scispace - formally typeset
Search or ask a question

Showing papers in "npj Quantum Information in 2019"


Journal ArticleDOI
TL;DR: This work proposes a variational algorithm that is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, and can be implemented with current quantum computers, and uses it to find the ground-state energy of many-particle systems.
Abstract: Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.

303 citations


Journal ArticleDOI
TL;DR: This work improves the control robustness of a broad family of two-qubit unitary gates that are important for quantum simulation of many-electron systems by adding control noise into training environments for reinforcement learning agents trained with trusted-region-policy-optimization.
Abstract: Emerging reinforcement learning techniques using deep neural networks have shown great promise in control optimization. They harness non-local regularities of noisy control trajectories and facilitate transfer learning between tasks. To leverage these powerful capabilities for quantum control optimization, we propose a new control framework to simultaneously optimize the speed and fidelity of quantum computation against both leakage and stochastic control errors. For a broad family of two-qubit unitary gates that are important for quantum simulation of many-electron systems, we improve the control robustness by adding control noise into training environments for reinforcement learning agents trained with trusted-region-policy-optimization. The agent control solutions demonstrate a two-order-of-magnitude reduction in average-gate-error over baseline stochastic-gradient-descent solutions and up to a one-order-of-magnitude reduction in gate time from optimal gate synthesis counterparts. These significant improvements in both fidelity and runtime are achieved by combining new physical understandings and state-of-the-art machine learning techniques. Our results open a venue for wider applications in quantum simulation, quantum chemistry and quantum supremacy tests using near-term quantum devices.

268 citations


Journal ArticleDOI
TL;DR: In this article, the decoherence of transmon qubits is studied and the temporal stability of energy relaxation, dephasing, and qubit transition frequency is examined. But, the authors do not examine the reproducibility of qubit parameters, where these fluctuations could affect qubit gate fidelity.
Abstract: We benchmark the decoherence of superconducting transmon qubits to examine the temporal stability of energy relaxation, dephasing, and qubit transition frequency. By collecting statistics during measurements spanning multiple days, we find the mean parameters $$\overline {T_1}$$ = 49 μs and $$\overline {T_2^ \ast }$$ = 95 μs; however, both of these quantities fluctuate, explaining the need for frequent re-calibration in qubit setups. Our main finding is that fluctuations in qubit relaxation are local to the qubit and are caused by instabilities of near-resonant two-level-systems (TLS). Through statistical analysis, we determine sub-millihertz switching rates of these TLS and observe the coherent coupling between an individual TLS and a transmon qubit. Finally, we find evidence that the qubit’s frequency stability produces a 0.8 ms limit on the pure dephasing which we also observe. These findings raise the need for performing qubit metrology to examine the reproducibility of qubit parameters, where these fluctuations could affect qubit gate fidelity.

263 citations


Journal ArticleDOI
TL;DR: This work uses quantum Generative Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions - implicitly given by data samples - into quantum states and can enable the use of potentially advantageous quantum algorithms, such as Quantum Amplitude Estimation.
Abstract: Quantum algorithms have the potential to outperform their classical counterparts in a variety of tasks. The realization of the advantage often requires the ability to load classical data efficiently into quantum states. However, the best known methods require $${\mathcal{O}}\left({2}^{n}\right)$$ gates to load an exact representation of a generic data structure into an $$n$$-qubit state. This scaling can easily predominate the complexity of a quantum algorithm and, thereby, impair potential quantum advantage. Our work presents a hybrid quantum-classical algorithm for efficient, approximate quantum state loading. More precisely, we use quantum Generative Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions - implicitly given by data samples - into quantum states. Through the interplay of a quantum channel, such as a variational quantum circuit, and a classical neural network, the qGAN can learn a representation of the probability distribution underlying the data samples and load it into a quantum state. The loading requires $${\mathcal{O}}\left(poly\left(n\right)\right)$$ gates and can thus enable the use of potentially advantageous quantum algorithms, such as Quantum Amplitude Estimation. We implement the qGAN distribution learning and loading method with Qiskit and test it using a quantum simulation as well as actual quantum processors provided by the IBM Q Experience. Furthermore, we employ quantum simulation to demonstrate the use of the trained quantum channel in a quantum finance application.

