scispace - formally typeset
Search or ask a question

Showing papers in "Neuroreport in 2017"


Journal ArticleDOI
TL;DR: It is suggested that long-term oral consumption of EGCG ameliorates impairments in spatial learning and memory and rescues the reduction in synaptic proteins observed in an AD mouse model and may represent a novel candidate agent for the treatment of neurodegenerative diseases.
Abstract: (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic extract in green tea and it has attracted increasing attention for its multiple bioactive effects However, the mechanisms by which EGCG exerts its neuroprotective actions in Alzheimer’s disease (AD) are presently lacking In th

45 citations


Journal ArticleDOI
TL;DR: Increased levels of fission and fusion proteins in APP/PS1 mice at 3 months are found, indicating that the presence of abnormal mitochondrial dynamics may be events in early AD progression.
Abstract: Increasing research suggests that mitochondrial defects play a major role in Alzheimer's disease (AD) pathogenesis. We aimed to better understand changes in mitochondria with the development and progression of AD. We compared APPsw/PS1dE9 transgenic mice at 3, 6, 9, and 12 months old as an animal model of AD and age-matched C57BL/6 mice as controls. The learning ability and spatial memory ability of APPsw/PS1dE9 mice showed significant differences compared with controls until 9 and 12 months. Mitochondrial morphology was altered in hippocampus tissue of APPsw/PS1dE9 mice beginning from the third month. 'Medullary corpuscle', which is formed by the accumulation of a large amount of degenerative and fragmented mitochondria in neuropils, may be the characteristic change observed on electron microscopy at a late stage of AD. Moreover, levels of mitochondrial fusion proteins (optic atrophy 1 and mitofusin 2) and fission proteins (dynamin-related protein 1 and fission 1) were altered in transgenic mice compared with controls with progression of AD. We found increased levels of fission and fusion proteins in APP/PS1 mice at 3 months, indicating that the presence of abnormal mitochondrial dynamics may be events in early AD progression. Changes in mitochondrial preceded the onset of memory decline as measured by the modified Morris water maze test. Abnormal mitochondrial dynamics could be a marker for early diagnosis of AD and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in AD.

41 citations


Journal ArticleDOI
TL;DR: It is shown that L-borneol, a messenger drug widely used in traditional Chinese medicine, can induce transient disruption of the blood–brain barrier and could enhance cisplatin accumulation within the glioma tissue and improve the survival of tumor-bearing mice.
Abstract: The blood-brain barrier (BBB) protects the central nervous system from external insults by limiting substance diffusion through the endothelial interface. The presence of the BBB makes drug delivery in neurological disorders very challenging. Cisplatin has been shown to be cytotoxic to glioma cells, but substantial limitations exist in its clinical applications due to difficulties in penetration across the BBB. Here, we show that L-borneol, a messenger drug widely used in traditional Chinese medicine, can induce transient disruption of the BBB after 20 min of oral administration. The permeability of the BBB began to recover within 1 h of the administration of L-borneol. Different dosages of L-borneol (100, 150, 300, 600, and 900 mg/kg) could induce significant Evans blue leakage (P<0.05). Oral administration of L-borneol elevated cisplatin concentrations in peritumoral tissue (1.24±0.12 μg/g) and tumor loci (1.41±0.13 μg/g), compared with those in the paraffin control (0.88±0.10 and 0.92±0.15 μg/g, respectively) (P<0.05). Furthermore, we found that the median survival period of tumor-bearing mice was significantly higher in the cisplatin plus L-borneol group (24.0±4.9 days) than in the cisplatin plus vehicle group (19.3±3.9 days) (P<0.05). The neurological deficits were more severe in the vehicle and cisplatin plus vehicle groups at 14 and 21 days after implantation of intracranial glioma cells than in the cisplatin plus L-borneol group. In conclusion, our results indicate that the transient opening of the BBB induced by L-borneol could enhance cisplatin accumulation within the glioma tissue and improve the survival of tumor-bearing mice.

35 citations


Journal ArticleDOI
TL;DR: It is indicated that HBO may promote NSC proliferation by activating VEGF/ERK signaling and play a crucial role in neuroprotection after TBI.
Abstract: Hyperbaric oxygen (HBO) therapy and neural stem cell (NSC) transplantation can improve traumatic brain injury (TBI) clinically This study aimed to investigate the mechanism of HBO promoting NSC proliferation and neurological recovery after TBI Twenty-four Sprague-Dawley rats were divided randomly into three groups: a sham group, a TBI group (constructed using Feeney's free-fall method), and an HBO-treated TBI group Neurological function was evaluated by Neurological Severity Scores on days 1, 3, and 7, and we found that TBI-induced poor neurological function was improved by HBO On day 7 after TBI, we observed that TBI promoted NSC proliferation, migration to the lesion area, and the levels of vascular endothelial growth factor (VEGF), VEGFR2, Raf-1, MEK1/2, and phospho-extracellular signal-regulated kinase (ERK) 1/2 protein, which were further boosted by HBO, from immunohistochemistry, immunofluorescence, and Western blot experiments In vitro, cell injury was applied to NSCs isolated from neonatal Sprague-Dawley rats by the Cell Injury Controller II system Moreover, data from the BrdU Kit and Western blot showed that in-vitro HBO significantly accelerated NSC proliferation and the levels of proteins related to cell cycle and the VEGF/ERK pathway after cell injury, which was suppressed by the VEGFR2 inhibitor Taken together, this study indicated that HBO may promote NSC proliferation by activating VEGF/ERK signaling and play a crucial role in neuroprotection after TBI

