scispace - formally typeset
Search or ask a question

Showing papers in "Nucleic Acids Research in 2013"


Journal ArticleDOI
TL;DR: The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
Abstract: 16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.

5,346 citations


Journal ArticleDOI
TL;DR: This article proposes an elegantly simple multi-seed strategy, called seed-and-vote, for mapping reads to a reference genome, which uses a relatively large number of short seeds extracted from each read and allows all the seeds to vote on the optimal location.
Abstract: Read alignment is an ongoing challenge for the analysis of data from sequencing technologies. This article proposes an elegantly simple multi-seed strategy, called seed-and-vote, for mapping reads to a reference genome. The new strategy chooses the mapped genomic location for the read directly from the seeds. It uses a relatively large number of short seeds (called subreads) extracted from each read and allows all the seeds to vote on the optimal location. When the read length is <160 bp, overlapping subreads are used. More conventional alignment algorithms are then used to fill in detailed mismatch and indel information between the subreads that make up the winning voting block. The strategy is fast because the overall genomic location has already been chosen before the detailed alignment is done. It is sensitive because no individual subread is required to map exactly, nor are individual subreads constrained to map close by other subreads. It is accurate because the final location must be supported by several different subreads. The strategy extends easily to find exon junctions, by locating reads that contain sets of subreads mapping to different exons of the same gene. It scales up efficiently for longer reads.

2,228 citations


Journal ArticleDOI
Rolf Apweiler, Alex Bateman, Maria Jesus Martin, Claire O'Donovan, Michele Magrane, Yasmin Alam-Faruque, Emanuele Alpi, Ricardo Antunes, J Arganiska, EB Casanova, Benoit Bely, M Bingley, Carlos Bonilla, Ramona Britto, Borisas Bursteinas, WM Chan, Gayatri Chavali, Elena Cibrian-Uhalte, A Da Silva, M De Giorgi, Tunca Doğan, F. Fazzini, Paul Gane, Leyla Jael Garcia Castro, Penelope Garmiri, Emma Hatton-Ellis, Reija Hieta, Rachael P. Huntley, Duncan Legge, W Liu, Jie Luo, Alistair MacDougall, Prudence Mutowo, Andrew Nightingale, Sandra Orchard, Klemens Pichler, Diego Poggioli, Sangya Pundir, L Pureza, Guoying Qi, S. Rosanoff, Rabie Saidi, Tony Sawford, Aleksandra Shypitsyna, Edd Turner, Volynkin, Tony Wardell, Xavier Watkins, Hermann Zellner, Matthew Corbett, M Donnelly, P van Rensburg, Mickael Goujon, Hamish McWilliam, Rodrigo Lopez, Ioannis Xenarios, Lydie Bougueleret, Alan Bridge, Sylvain Poux, Nicole Redaschi, Lucila Aimo, Andrea H. Auchincloss, Kristian B. Axelsen, Parit Bansal, Delphine Baratin, P-A Binz, M. C. Blatter, Brigitte Boeckmann, Jerven Bolleman, Emmanuel Boutet, Lionel Breuza, C Casal-Casas, E de Castro, Lorenzo Cerutti, Elisabeth Coudert, Béatrice A. Cuche, M Doche, Dolnide Dornevil, Séverine Duvaud, Anne Estreicher, L Famiglietti, M Feuermann, Elisabeth Gasteiger, Sebastien Gehant, Gerritsen, Arnaud Gos, Nadine Gruaz-Gumowski, Ursula Hinz, Chantal Hulo, J. James, Florence Jungo, Guillaume Keller, Lara, P Lemercier, J Lew, Damien Lieberherr, Thierry Lombardot, Xavier D. Martin, Patrick Masson, Anne Morgat, Teresa Batista Neto, Salvo Paesano, Ivo Pedruzzi, Sandrine Pilbout, Monica Pozzato, Manuela Pruess, Catherine Rivoire, Bernd Roechert, Maria Victoria Schneider, Christian J. A. Sigrist, K Sonesson, S Staehli, Andre Stutz, Shyamala Sundaram, Michael Tognolli, Laure Verbregue, A-L Veuthey, Cathy H. Wu, Cecilia N. Arighi, Leslie Arminski, Chuming Chen, Yongxing Chen, John S. Garavelli, Hongzhan Huang, Kati Laiho, Peter B. McGarvey, Darren A. Natale, Baris E. Suzek, C. R. Vinayaka, Qinghua Wang, Yuqi Wang, L-S Yeh, Yerramalla, Jie Zhang 
TL;DR: The mission of the Universal Protein Resource (UniProt) is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequences and functional annotation.
Abstract: The mission of the Universal Protein Resource (UniProt) (http://www.uniprot.org) is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequences and functional annotation. It integrates, interprets and standardizes data from literature and numerous resources to achieve the most comprehensive catalog possible of protein information. The central activities are the biocuration of the UniProt Knowledgebase and the dissemination of these data through our Web site and web services. UniProt is produced by the UniProt Consortium, which consists of groups from the European Bioinformatics Institute (EBI), the SIB Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is updated and distributed every 4 weeks and can be accessed online for searches or downloads.