244 citations


Journal ArticleDOI
TL;DR: It is demonstrated that for specific benchmark settings and a selected range of problems, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
Abstract: We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active-space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mitigation. We demonstrate this benchmark using 4 of the available qubits on the 20-qubit IBM Tokyo and 16-qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH), with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings and a selected range of problems, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.

201 citations


Journal ArticleDOI
Masanao Ozawa1
TL;DR: In this paper, Ozawa et al. proposed an improved root-mean-square (RMS) metric for quantum measurement uncertainty relation, which is state-dependent, operationally definable and perfectly characterizes accurate measurements.
Abstract: Defining and measuring the error of a measurement is one of the most fundamental activities in experimental science. However, quantum theory shows a peculiar difficulty in extending the classical notion of root-mean-square (rms) error to quantum measurements. A straightforward generalization based on the noise-operator was used to reformulate Heisenberg’s uncertainty relation on the accuracy of simultaneous measurements to be universally valid and made the conventional formulation testable to observe its violation. Recently, its reliability was examined based on an anomaly that the error vanishes for some inaccurate measurements, in which the meter does not commute with the measured observable. Here, we propose an improved definition for a quantum generalization of the classical rms error, which is state-dependent, operationally definable, and perfectly characterizes accurate measurements. Moreover, it is shown that the new notion maintains the previously obtained universally valid uncertainty relations and their experimental confirmations without changing their forms and interpretations, in contrast to a prevailing view that a state-dependent formulation for measurement uncertainty relation is not tenable. An improved definition extends the notion of root-mean-square error from classical to quantum measurements. How to define and measure the error of a measurement is one of the basic characteristics of experimental science. The root-mean-square error is a frequently used metric, but extending this notion from classical to quantum measurements is not trivial. Attempts to generalize this error to quantum measurements have been made, but many approaches suffer from anomalies, which unwantedly see the error vanish for certain types of measurements. Masanao Ozawa from Nagoya University now presents an improved definition for a quantum generalization of the classical root-mean-square error, which doesn’t suffer from such limitations.

201 citations


Journal ArticleDOI
TL;DR: In this article, state-of-the-art IBM quantum computers are used to simulate the effects of disorder and interactions on quantum particle transport, as well as correlation and entanglement spreading.
Abstract: Universal quantum computers are potentially an ideal setting for simulating many-body quantum dynamics that is out of reach for classical digital computers. We use state-of-the-art IBM quantum computers to study paradigmatic examples of condensed matter physics—we simulate the effects of disorder and interactions on quantum particle transport, as well as correlation and entanglement spreading. Our benchmark results show that the quality of the current machines is below what is necessary for quantitatively accurate continuous-time dynamics of observables and reachable system sizes are small comparable to exact diagonalization. Despite this, we are successfully able to demonstrate clear qualitative behaviour associated with localization physics and many-body interaction effects.

180 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the secure key rate of this protocol has a square-root improvement over the point-to-point private capacity, as conjectured by the original TF QKD.
Abstract: Twin-field (TF) quantum key distribution (QKD) was conjectured to beat the private capacity of a point-to-point QKD link by using single-photon interference in a central measuring station. This remarkable conjecture has recently triggered an intense research activity to prove its security. Here, we introduce a TF-type QKD protocol which is conceptually simpler than the original proposal. It relies on the pre-selection of a global phase, instead of the post-selection of a global phase, which significantly simplifies its security analysis and is arguably less demanding experimentally. We demonstrate that the secure key rate of our protocol has a square-root improvement over the point-to-point private capacity, as conjectured by the original TF QKD.