35 citations


Journal ArticleDOI
TL;DR: SI may be considered a robust model of the effects of early life stress on the schizophrenia-related behaviors in mice and potential interactions among HINT1, NR1, and D2R may underlie the behavioral deficits induced by SI.
Abstract: Both genetic factors and early life adversity play major roles in the etiology of schizophrenia. Our previous studies indicated that social isolation (SI) during early postnatal development leads to several lasting abnormal behavioral and pathophysiological features resembling the core symptoms of some human neuropsychiatric disorders in mice. The glutamate and dopamine hypotheses are tightly linked to the development of schizophrenia. The cross-talk between glutamate N-methyl-D-aspartate acid receptors and dopamine receptors is associated with histidine triad nucleotide binding protein 1 (HINT1), which is correlated with diverse psychiatric disorders. We examined the effects of SI on schizophrenia-like behavior and used enzyme-linked immunosorbent assays to investigate the expression levels of HINT1, the NR1 subunit of N-methyl-D-aspartate acid receptor, and dopamine type 2 receptor (D2R) in C57 mice. We found that SI leads to a series of schizophrenia-related deficits, such as social withdrawal, anxiety disorder, cognitive impairments, and sensorimotor gating disturbances. These abnormal phenotypes paralleled changes of HINT1, NR1, and D2R. SI may be considered a robust model of the effects of early life stress on the schizophrenia-related behaviors in mice. Potential interactions among HINT1, NR1, and D2R may underlie the behavioral deficits induced by SI.

33 citations


Journal ArticleDOI
TL;DR: A decreased electroencephalogram complexity was observed in the ASD children both during the observation and during the imitation tasks, which could provide further evidence of the relationship between ASD and cerebral dysfunction.
Abstract: Autism spectrum disorder (ASD) is a severe neurodevelopment disorder. This study tests the hypothesis that children with ASD show atypical intrinsic complexity of brain activity. Electroencephalogram data were collected from boys with ASD and matching normal typically developing children while performing an observation and an imitation task. The multiscale entropy was estimated within the 0.5-30 Hz frequency band over 30 time scales using a coarse-grained procedure. A decreased electroencephalogram complexity was observed in the ASD children both during the observation and during the imitation tasks. On comparing the two tasks, significant differences were observed between groups in the right hemisphere, and also the central cortex for the observation task. Multiscale entropy could provide further evidence of the relationship between ASD and cerebral dysfunction.

31 citations


Journal ArticleDOI
TL;DR: The results showed that the pDCD group had significantly lower fractional anisotropy in the corticospinal tract and superior longitudinal fasciculus and lower mean diffusivity in the internal capsule and inferior longitudinal fissure as discussed by the authors.
Abstract: Movement skill difficulties in children [or developmental coordination disorder (DCD)] often persist into adulthood (in up to 70% of cases). The suggestion of white matter microstructure alterations in children with DCD raises the question of whether similar alterations are present in adults with probable DCD (pDCD). Twelve adults with pDCD and 11 adults without pDCD underwent diffusion tensor imaging. The results showed that the pDCD group had significantly lower fractional anisotropy in the corticospinal tract and superior longitudinal fasciculus and lower mean diffusivity in the internal capsule and inferior longitudinal fasciculus. This suggests reduced white matter integrity in parietofrontal and corticospinal tracts, with possible compensatory increases in white matter integrity along the visual ventral stream and front-occipital networks. These findings support recent neuroimaging studies in children with DCD and suggest persistent neurobiological alterations along white matter tracts that are known to support motor planning, cognition and their association.

28 citations


Journal ArticleDOI
TL;DR: Sch B played an inhibitory role in the proliferation and invasion of glioma cells by regulating the HOTAIR–micoRNA-125a–mTOR pathway.
Abstract: Glioma is one of the most common malignant central nervous system tumors in humans. Schisandrin B (Sch B) has been confirmed to cause the proliferation and invasion of glioma cells. In the present study, the potential mechanism underlying the antitumor effect of Sch B on glioma cells was investigated. The glioma cell lines, U251 and U87, were exposed to Sch B, and the cell viability, apoptosis, migration, and invasion were determined using the MTT assay, flow cytometry, and transwell assay, respectively. Then, the effects of HOTAIR and miR-125a on tumor biology and the mammalian target of rapamycin (mTOR) protein expression in cell lines exposed to Sch B were investigated. The results showed that Sch B decreased HOTAIR expression and increased miR-125a-5p expression. HOTAIR overexpression decreased miR-125a expression and increased mTOR expression in cells with the treatment of Sch B. The miR-125a inhibitor reversed the effects of HOTAIR downregulation on cell proliferation and migration. On co-incubation with rapamycin, a specific mTOR inhibitor, the cell viability, migration, and invasion were decreased and cell apoptosis was increased in two cell lines exposed to Sch B after the treatment of pcDNA-HOTAIR. In conclusion, Sch B played an inhibitory role in the proliferation and invasion of glioma cells by regulating the HOTAIR-micoRNA-125a-mTOR pathway.

