions of birds, this finding opens the possibility that in scenarios of sexual selection, hoopoes in particular and birds in general signal antimicrobial properties of their uropygial secretion by mean of changes in egg coloration along incubation.

Journal ArticleDOI
TL;DR: Results would indicate that more attention should be given to mineral colloids in soils, and to the organo/mineral associations that will have an important role in the stabilities of OM in the soil environment.
Abstract: Humic substances (HSs), consisting, on the basis of solubilities in aqueous acid and basic media, of humic acids (HAs), fulvic acids (FAs), and humin (Hu), are the major components of soil organic matter (SOM). Most studies of soil/natural organic matter (SOM/NOM) have been carried out on extracts of soils in dilute sodium hydroxide solutions, the solvent used to extract the Standards of the International Humic Substances Society (IHSS). However, Hu, the major component in the classical definition of HSs, is insoluble in aqueous base and is not isolated by the traditional IHSS method. Recently, a sequential exhaustive extraction (SEE) process has been shown to be capable of isolating and separating the major components of the classically defined HSs from the soils of the temperate and tropical regions. The SEE system was used in the present study to isolate the HA/FA and Hu fractions from a subtropical volcanic Taiwanese soil. Chemical and compositional properties of these extracts were then compared with similarly obtained isolates from soils from the different climatic regions. Increases in the aliphatic relative to aromatic carbon contents were observed for both the HA and FA fractions when the pH values of the extraction media were increased. HAs and FAs isolated using the SEE method have spectroscopic profiles similar to those from the IHSS isolate; however, the cumulative extraction efficiency (%) of the SEE method (65 %) for the volcanic soil was much higher than for the traditional IHSS method (33 %). When the residual volcanic soil, following extractions once, three, and eight times with 0.1 M NaOH were then extracted with dimethyl sulphoxide (DMSO) plus concentrated sulphuric acid (the final solvent in the SEE sequence) it was seen that the content of crystalline polymethylene hydrocarbon (33 ppm 13C-NMR resonance in the Hu (or DMSO/acid)) extract increased relative to the amorphous methylene (30 ppm). That highlights the difficulty in dissolving the more highly ordered hydrocarbon structures that would be expected to have closer associations with the mineral colloids. Although the SEE procedure isolated all of the HAs and FAs from the Yangmingshan soil, extractability of the Hu from the volcanic soil in the DMSO/acid solvent was low (21 %), and contrasted with the much higher yields from temperate and tropical regions. The decreased Hu extraction may arise from its associations with the extensive iron and aluminium hydroxide mineral colloids in the soil. The Hu from this sub-tropical soil was different from the Hus isolated from other soil types, indicating the need to isolate and characterise these recalcitrant organic material in order to understand the organic carbon components in soils in greater detail. Such results would indicate that more attention should be given to mineral colloids in soils, and to the organo/mineral associations that will have an important role in the stabilities of OM in the soil environment.

Journal ArticleDOI
TL;DR: Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling, reminiscent of bioheat removal via the cardiovascular system of mammals.
Abstract: Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees (Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

Journal ArticleDOI
TL;DR: It is shown that AcMNPV ptp is not required for tree-top disease, indicating that in S. exigua baculovirus-induced hyperactivity and tree- top disease are independently induced behaviors that are governed by distinct mechanisms.
Abstract: Although many parasites are known to manipulate the behavior of their hosts, the mechanisms underlying such manipulations are largely unknown. Baculoviruses manipulate the behavior of caterpillar hosts by inducing hyperactivity and by inducing climbing behavior leading to death at elevated positions (tree-top disease or Wipfelkrankheit). Whether hyperactivity and tree-top disease are independent manipulative strategies of the virus is unclear. Recently, we demonstrated the involvement of the protein tyrosine phosphatase (ptp) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in the induction of hyperactivity in Spodoptera exigua larvae. Here we show that AcMNPV ptp is not required for tree-top disease, indicating that in S. exigua baculovirus-induced hyperactivity and tree-top disease are independently induced behaviors that are governed by distinct mechanisms.

Journal ArticleDOI
TL;DR: Experimental evidence is provided for the synergistic interaction of phototaxis and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects that can function as an effective ecological trap due to this synergism of optical cues.
Abstract: Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