180 citations


Journal ArticleDOI
TL;DR: A quantum circuit learning algorithm that can be used to assist the characterization of quantum devices and to train shallow circuits for generative tasks is proposed and it is demonstrated that this approach can learn an optimal preparation of the Greenberger-Horne-Zeilinger states.
Abstract: Hybrid quantum-classical algorithms provide ways to use noisy intermediate-scale quantum computers for practical applications. Expanding the portfolio of such techniques, we propose a quantum circuit learning algorithm that can be used to assist the characterization of quantum devices and to train shallow circuits for generative tasks. The procedure leverages quantum hardware capabilities to its fullest extent by using native gates and their qubit connectivity. We demonstrate that our approach can learn an optimal preparation of the Greenberger-Horne-Zeilinger states, also known as “cat states”. We further demonstrate that our approach can efficiently prepare approximate representations of coherent thermal states, wave functions that encode Boltzmann probabilities in their amplitudes. Finally, complementing proposals to characterize the power or usefulness of near-term quantum devices, such as IBM’s quantum volume, we provide a new hardware-independent metric called the qBAS score. It is based on the performance yield in a specific sampling task on one of the canonical machine learning data sets known as Bars and Stripes. We show how entanglement is a key ingredient in encoding the patterns of this data set; an ideal benchmark for testing hardware starting at four qubits and up. We provide experimental results and evaluation of this metric to probe the trade off between several architectural circuit designs and circuit depths on an ion-trap quantum computer.

166 citations


Journal ArticleDOI
TL;DR: In this article, the authors consider how a quantum network equipped with limited quantum processing capabilities connected via lossy optical links can distribute high-rate entanglement simultaneously between multiple pairs of users.
Abstract: Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory. The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.

161 citations


Journal ArticleDOI
TL;DR: In this article, the entropy of a quantum system undergoing open-system dynamics can be formally split into a term that only depends on population unbalances, and one that is underpinned by quantum coherences.
Abstract: Thermodynamic irreversibility is well characterized by the entropy production arising from non-equilibrium quantum processes. We show that the entropy production of a quantum system undergoing open-system dynamics can be formally split into a term that only depends on population unbalances, and one that is underpinned by quantum coherences. This allows us to identify a genuine quantum contribution to the entropy production in non-equilibrium quantum processes. We discuss how these features emerge both in Lindblad-Davies differential maps and finite maps subject to the constraints of thermal operations. We also show how this separation naturally leads to two independent entropic conservation laws for the global system-environment dynamics, one referring to the redistribution of populations between system and environment and the other describing how the coherence initially present in the system is distributed into local coherences in the environment and non-local coherences in the system-environment state. Finally, we discuss how the processing of quantum coherences and the incompatibility of non-commuting measurements leads to fundamental limitations in the description of quantum trajectories and fluctuation theorems.

Journal ArticleDOI
TL;DR: It is revealed that such a metropolitan network can support tens of thousands of users with key rates in excess of 1 kilobit per second (kbps) per user, demonstrating a clear path for implementing quantum security in metropolitan fibre networks.
Abstract: Future-proofing current fibre networks with quantum key distribution (QKD) is an attractive approach to combat the ever growing breaches of data theft. To succeed, this approach must offer broadband transport of quantum keys, efficient quantum key delivery and seamless user interaction, all within the existing fibre network. However, quantum networks to date either require dark fibres and/or offer bit rates inadequate for serving a large number of users. Here we report a city wide high-speed metropolitan QKD network—the Cambridge quantum network—operating on fibres already populated with high-bandwidth data traffic. We implement a robust key delivery layer to demonstrate essential network operation, as well as enabling encryption of 100 Gigabit per second (Gbps) simultaneous data traffic with rapidly refreshed quantum keys. Network resilience against link disruption is supported by high-QKD link rates and network link redundancy. We reveal that such a metropolitan network can support tens of thousands of users with key rates in excess of 1 kilobit per second (kbps) per user. Our result hence demonstrates a clear path for implementing quantum security in metropolitan fibre networks.