27 citations


Journal ArticleDOI
Xiao-Xia Fang1, Gao-Lin Sun, Yi Zhou, Yi-Hua Qiu, Yu-Ping Peng 
TL;DR: It is suggested that TGF-&bgr;1 protects neurons against A&b Gr;1–42-induced neuronal inflammation and apoptosis by activation of T&b gr;R-I.
Abstract: Alzheimer's disease (AD), the most common chronic neurodegenerative disease, is pathologically characterized by the formation of neurofibrillary tangles because of hyperphosphorylation of tau protein and extracellular deposits of amyloid-β (Aβ) protein termed senile plaques. Recent studies indicate that neuronal apoptosis caused by chronic neuroinflammation is one of the important pathogenesis of AD. Transforming growth factor (TGF)-β1 is a pleiotropic cytokine with immunosuppressive and anti-inflammatory properties. However, it is poorly known whether the anti-inflammatory property of TGF-β1 is involved in a neuroprotection in AD. Here, an AD cell model of hippocampal neurons induced by Aβ1-42 was used to show an anti-inflammatory and neuroprotective effect of TGF-β1 through its receptor transforming growth factor-β receptor type I (TβR-I). As expected, Aβ1-42-induced an upregulation in neuronal expression of amyloid precursor protein (APP), tumor necrosis factor-α, cyclooxygenase-2, Bax, cleaved caspase-3, and cleaved caspase-9, and a downregulation in the expression of Bcl-2, as well as an increase in the number of NeuN/terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) double-positive cells. TGF-β1 pretreatment reduced the Aβ1-42-induced effects of upregulating APP, tumor necrosis factor-α, Bax, cleaved caspase-3 and cleaved caspase-9, and downregulating Bcl-2, in addition to increasing NeuNTUNEL cell number. TβR-I expression in hippocampal neurons was downregulated by Aβ1-42 exposure, but upregulated by TGF-β1 pretreatment. Silencing of the TβR-I gene in the neurons abolished the anti-inflammatory and antiapoptotic effects of TGF-β1 in the Aβ1-42-induced AD cell model. These findings suggest that TGF-β1 protects neurons against Aβ1-42-induced neuronal inflammation and apoptosis by activation of TβR-I.

27 citations


Journal ArticleDOI
TL;DR: It is indicated that BDNF-AS siRNA induces activation of the BDNF–TrkB–PI3K/Akt pathway following H/R-induced neurotoxicity.
Abstract: Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal cell apoptosis. The antisense RNA of brain-derived neurotrophic factor (BDNF-AS) is a natural antisense transcript that is transcribed opposite the gene that encodes BDNF. The aim of this study was to determine whether knockdown of BDNF-AS can suppress hypoxia/reoxygenation (H/R)-induced neuronal cell apoptosis and whether this is mediated by the BDNF-TrkB-PI3K/Akt pathway. We detected the expression of BDNF and BDNF-AS in brain tissue from 20 patients with cerebral infarction and five patients with other diseases (but no cerebral ischemia). We found that BDNF expression was significantly downregulated in patients with cerebral infarction, whereas the expression of BDNF-AS was significantly upregulated. In both human cortical neurons (HCN2) and human astrocytes, H/R significantly induced the expression of BDNF-AS, but significantly decreased BDNF expression. H/R also significantly induced apoptosis and reduced the mitochondrial membrane potential in these cells. Following downregulation of BDNF-AS by siRNA in human cortical neurons and human astrocyte cells, BDNF expression was significantly upregulated and the H/R-induced upregulation of BDNF-AS was significantly attenuated. BDNF-AS siRNA inhibited H/R-induced cell apoptosis and ameliorated the H/R-induced suppression of mitochondrial membrane potential. H/R inhibited the expression of BDNF, p-AKT/AKT, and TrKB, and this inhibition was recovered by BDNF-AS siRNA. In summary, this study indicates that BDNF-AS siRNA induces activation of the BDNF-TrkB-PI3K/Akt pathway following H/R-induced neurotoxicity. These findings will be useful toward the application of BDNF-AS siRNA for the treatment of neurodegenerative diseases.

25 citations


Journal ArticleDOI
TL;DR: The results showed that treatment with montelukast could protect DA neurons against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity and its administration significantly attenuated the production of neurotoxic cytokines such as tumor necrosis factor-&agr; (TNF;) and interleukin-1&bgr; (IL-1) from activated microglia in the substantia nigra and striatum following 6-OHda treatment.
Abstract: Although the main cause of degeneration of the nigrostriatal dopaminergic (DA) projection in Parkinson's disease (PD) is still controversial, many reports suggest that excessive inflammatory responses mediated by activated microglia can induce neurotoxicity in the nigrostriatal DA system in vivo. Montelukast, which plays an anti-inflammatory role, is used to treat patients with asthma. In addition, recent studies have reported that its administration could reduce neuroinflammatory activities, showing beneficial effects against various neuropathological conditions. These results suggest that montelukast may be a useful drug to alleviate inflammatory responses in PD, even though there are no reports showing its beneficial effects against neurotoxicity in the nigrostriatal DA system. In the present study, our results showed that treatment with montelukast could protect DA neurons against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity and its administration significantly attenuated the production of neurotoxic cytokines such as tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from activated microglia in the substantia nigra (SN) and striatum following 6-OHDA treatment. Therefore, we suggest that montelukast can be used as a potential inhibitor of microglial activation to protect DA neurons in the adult brain against PD.