Journal ArticleDOI
TL;DR: Astegotherium supports a recent hypothesis based on molecular data that enamel loss occurred independently not only within xenarthrans but also within dasypodid armadillos, and is therefore likely representative of ancestral cingulates and xenarthans generally.
Abstract: All xenarthrans known to date are characterized by having permanent teeth that are both high crowned and open rooted, ie, euhypsodont, and with a type of hypsodonty different from that of the rest of Placentalia: dentine hypsodonty Also, most xenarthrans lack enamel; however, its presence has been reported in the fossil armadillo Utaetus buccatus and in living Dasypus Considering the divergence of Xenarthra from other eutherians that possessed enameled teeth, the absence of enamel is a derived character Diverse specializations are known in the dentition of xenarthrans, but the primitive pattern of their teeth and dentitions is still unknown Here, we describe the mandible and teeth of a fossil armadillo, Astegotherium dichotomus (Astegotheriini, Dasypodidae), from the early Middle Eocene of Argentine Patagonia, with teeth showing both true enamel and closed roots It is the oldest xenarthran with mandibular remains exhibiting protohypsodonty and is therefore likely representative of ancestral cingulates and xenarthrans generally Astegotherium supports a recent hypothesis based on molecular data that enamel loss occurred independently not only within xenarthrans but also within dasypodid armadillos

Journal ArticleDOI
TL;DR: Evidence of four predation, scavenging, and/or interspecific fighting events involving two large paracrocodylomorphs (=‘rauisuchians’) from the Upper Triassic Chinle Formation are presented and it is shown they were intimately connected at the highest trophic levels.
Abstract: Hypotheses of feeding behaviors and community structure are testable with rare direct evidence of trophic interactions in the fossil record (e.g., bite marks). We present evidence of four predation, scavenging, and/or interspecific fighting events involving two large paracrocodylomorphs (=‘rauisuchians’) from the Upper Triassic Chinle Formation (∼220–210 Ma). The larger femur preserves a rare history of interactions with multiple actors prior to and after death of this ∼8–9-m individual. A large embedded tooth crown and punctures, all of which display reaction tissue formed through healing, record evidence of a failed attack on this individual. The second paracrocodylomorph femur exhibits four unhealed bite marks, indicating the animal either did not survive the attack or was scavenged soon after death. The combination of character states observed (e.g., morphology of the embedded tooth, ‘D’-shaped punctures, evidence of bicarination of the marking teeth, spacing of potentially serial marks) indicates that large phytosaurs were actors in both cases. Our analysis of these specimens demonstrates phytosaurs targeted large paracrocodylomorphs in these Late Triassic ecosystems. Previous distinctions between ‘aquatic’ and ‘terrestrial’ Late Triassic trophic structures were overly simplistic and built upon mistaken paleoecological assumptions; we show they were intimately connected at the highest trophic levels. Our data also support that size cannot be the sole factor in determining trophic status. Furthermore, these marks provide an opportunity to start exploring the seemingly unbalanced terrestrial ecosystems from the Late Triassic of North America, in which large carnivores far outnumber herbivores in terms of both abundance and diversity.

Journal ArticleDOI
TL;DR: Telomeric attrition with age agrees with results previously found in studies of telomeres; however, the variation in attrition with temperature was not simply predictable and may be the synergistic effects of temperature and some other factor.
Abstract: Telomeric attrition has repeatedly been found to correlate with the ageing of organisms; however, recent research is increasingly showing that the determinants of attrition dynamics are not well understood. This study examined the relative telomere lengths in Eastern mosquitofish, Gambusia holbrooki, kept at different temperatures and at different ages. Newly born fry were randomly selected for one of four treatment groups: 20, 30, 20-30, and 30-20 °C, where the third and fourth treatment groups were gradually changed from their starting temperature to their final temperature between days 10 and 14. Telomere length was measured, and it was found that length decreased with age and that fish exposed to the 20 °C treatment had significantly shorter telomeres than those that received the 30-20 °C treatment. Telomeric attrition with age agrees with results previously found in studies of telomeres; however, the variation in attrition with temperature was not simply predictable and may be the synergistic effects of temperature and some other factor.

Journal ArticleDOI
TL;DR: Results show that attaining a critical number of workers is the key parameter for honeybee colonies to start to shift resources towards reproduction, and are relevant to other social systems in which a group’s members must adjust their behavior as a function of the group's size.
Abstract: Social insect colonies, like individual organisms, must decide as they develop how to allocate optimally their resources among survival, growth, and reproduction. Only when colonies reach a certain state do they switch from investing purely in survival and growth to investing also in reproduction. But how do worker bees within a colony detect that their colony has reached the state where it is adaptive to begin investing in reproduction? Previous work has shown that larger honeybee colonies invest more in reproduction (i.e., the production of drones and queens), however, the term ‘larger’ encompasses multiple colony parameters including number of adult workers, size of the nest, amount of brood, and size of the honey stores. These colony parameters were independently increased in this study to test which one(s) would increase a colony’s investment in reproduction via males. This was assayed by measuring the construction of drone comb, the special type of comb in which drones are reared. Only an increase in the number of workers stimulated construction of drone comb. Colonies with over 4,000 workers began building drone comb, independent of the other colony parameters. These results show that attaining a critical number of workers is the key parameter for honeybee colonies to start to shift resources towards reproduction. These findings are relevant to other social systems in which a group’s members must adjust their behavior as a function of the group’s size.