Journal ArticleDOI
TL;DR: Through numerical simulation and analysis, the QONN is trained to perform a range of quantum information processing tasks, including newly developed protocols for quantum optical state compression, reinforcement learning, black-box quantum simulation, and one-way quantum repeaters.
Abstract: Physically motivated quantum algorithms for specific near-term quantum hardware will likely be the next frontier in quantum information science. Here, we show how many of the features of neural networks for machine learning can naturally be mapped into the quantum optical domain by introducing the quantum optical neural network (QONN). Through numerical simulation and analysis we train the QONN to perform a range of quantum information processing tasks, including newly developed protocols for quantum optical state compression, reinforcement learning, black-box quantum simulation, and one-way quantum repeaters. We consistently demonstrate that our system can generalize from only a small set of training data onto inputs for which it has not been trained. Our results indicate that QONNs are a powerful design tool for quantum optical systems and, leveraging advances in integrated quantum photonics, a promising architecture for next-generation quantum processors.

Journal ArticleDOI
TL;DR: In this paper, a hybrid quantum-classical algorithm for quantum state diagonalization is presented. But it is not suitable for the use of quantum computers, as it is computationally computationally expensive.
Abstract: Variational hybrid quantum-classical algorithms are promising candidates for near-term implementation on quantum computers. In these algorithms, a quantum computer evaluates the cost of a gate sequence (with speedup over classical cost evaluation), and a classical computer uses this information to adjust the parameters of the gate sequence. Here we present such an algorithm for quantum state diagonalization. State diagonalization has applications in condensed matter physics (e.g., entanglement spectroscopy) as well as in machine learning (e.g., principal component analysis). For a quantum state ρ and gate sequence U, our cost function quantifies how far $$U\rho U^\dagger$$ is from being diagonal. We introduce short-depth quantum circuits to quantify our cost. Minimizing this cost returns a gate sequence that approximately diagonalizes ρ. One can then read out approximations of the largest eigenvalues, and the associated eigenvectors, of ρ. As a proof-of-principle, we implement our algorithm on Rigetti’s quantum computer to diagonalize one-qubit states and on a simulator to find the entanglement spectrum of the Heisenberg model ground state.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the symmetric discrimination of two arbitrary qudit channels by means of the most general protocols based on adaptive (feedback-assisted) quantum operations.
Abstract: What is the ultimate performance for discriminating two arbitrary quantum channels acting on a finite-dimensional Hilbert space? Here we address this basic question by deriving a general and fundamental lower bound. More precisely, we investigate the symmetric discrimination of two arbitrary qudit channels by means of the most general protocols based on adaptive (feedback-assisted) quantum operations. In this general scenario, we first show how port-based teleportation can be used to simplify these adaptive protocols into a much simpler non-adaptive form, designing a new type of teleportation stretching. Then, we prove that the minimum error probability affecting the channel discrimination cannot beat a bound determined by the Choi matrices of the channels, establishing a general, yet computable formula for quantum hypothesis testing. As a consequence of this bound, we derive ultimate limits and no-go theorems for adaptive quantum illumination and single-photon quantum optical resolution. Finally, we show how the methodology can also be applied to other tasks, such as quantum metrology, quantum communication and secret key generation.

Journal ArticleDOI
TL;DR: In this article, a quantum information-based algorithm is proposed to implement the quantum computer version of a binary-valued perceptron, which shows exponential advantage in storage resources over alternative realizations.
Abstract: Artificial neural networks are the heart of machine learning algorithms and artificial intelligence. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt’s “perceptron”, but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a binary-valued perceptron, which shows exponential advantage in storage resources over alternative realizations. We experimentally test a few qubits version of this model on an actual small-scale quantum processor, which gives answers consistent with the expected results. We show that this quantum model of a perceptron can be trained in a hybrid quantum-classical scheme employing a modified version of the perceptron update rule and used as an elementary nonlinear classifier of simple patterns, as a first step towards practical quantum neural networks efficiently implemented on near-term quantum processing hardware.

Journal ArticleDOI
TL;DR: In this article, the authors verify the winding number through measurement of the mean chiral displacement in a system with higher internal dimension, and confirm the topological edge state by observation of the quench dynamics when atoms are initially prepared at the system boundary.
Abstract: The Su–Schrieffer–Heeger (SSH) model perhaps is the easiest and the most basic model for topological excitations. Many variations and extensions of the SSH model have been proposed and explored to better understand both fundamental and novel aspects of topological physics. The SSH4 model has been proposed theoretically as an extended SSH model with higher dimension (the internal dimension changes from two to four). It has been proposed that the winding number in this system can be determined through a higher-dimensional extension of the mean chiral displacement measurement, however, this has not yet been verified in experiment. Here, we report the realization of this model with ultracold atoms in a momentum lattice. We verify the winding number through measurement of the mean chiral displacement in a system with higher internal dimension, we map out the topological phase transition in this system, and we confirm the topological edge state by observation of the quench dynamics when atoms are initially prepared at the system boundary.