Journal ArticleDOI
TL;DR: It is suggested that GSE immediately improves the postural stability required for vestibular function and can be mediated by VSR improvements.
Abstract: Gaze-stabilization exercise (GSE) is often conducted in vestibular rehabilitation, but its effect on vestibular function in postural control is not clear. We investigated whether GSE affects vestibular function during static upright standing and vestibulospinal reflex (VSR) in healthy young adults.

Journal ArticleDOI
TL;DR: A neuroprotective role of 4-PBA and metformin is shown and the beneficial effects reported in the malin knockout model of LD are extended, bringing about a reduction in both seizure number and length and eliminated the mortality induced by PTZ.
Abstract: Lafora disease (LD) is a rare adolescent-onset progressive myoclonic epilepsy caused by loss-of-function mutations either in the EPM2A gene encoding laforin or in the EPM2B gene encoding malin. Mouse models with deletion in the Epm2a or the Epm2b gene show intracellular aggregates of polyglucosans (Lafora bodies) and neurological complications that resemble those observed in patients with LD. In the absence of laforin or malin expression, mice also show different degrees of hyperexcitability, as reflected by an enhanced response to the convulsant drug pentylenetetrazol (PTZ). Malin knockout mice treated with 4-phenylbutyric acid (4-PBA) and metformin showed decreased amounts of Lafora bodies and polyubiquitin protein aggregates in the brain, diminished neurodegeneration, and amelioration of some neurological conditions. In this study, we analyzed the action of 4-PBA and metformin treatments on response to PTZ in a malin knockout model of LD. Both treatments decreased seizure susceptibility, bringing about a reduction in both seizure number and length, and eliminated the mortality induced by PTZ. These results show a neuroprotective role of 4-PBA and metformin and extend the beneficial effects reported in the malin knockout model of LD Video abstract: http://links.lww.com/WNR/A411.

Journal ArticleDOI
TL;DR: There is a reduction in motor neuronal Notch signaling and associated changes in Shh signaling, occurring coincidentally with disease expression, that may contribute toward the dysfunction and death of motor neurons in amyotrophic lateral sclerosis.
Abstract: The developmental morphogen Sonic hedgehog (Shh) may continue to play a sustaining role in adult motor neurons, of potential relevance to motor neuron diseases including amyotrophic lateral sclerosis. The Shh signaling pathway is incompletely understood and interactions with other signaling pathways are possible. We focus here on Notch, and first show that there is an almost linear reduction in light output from a Gli reporter in Shh Light II cells in the presence of increasing concentrations of the Notch inhibitor DAPT (r=0.982). Second, in the spinal cord of mutant superoxide dismutase mice, but not control mice, a key marker of Notch signaling changes with age. Before the onset of clinical signs, the Notch intracellular domain is expressed predominantly in motor neurons, but by 125 days of age, Notch intracellular domain expression is markedly reduced in motor neurons and increased in neighboring astroglia. Third, there is a parallel reduction in Gli protein expression in mutant superoxide dismutase mouse spinal motor neurons, consistent with the observed reduction in Notch signaling and also a redistribution of Gli away from the nucleus. Thus, there is a reduction in motor neuronal Notch signaling and associated changes in Shh signaling, occurring coincidentally with disease expression, that may contribute toward the dysfunction and death of motor neurons in amyotrophic lateral sclerosis.

Journal ArticleDOI
TL;DR: Electroencephalography oscillation in patients with chronic DOC showed that application of 10-Hz rTMS to the left dorsolateral prefrontal cortex decreased low-frequency band power and increased high-frequencyBand power in DOC patients, especially in minimal conscious state patients.
Abstract: Repetitive transcranial magnetic stimulation (rTMS) has been applied for the treatment of patients with disorders of consciousness (DOC). Timely and accurate assessments of its modulation effects are very useful. This study evaluated rTMS modulation effects on electroencephalography (EEG) oscillation in patients with chronic DOC. Eighteen patients with a diagnosis of DOC lasting more than 3 months were recruited. All patients received one session of 10-Hz rTMS at the left dorsolateral prefrontal cortex and then 12 of them received consecutive rTMS treatment everyday for 20 consecutive days. Resting-state EEGs were recorded before the experiment (T0) after one session of rTMS (T1) and after the entire treatment (T2). The JFK Coma Recovery Scale-Revised scale scores were also recorded at the time points. Our data showed that application of 10-Hz rTMS to the left dorsolateral prefrontal cortex decreased low-frequency band power and increased high-frequency band power in DOC patients, especially in minimal conscious state patients. Considering the correlation of the EEG spectrum with the consciousness level of patients with DOC, quantitative EEG might be useful for assessment of the effect of rTMS in DOC patients.