Journal ArticleDOI
Stefan Woerner1, Daniel J. Egger1
TL;DR: A quantum algorithm that analyzes risk more efficiently than Monte Carlo simulations traditionally used on classical computers is presented and a near quadratic speed-up compared to Monte Carlo methods is provided.
Abstract: We present a quantum algorithm that analyzes risk more efficiently than Monte Carlo simulations traditionally used on classical computers. We employ quantum amplitude estimation to price securities and evaluate risk measures such as Value at Risk and Conditional Value at Risk on a gate-based quantum computer. Additionally, we show how to implement this algorithm and how to trade-off the convergence rate of the algorithm and the circuit depth. The shortest possible circuit depth—growing polynomially in the number of qubits representing the uncertainty—leads to a convergence rate of O(M−2/3), where M is the number of samples. This is already faster than classical Monte Carlo simulations which converge at a rate of O(M−1/2). If we allow the circuit depth to grow faster, but still polynomially, the convergence rate quickly approaches the optimum of O(M−1). Thus, for slowly increasing circuit depths our algorithm provides a near quadratic speed-up compared to Monte Carlo methods. We demonstrate our algorithm using two toy models. In the first model we use real hardware, such as the IBM Q Experience, to price a Treasury-bill (T-bill) faced by a possible interest rate increase. In the second model, we simulate our algorithm to illustrate how a quantum computer can determine financial risk for a two-asset portfolio made up of government debt with different maturity dates. Both models confirm the improved convergence rate over Monte Carlo methods. Using simulations, we also evaluate the impact of cross-talk and energy relaxation errors.

Journal ArticleDOI
TL;DR: A comparative study on the efficacy of three reinforcement learning algorithms: tabular Q- learning, deep Q-learning, and policy gradient, as well as two non-machine-learning methods: stochastic gradient descent and Krotov algorithms, in the problem of preparing a desired quantum state is performed.
Abstract: Reinforcement learning has been widely used in many problems, including quantum control of qubits. However, such problems can, at the same time, be solved by traditional, non-machine-learning methods, such as stochastic gradient descent and Krotov algorithms, and it remains unclear which one is most suitable when the control has specific constraints. In this work, we perform a comparative study on the efficacy of three reinforcement learning algorithms: tabular Q-learning, deep Q-learning, and policy gradient, as well as two non-machine-learning methods: stochastic gradient descent and Krotov algorithms, in the problem of preparing a desired quantum state. We found that overall, the deep Q-learning and policy gradient algorithms outperform others when the problem is discretized, e.g. allowing discrete values of control, and when the problem scales up. The reinforcement learning algorithms can also adaptively reduce the complexity of the control sequences, shortening the operation time and improving the fidelity. Our comparison provides insights into the suitability of reinforcement learning in quantum control problems.

Journal ArticleDOI
TL;DR: In this article, the authors present a technique to analyse individual defects in superconducting qubits by tuning them with applied electric fields, which provides a spectroscopy method to extract the defects' energy distribution, electric dipole moments, and coherence times.
Abstract: Superconducting integrated circuits have demonstrated a tremendous potential to realize integrated quantum computing processors. However, the downside of the solid-state approach is that superconducting qubits suffer strongly from energy dissipation and environmental fluctuations caused by atomic-scale defects in device materials. Further progress towards upscaled quantum processors will require improvements in device fabrication techniques, which need to be guided by novel analysis methods to understand and prevent mechanisms of defect formation. Here, we present a technique to analyse individual defects in superconducting qubits by tuning them with applied electric fields. This provides a spectroscopy method to extract the defects’ energy distribution, electric dipole moments, and coherence times. Moreover, it enables one to distinguish defects residing in Josephson junction tunnel barriers from those at circuit interfaces. We find that defects at circuit interfaces are responsible for about 60% of the dielectric loss in the investigated transmon qubit sample. About 40% of all detected defects are contained in the tunnel barriers of the large-area parasitic Josephson junctions that occur collaterally in shadow evaporation, and only $$\approx$$3% are identified as strongly coupled defects, which presumably reside in the small-area qubit tunnel junctions. The demonstrated technique provides a valuable tool to assess the decoherence sources related to circuit interfaces and to tunnel junctions that is readily applicable to standard qubit samples.

Journal ArticleDOI
TL;DR: This work proposes a new method based on representation theory that has little experimental overhead and robustly extracts the average fidelity for a broad class of gatesets and applies it to a multi-qubit gateset that includes the T-gate.
Abstract: Randomized benchmarking is a technique for estimating the average fidelity of a set of quantum gates. However, if this gateset is not the multi-qubit Clifford group, robustly extracting the average fidelity is difficult. Here, we propose a new method based on representation theory that has little experimental overhead and robustly extracts the average fidelity for a broad class of gatesets. We apply our method to a multi-qubit gateset that includes the T-gate, and propose a new interleaved benchmarking protocol that extracts the average fidelity of a two-qubit Clifford gate using only single-qubit Clifford gates as reference.

Journal ArticleDOI
TL;DR: In this article, the authors used a primitive SWAP gate to transfer spin eigenstates in 100 ns with a fidelity of Ω(F √ n) =98 \%
Abstract: Spin-based quantum processors in silicon quantum dots offer high-fidelity single and two-qubit operation. Recently multi-qubit devices have been realized; however, many-qubit demonstrations remain elusive, partly due to the limited qubit-to-qubit connectivity. These problems can be overcome by using SWAP gates, which are challenging to implement in devices having large magnetic field gradients. Here we use a primitive SWAP gate to transfer spin eigenstates in 100 ns with a fidelity of $${\bar{F}}_{{\rm{SWAP}}}^{{\rm{(p)}}}=98 \%$$. By swapping eigenstates we are able to demonstrate a technique for reading out and initializing the state of a double quantum dot without shuttling charges through the quantum dot. We then show that the SWAP gate can transfer arbitrary two-qubit product states in 300 ns with a fidelity of $${\bar{F}}_{{\rm{SWAP}}}^{{\rm{(c)}}}=84 \%$$. This work sets the stage for many-qubit experiments in silicon quantum dots.

Journal ArticleDOI
TL;DR: This paper proposes a more general method for establishing EPR pairs in arbitrary networks that uses a graph state instead of maximally entangled pairs to achieve long-distance simultaneous communication, and demonstrates how graph-theoretic tools, and specifically local complementation, help decrease the number of required measurements compared to usual methods applied in repeater schemes.
Abstract: Quantum communication between distant parties is based on suitable instances of shared entanglement. For efficiency reasons, in an anticipated quantum network beyond point-to-point communication, it is preferable that many parties can communicate simultaneously over the underlying infrastructure; however, bottlenecks in the network may cause delays. Sharing of multi-partite entangled states between parties offers a solution, allowing for parallel quantum communication. Specifically for the two-pair problem, the butterfly network provides the first instance of such an advantage in a bottleneck scenario. In this paper, we propose a more general method for establishing EPR pairs in arbitrary networks. The main difference from standard repeater network approaches is that we use a graph state instead of maximally entangled pairs to achieve long-distance simultaneous communication. We demonstrate how graph-theoretic tools, and specifically local complementation, help decrease the number of required measurements compared to usual methods applied in repeater schemes. We examine other examples of network architectures, where deploying local complementation techniques provides an advantage. We finally consider the problem of extracting graph states for quantum communication via local Clifford operations and Pauli measurements, and discuss that while the general problem is known to be NP-complete, interestingly, for specific classes of structured resources, polynomial time algorithms can be identified.