Journal ArticleDOI
TL;DR: It is shown that oxytocin secretion from the PVN does have a diurnal pattern and that the terminals of orexin neurons, the neuropeptide responsible for regulating the sleep–wake rhythm, are synapsed with PVN oxytocIn neurons, which suggest that orex in is a possible candidate to regulate the circadian rhythm of PVN Oxytocin neurons.
Abstract: Oxytocin neurons in the paraventricular nucleus (PVN) of the hypothalamus play an important role in food intake regulation. It has been shown that the secretion of oxytocin from the hypothalamus shows a diurnal circadian rhythmic pattern and disturbance of this pattern leads to the development of obesity. However, whether oxytocin secretion from the PVN has a diurnal pattern remains unknown. Here, we show that oxytocin secretion from the PVN does have a diurnal pattern and that the terminals of orexin neurons, the neuropeptide responsible for regulating the sleep-wake rhythm, are synapsed with PVN oxytocin neurons. Using transgenic rats selectively expressing monomeric red fluorescent protein 1 in oxytocin neurons, we found that orexin-A inhibits the activities of PVN oxytocin neurons by inhibiting glutamatergic excitatory synaptic input. These data suggest that orexin is a possible candidate to regulate the circadian rhythm of PVN oxytocin neurons. The circadian rhythmic secretion of oxytocin is considered to play an important role in maintaining homeostasis, including body weight regulation. Our present data indicate a possible contribution of orexin toward the development of circadian rhythm in PVN oxytocin neurons.

Journal ArticleDOI
TL;DR: Folic acid significantly improved depression-like behaviors in CUMS-induced rats, and its antidepressant effects might be related to the increase of brain 5-HT concentration, BDNF and GluR1 expression, and repair of synaptic organization in the brain.
Abstract: Folic acid is a vitamin with a variety of pharmacological effects. The present study aims to explore the beneficial effects of folic acid on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors and its possible mechanisms. The behavioral tests including open-field test, tail suspension test, and forced swimming test were used to evaluate the antidepressant effects of folic acid. Then the changes of brain 5-hydroxytryptamine (5-HT) concentration, brain-derived neurotrophic factor (BDNF), glutamate receptor 1 (GluR1) expression levels, and synaptic organization were assessed to explore the antidepressant mechanisms of folic acid. Our results showed that CUMS caused significant depression-like behaviors, neuropathological changes, and decreased brain 5-HT concentration, BDNF, and GluR1 expression in the hippocampus and association cortex. In conclusion, the results showed that folic acid significantly improved depression-like behaviors in CUMS-induced rats, and its antidepressant effects might be related to the increase of brain 5-HT concentration, BDNF and GluR1 expression, and repair of synaptic organization in the brain.

Journal ArticleDOI
TL;DR: Findings provide the first evidence for fetal language discrimination as assessed by fetal biomagnetometry and support the hypothesis that rhythm constitutes a prenatally available building block in language acquisition.
Abstract: Using fetal biomagnetometry, this study measured changes in fetal heart rate to assess discrimination of two rhythmically different languages (English and Japanese) Two-minute passages in English and Japanese were read by the same female bilingual speaker Twenty-four mother–fetus pairs (mean gesta

Journal ArticleDOI
TL;DR: Treating NOD experimental autoimmune encephalomyelitis mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel specific MPO inhibitor, showed that KYC treatment not only attenuated MPO-mediated oxidative stress but also reduced demyelination and axonal injury in NOD EAE mice.
Abstract: It is known that oxidative stress produced by proinflammatory myeloid cells plays an important role in demyelination and neuronal injury in progressive multiple sclerosis (MS). Myeloperoxidase (MPO) is a pro-oxidative enzyme released from myeloid cells during inflammation. It has been shown that MPO-dependent oxidative stress plays important roles in inducing tissue injury in many inflammatory diseases. In this report, we treated NOD experimental autoimmune encephalomyelitis (EAE) mice, a murine model of progressive MS, with N-acetyl lysyltyrosylcysteine amide (KYC), a novel specific MPO inhibitor. Our data showed that KYC treatment not only attenuated MPO-mediated oxidative stress but also reduced demyelination and axonal injury in NOD EAE mice. More importantly, we found that KYC treatment increased oligodendrocyte regeneration and neurogenesis in NOD EAE mice. Taken together, our data suggests that targeting MPO should be a good therapeutic approach for reducing oxidative injury and preserving neuronal function in progressive MS patients.

Journal ArticleDOI
TL;DR: Resting state functional MRI evidence that the functional connectivity of the pre-SMA is involved in semantic language processing is provided and that this identification may be useful for establishing language laterality in preoperative neurosurgical planning is provided.
Abstract: An abundance of evidence points to the role of a presupplementary motor area (pre-SMA) in human language This study explores the pre-SMA resting state connectivity network and the nature of its connections to known language areas We tested the hypothesis that by seeding the pre-SMA, one would be able to establish language laterality to known cortical and subcortical language areas We analyzed data from 30 right-handed healthy controls and performed the resting state functional MRI A seed-based analysis using a manually drawn pre-SMA region of interest template was applied Time-course signals in the pre-SMA region of interest were averaged and cross-correlated to every voxel in the brain Results show that the pre-SMA has significant left-lateralized functional connectivity to the pars opercularis within Broca's area Among cortical regions, pre-SMA functional connectivity is strongest to the pars opercularis In addition, pre-SMA connectivity was shown to exist to other cortical language-association regions, including Wernicke's Area, supramarginal gyri, angular gyri, and middle frontal gyri Among subcortical areas, considerable left-lateralized functional connectivity occurs to the caudate and thalamus, whereas cerebellar subregions show right lateralization The current study shows that the pre-SMA most strongly connects to the pars opercularis within Broca's area and that cortical connections to language areas are left lateralized among a sample of right-handed patients We provide resting state functional MRI evidence that the functional connectivity of the pre-SMA is involved in semantic language processing and that this identification may be useful for establishing language laterality in preoperative neurosurgical planning

Journal ArticleDOI
TL;DR: The phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway plays a key role in autophagy and a clear upregulation of this signaling after MPTP induction is shown.
Abstract: Several lines of evidence suggest that the inflammasome activation is involved in the progression of neurodegenerative diseases. However, the relation between Parkinson's disease (PD) and the inflammasome is still unclear. This study was designed to assess the involvement of inflammasome in acute experimental PD. Specifically, acute PD was induced in C57BL/6 mice by an injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At seven days from MPTP induction, mice were euthanized and the midbrains were sampled to carry out immunohistochemical evaluations and western blot analysis. Our results show the activation of Nod-like receptor-3 inflammasome in acute MPTP mice, as suggested by the increase of nuclear factor-κB expression, which represents the first signal for inflammasome induction. The Nod-like receptor-3 assembly induces the activation of caspase-1, which in turn activates interleukin-1β and interleukin-18 production, as confirmed by our evaluations. A dysregulation of autophagy system was also found in acute MPTP mice by looking at the expression of Beclin-1, LC-3, and Bcl-2, chosen as markers of autophagy. Thus, in an effort to identify the molecular mechanism underlying the well-known crosstalk between autophagy and the inflammasome, we evaluated the involvement of the phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, which plays a key role in autophagy. Our results showed a clear upregulation of this signaling after MPTP induction. Taken together, our findings suggest that the triggering of inflammasome could be linked to impaired autophagy because of aberrant upstream activation of the PI3K/Akt/mTOR pathway. Finally, our results propose the inflammasome as a new potential therapeutic target in the management of PD.

Journal ArticleDOI
TL;DR: There was no significant relationship between the different mean ReHo values in the brain regions and the clinical features in patients with late monocular blindness, which may reflect brain dysfunction in these regions.
Abstract: Many previous studies have demonstrated that the blindness patients have has functional and anatomical abnormalities in the visual and other vision-related cortex. However, changes in the brain function in late monocular blindness (MB) at rest are largely unknown. In this study, we investigated the underlying regional homogeneity (ReHo) of brain-activity abnormalities in patients with late MB and their relationship with clinical features. A total of 32 patients with MB (25 male and seven female) and 32 healthy controls (HCs) (25 male and seven female) closely matched in age, sex, and education underwent resting-state functional MRI scans. The ReHo method was used to assess local features of spontaneous brain activities. Patients with MB were distinguishable from HCs using the receiver operating characteristic curve. The relationship between the mean ReHo in brain regions and the behavioral performance was calculated using correlation analysis. Compared with HCs, patients with MB showed significantly decreased ReHo values in the right rectal gyrus, right cuneus, right anterior cingulate, and right lateral occipital cortex and increased ReHo values in the right inferior temporal gyrus, right frontal middle orbital, left posterior cingulate/precuneus, and left middle frontal gyrus. However, there was no significant relationship between the different mean ReHo values in the brain regions and the clinical features. Late MB involves abnormalities of the visual cortex and other vision-related brain regions, which may reflect brain dysfunction in these regions.

Journal ArticleDOI
TL;DR: H2 treatment markedly improved blood–brain barrier integrity and reduced caspase-3 activity in the hippocampus of surgery-challenged animals, suggesting that H2 treatment could significantly mitigate surgery-induced cognitive impairment by regulating inflammation and apoptosis.
Abstract: Postoperative cognitive decline is a major clinical problem with high morbidity and mortality after surgery. Many studies have found that molecular hydrogen (H2) has significant neuroprotection against acute and chronic neurological injury by regulating inflammation and apoptosis. In this study, we hypothesized that H2 treatment could ameliorate the development of cognitive impairment following surgery. Adult male rats were subjected to stabilized tibial fracture operation under anesthesia. Two percent of H2 was inhaled for 3 h beginning at 1 h after surgery. Separate cohorts of rats were tested for cognitive function with fear conditioning and the Y-maze test, or euthanized to assess blood-brain barrier integrity, and systemic and hippocampal proinflammatory cytokine and caspase-3 activity. Surgery-challenged animals showed significant cognitive impairment evidenced by a decreased percentage of freezing time and an increased number of learning trials on days 1, 3, and 7 after operation, which were significantly improved by H2 treatment. Furthermore, H2 treatment significantly ameliorated the increase in serum and hippocampal proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and high-mobility group protein 1 in surgery-challenged animals. Moreover, H2 treatment markedly improved blood-brain barrier integrity and reduced caspase-3 activity in the hippocampus of surgery-challenged animals. These findings suggest that H2 treatment could significantly mitigate surgery-induced cognitive impairment by regulating inflammation and apoptosis.