Journal ArticleDOI
TL;DR: In this article, a method for systematically adding quantum dots to an array one dot at a time, in such a way that the number of electrons on previously formed dots is unaffected, is presented.
Abstract: Electrostatically defined quantum dot arrays offer a compelling platform for quantum computation and simulation. However, tuning up such arrays with existing techniques becomes impractical when going beyond a handful of quantum dots. Here, we present a method for systematically adding quantum dots to an array one dot at a time, in such a way that the number of electrons on previously formed dots is unaffected. The method allows individual control of the number of electrons on each of the dots, as well as of the interdot tunnel rates. We use this technique to tune up a linear array of eight GaAs quantum dots such that they are occupied by one electron each. This new method overcomes a critical bottleneck in scaling up quantum-dot based qubit registers.

Journal ArticleDOI
TL;DR: This article designs and implements an entangling gate for frequency-bin qubits, a coincidence-basis controlled-NOT (CNOT), using line-by-line pulse shaping and electro-optic modulation, and extracts a quantum unitary fidelity of 0.01 via a parameter inference approach based on Bayesian machine learning.
Abstract: The realization of strong photon–photon interactions has presented an enduring challenge across photonics, particularly in quantum computing, where two-photon gates form essential components for scalable quantum information processing (QIP). While linear-optic schemes have enabled probabilistic entangling gates in spatio-polarization encoding, solutions for many other useful degrees of freedom remain missing. In particular, no two-photon gate for the important platform of frequency encoding has been experimentally demonstrated, due in large part to the additional challenges imparted by the mismatched wavelengths of the interacting photons. In this article, we design and implement an entangling gate for frequency-bin qubits, a coincidence-basis controlled-NOT (CNOT), using line-by-line pulse shaping and electro-optic modulation. We extract a quantum unitary fidelity of 0.91 ± 0.01 via a parameter inference approach based on Bayesian machine learning, which enables accurate gate reconstruction from measurements in the two-photon computational basis alone. Our CNOT imparts a single-photon frequency shift controlled by the frequency of another photon—an important capability in itself—and should enable new directions in fiber-compatible QIP.

Journal ArticleDOI
TL;DR: Quantum reservoir processing, introduced here, is a platform for quantum information processing developed on the principle of reservoir computing that is a form of an artificial neural network that can perform qualitative and quantitative tasks like recognizing quantum states that are entangled.
Abstract: The concurrent rise of artificial intelligence and quantum information poses an opportunity for creating interdisciplinary technologies like quantum neural networks. Quantum reservoir processing, introduced here, is a platform for quantum information processing developed on the principle of reservoir computing that is a form of an artificial neural network. A quantum reservoir processor can perform qualitative tasks like recognizing quantum states that are entangled as well as quantitative tasks like estimating a nonlinear function of an input quantum state (e.g., entropy, purity, or logarithmic negativity). In this way, experimental schemes that require measurements of multiple observables can be simplified to measurement of one observable on a trained quantum reservoir processor.

Journal ArticleDOI
TL;DR: This work proposes and experimentally demonstrates an efficient scheme for bidirectional and deterministic photonic communication between two remote superconducting modules, and overcome the various restrictions of quantum communication channels established by other recent approaches in deterministic communication forsuperconducting qubits.
Abstract: We propose and experimentally demonstrate an efficient scheme for bidirectional and deterministic photonic communication between two remote superconducting modules. The two chips, each consists of a transmon, are connected through a one-meter long coaxial cable that is coupled to a dedicated “communication” resonator on each chip. The two communication resonators hybridize with a mode of the cable to form a dark “communication mode” that is highly immune to decay in the coaxial cable. We overcome the various restrictions of quantum communication channels established by other recent approaches in deterministic communication for superconducting qubits. Our approach enables bidirectional communication, and eliminates the high insertion loss and large volume footprint of circulators. We modulate the transmon frequency via a parametric drive to generate sideband interactions between the transmon and the communication mode. We demonstrate bidirectional single-photon transfer with a success probability exceeding 60%, and generate an entangled Bell pair with a fidelity of 79.3 ± 0.3%. Quantum information can be passed between qubit devices by using nonlinear interactions to control transmission through a connecting cable. The construction of quantum networks and larger-scale quantum computers requires interconnections that can coherently transfer quantum information over long distances and between separate computing modules. Recent experiments have used controlled emission and absorption of microwave photons to produce one-way transmission between superconducting circuits. Nelson Leung and Yao Lu from the University of Chicago, with collaborators in the USA, have demonstrated two-way communication through a one-metre long coaxial cable. Manipulating the nonlinearities of their superconducting circuits via external controls allows the coupling between the qubits and the cable, and hence the inter-module transmission, to be turned on and off as necessary. This approach avoids some of the drawbacks of other quantum communication solutions with one-way transmission.