Journal ArticleDOI
TL;DR: The results substantiate that the perceived exertion correlates with the central motor command during movement execution rather than the preparatory process, and not only reflects central fatigue but could also reflect the peripheral local muscle fatigue.
Abstract: The aim of this study was to explore the mechanism on perceived exertion during muscle fatigue. A total of 15 individuals in the fatigue group and 13 individuals in the nonfatigue group were recruited into this study, performing 200 intermittent handgrip contractions with 30% maximal voluntary contraction. The force, surface electromyography (sEMG), movement-related cortical potentials (MRCPs), and rating perception of effort (RPE) were combined to evaluate the perceived exertion during muscle fatigue. The maximal handgrip force significantly decreased (P<0.01), the root mean square of sEMG over each block significantly increased (P<0.01), and SD of force at plateau increased (P<0.01) during muscle fatigue. The RPE scores reported by the individuals and the motor potential amplitude of MRCPs in the fatigue group significantly increased (P<0.001). However, as for the individuals in the nonfatigue group, the other indexes showed no significant changes except for a little increase in the RPE. The within-subject correlation coefficients showed that there were significant correlations between RPE and motor potential amplitude of MRCPs at the C1 site (r=-0.609, P<0.001) and between RPE and root mean square of sEMG (r=0.541, P<0.001). Our results substantiate that the perceived exertion correlates with the central motor command during movement execution rather than the preparatory process. The perceived exertion not only reflects central fatigue but could also reflect the peripheral local muscle fatigue.

Journal ArticleDOI
TL;DR: The present study confirmed that the elevated Lp-PLA2 level can be a risk factor for ischemic stroke in the Chinese population and may be a predictive factor for the recurrence of ACI.
Abstract: There is a strong association between lipoprotein-associated phospholipase A2 (Lp-PLA2) levels and atherosclerosis-related diseases. The aim of this study was to investigate the role of Lp-PLA2 in the ischemic stroke and further offer clinical evidence that measuring Lp-PLA2 helps predict the risk of stroke occurrence and recurrence. A total of 328 hospitalized patients were recruited, including 179 cases of acute cerebral infarction (ACI) and 149 non-ACI controls. The serum level of Lp-PLA2 in ACI was significantly higher than non-ACI. The serum level of Lp-PLA2 in the recurrence of ACI was significantly higher than the nonrecurrence. The serum levels of Lp-PLA2 in large-artery atherosclerosis subtype were the highest among the subtypes of the Trial of Org 10172 in Acute Stroke Treatment and non-ACI controls. The level of Lp-PLA2 in large-artery atherosclerosis and the cardioembolism group was statistically significantly higher than that of the control cases. There was no statistically significant difference between the small-vessel occlusion group and the control cases. The present study confirmed that the elevated Lp-PLA2 level can be a risk factor for ischemic stroke in the Chinese population. The serum level of Lp-PLA2 may be a predictive factor for the recurrence of ACI.

Journal ArticleDOI
TL;DR: An ultra-high-field, diffusion-weighted MRI method to quantitatively assess u-fibers is presented and the results indicate that the density or the number of u-Fiber counts is reduced in patients with nonlesional epilepsy.
Abstract: In this methods development, we present an ultra-high-field, diffusion-weighted MRI method to quantitatively assess u-fibers and use it to compare u-fiber counts in nonlesional epilepsy patients with controls. Emerging evidence implicates white matter abnormalities in nonlesional epilepsy, including the short-range, cortical-cortical connections, or u-fibers. Eight patients with nonlesional epilepsy and eight demographically matched controls underwent 7 T MRI consisting of a T1-weighted sequence (0.7 mm isotropic resolution) and high-angular-resolved diffusion-weighted MRI (1.05 mm isotropic resolution, 68 directions). MRI data were used to quantify u-fiber counts in known u-fiber populations on the basis of an atlas and fiber tractography. From tractography, connectivity matrices summarizing the u-fiber counts were computed. Quantitative group comparisons were performed on the connectivity matrices. U-fiber counts were found to be lower on average in patients with epilepsy than in healthy controls. The results indicate that the density or the number of u-fibers is reduced in patients with nonlesional epilepsy. Future work will focus on histological validation and determining whether differences in u-fiber counts can be used clinically to noninvasively identify seizure-onset zones.

Journal ArticleDOI
TL;DR: The study suggests the inability of prophylactic insulin administration against cognitive dysfunction induced by environmental toxin (AlCl3) in the hippocampus and the frontal cortex in rodents.
Abstract: Latest reports suggest the involvement of insulin in modulating memory. A few published in-vitro studies favor the antidementia effect of insulin. Thus, the present study aimed to evaluate the prophylactic role of insulin and its combination with glucose and its possible mechanism(s) in an aluminum chloride (AlCl3)-induced cognitive dysfunction model in rodents, with a special focus on memory centers namely, the hippocampus and the frontal cortex. Male Wistar rats were exposed to AlCl3 (175 mg/kg orally) for 60 days. Insulin (0.5 IU/kg), Insulin (0.5 IU/kg) in combination with glucose (200 mg/kg), and rivastigmine (1 mg/kg) were administered intraperitoneally 45 min before the administration of AlCl3 for 60 days. Spatial memory was assessed using the Morris water-maze test. After 60 days of treatment, animals were killed, and the hippocampus and frontal cortex were collected and analyzed for acetylcholinesterase activity and antioxidant enzyme level. Blood glucose levels were also analyzed. Treatment with the standard drug, rivastigmine (1 mg/kg), produced a significant reduction in escape latency and increased the time spent in the target quadrant compared with the AlCl3-treated group. Insulin and its combination with glucose could not inhibit the behavioral impairments in aluminum-exposed rats. Treatment with insulin alone and its combination with glucose reversed the increased glucose levels. Insulin alone and its combination with glucose could not inhibit aluminum-induced oxidative stress and impaired cholinergic transmission in the hippocampus and frontal cortex regions. The study suggests the inability of prophylactic insulin administration against cognitive dysfunction induced by environmental toxin (AlCl3) in the hippocampus and the frontal cortex.

Journal ArticleDOI
TL;DR: The group subjected to treatment by the M. pruriens extract showed significant protection against brain damage compared with the negative control group, which indicates the therapeutic potential of this plant in ischemia.
Abstract: Stroke is considered to be one of the most important causes of death worldwide. Global ischemia causes widespread brain injury and infarctions in various regions of the brain. Oxidative stress can be considered an important factor in the development of tissue damage, which is caused because of arterial occlusion with subsequent reperfusion. Kapikacchu or Mucuna pruriens, commonly known as velvet bean, is well known for its aphrodisiac activities. It is also used in the treatment of snakebites, depressive neurosis, and Parkinson’s disease. Although this plant has different pharmacological actions, its neuroprotective activity has received minimal attention. Thus, this study was carried out with the aim of valuating the neuroprotective action of M. pruriens in bilateral carotid artery occlusioninduced global cerebral ischemia in Wistar rats. The carotid arteries of both sides were occluded for 30 min and reperfused to induce global cerebral ischemia. The methanolic plant extract was administered to the study animals for 10 days. The brains of the Wistar rats were isolated by decapitation and observed for histopathological and biochemical changes. Cerebral ischemia resulted in significant neurological damage in the brains of the rats that were not treated by M. pruriens. The group subjected to treatment by the M. pruriens extract showed significant protection against brain damage compared with the negative control group, which indicates the therapeutic potential of this plant in ischemia

Journal ArticleDOI
TL;DR: It is indicated that pretreatment with minocycline can alleviate midazolam-induced damage in neural stem cell proliferation of neonatal rats and improve spatial learning and memory ability of rats in adulthood.
Abstract: Laboratory studies suggested that general anesthetics induce neuroapoptosis and inhibit neurogenesis in developing brains of animals. Minocycline exerts neuroprotection against a wide range of toxic insults in neurodegenerative diseases models. Here, we investigate whether minocycline can alleviate neurogenetic damage and improve cognition following midazolam exposure in neonatal rats. Postnatal 7 days rats were divided randomly into three groups: control group (C), midazolam group (M), and minocycline pretreatment group (MP). After exposure to midazolam, the cell proliferation in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampus in pups was analyzed by bromodeoxyuridine immunochemistry at 7 days after the administration of anesthesia. Cognitive function was assessed using the Morris water-maze test at 35 days after midazolam exposure. Compared with the control, midazolam reduced cell proliferation both in the SVZ and in the SGZ of the hippocampus of neonatal rats, and decreased spatial learning and memory ability of rats in adulthood significantly. Pretreatment with minocycline increased cell proliferation both in the SVZ and in the SGZ of the hippocampus and improved spatial learning and memory ability compared with midazolam, but it did not mitigate the changes to the normal levels compared with the controls. Our results indicated that pretreatment with minocycline can alleviate midazolam-induced damage in neural stem cell proliferation of neonatal rats and improve spatial learning and memory ability of rats in adulthood.

Journal ArticleDOI
TL;DR: Results indicated that baicalin effectively alleviated the oxidative stress, decreased the proportion of cells undergoing necrosis, and reduced cell damage.
Abstract: Baicalin, a plant-derived flavonoid, has been reported to exert neuroprotective effects on ischemia-like or excitotoxic injury. To confirm this function and explore the possible mechanism, we investigated the protective effect of baicalin on an in-vitro model of ischemia (oxygen-glucose deprivation-treated endothelial cell). In the present study, we found that baicalin (100 μM) inhibited cell death, reduced cell membrane damage, and maintained the integrity of the nucleus. Flow cytometric analysis and Hoechst 33258/propidium iodide double staining results showed that the necroptosis ratio decreased with baicalin treatment. Western blot analysis showed that baicalin regulated the expression of RIP-1 and RIP-3 in bEnd.3 cells and the use of detection kits showed that baicalin inhibited the production of reactive oxygen species and malondialdehyde, and increased the activity of superoxide dismutase in oxygen-glucose deprivation-treated bEnd.3 cells. These results indicated that baicalin effectively alleviated the oxidative stress, decreased the proportion of cells undergoing necrosis, and reduced cell damage.