Journal ArticleDOI
TL;DR: qFlex is presented, a flexible tensor network-based quantum circuit simulator that can compute both the exact amplitudes, essential for the verification of the quantum hardware, as well as low-fidelity amplitudes to mimic sampling from Noisy Intermediate-Scale Quantum (NISQ) devices.
Abstract: Here we present qFlex, a flexible tensor network-based quantum circuit simulator. qFlex can compute both the exact amplitudes, essential for the verification of the quantum hardware, as well as low-fidelity amplitudes, to mimic sampling from Noisy Intermediate-Scale Quantum (NISQ) devices. In this work, we focus on random quantum circuits (RQCs) in the range of sizes expected for supremacy experiments. Fidelity f simulations are performed at a cost that is 1/f lower than perfect fidelity ones. We also present a technique to eliminate the overhead introduced by rejection sampling in most tensor network approaches. We benchmark the simulation of square lattices and Google’s Bristlecone QPU. Our analysis is supported by extensive simulations on NASA HPC clusters Pleiades and Electra. For our most computationally demanding simulation, the two clusters combined reached a peak of 20 Peta Floating Point Operations per Second (PFLOPS) (single precision), i.e., 64% of their maximum achievable performance, which represents the largest numerical computation in terms of sustained FLOPs and the number of nodes utilized ever run on NASA HPC clusters. Finally, we introduce a novel multithreaded, cache-efficient tensor index permutation algorithm of general application.

Journal ArticleDOI
TL;DR: The design shows the potential of deterministic optical quantum operations in large encoding spaces for practical and compact quantum information processing protocols by encoding high-dimensional units of information (qudits) in time and frequency degrees of freedom using on-chip sources.
Abstract: The probabilistic nature of single-photon sources and photon–photon interactions encourages encoding as much quantum information as possible in every photon for the purpose of photonic quantum information processing. Here, by encoding high-dimensional units of information (qudits) in time and frequency degrees of freedom using on-chip sources, we report deterministic two-qudit gates in a single photon with fidelities exceeding 0.90 in the computational basis. Constructing a two-qudit modulo SUM gate, we generate and measure a single-photon state with nonseparability between time and frequency qudits. We then employ this SUM operation on two frequency-bin entangled photons—each carrying two 32-dimensional qudits—to realize a four-party high-dimensional Greenberger–Horne–Zeilinger state, occupying a Hilbert space equivalent to that of 20 qubits. Although high-dimensional coding alone is ultimately not scalable for universal quantum computing, our design shows the potential of deterministic optical quantum operations in large encoding spaces for practical and compact quantum information processing protocols.

Journal ArticleDOI
TL;DR: In this article, the authors give an interpretation of Trotter errors in digital quantum simulation (DQS) of collective spin systems in terms of quantum chaos of the kicked top.
Abstract: This work aims at giving Trotter errors in digital quantum simulation (DQS) of collective spin systems an interpretation in terms of quantum chaos of the kicked top. In particular, for DQS of such systems, regular dynamics of the kicked top ensures convergence of the Trotterized time evolution, while chaos in the top, which sets in above a sharp threshold value of the Trotter step size, corresponds to the proliferation of Trotter errors. We show the possibility to analyze this phenomenology in a wide variety of experimental realizations of the kicked top, ranging from single atomic spins to trapped-ion quantum simulators which implement DQS of all-to-all interacting spin-1/2 systems. These platforms thus enable in-depth studies of Trotter errors and their relation to signatures of quantum chaos, including the growth of out-of-time-ordered correlators.