1,845 citations


Journal ArticleDOI
TL;DR: The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR.
Abstract: We present an in silico approach for the reconstruction of complete mitochondrial genomes of nonmodel organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/ chrishah/MITObim.

1,604 citations


Journal ArticleDOI
TL;DR: The use of type II bacterial CRISPR-Cas system in Saccharomyces cerevisiae for genome engineering provides foundations for a simple and powerful genome engineering tool for site-specific mutagenesis and allelic replacement in yeast.
Abstract: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems in bacteria and archaea use RNA-guided nuclease activity to provide adaptive immunity against invading foreign nucleic acids. Here, we report the use of type II bacterial CRISPR-Cas system in Saccharomyces cerevisiae for genome engineering. The CRISPR-Cas components, Cas9 gene and a designer genome targeting CRISPR guide RNA (gRNA), show robust and specific RNA-guided endonuclease activity at targeted endogenous genomic loci in yeast. Using constitutive Cas9 expression and a transient gRNA cassette, we show that targeted double-strand breaks can increase homologous recombination rates of single- and doublestranded oligonucleotide donors by 5-fold and 130-fold, respectively. In addition, co-transformation of a gRNA plasmid and a donor DNA in cells constitutively expressing Cas9 resulted in near 100% donor DNA recombination frequency. Our approach provides foundations for a simple and powerful genome engineering tool for site-specific mutagenesis and allelic replacement in yeast.

1,589 citations


Journal ArticleDOI
TL;DR: Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces, which allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows.
Abstract: Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.

1,562 citations


Journal ArticleDOI
TL;DR: By integrating functional categories derived from centrally and publicly curated databases as well as computational analyses, WebGestalt has significantly increased the coverage of functional categories in various biological contexts, leading to a total of 78 612 functional categories.
Abstract: Functional enrichment analysis is an essential task for the interpretation of gene lists derived from large-scale genetic, transcriptomic and proteomic studies. WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) has become one of the popular software tools in this field since its publication in 2005. For the last 7 years, WebGestalt data holdings have grown substantially to satisfy the requirements of users from different research areas. The current version of WebGestalt supports 8 organisms and 201 gene identifiers from various databases and different technology platforms, making it directly available to the fast growing omics community. Meanwhile, by integrating functional categories derived from centrally and publicly curated databases as well as computational analyses, WebGestalt has significantly increased the coverage of functional categories in various biological contexts including Gene Ontology, pathway, network module, gene-phenotype association, gene-disease association, gene-drug association and chromosomal location, leading to a total of 78 612 functional categories. Finally, new interactive features, such as pathway map, hierarchical network visualization and phenotype ontology visualization have been added to WebGestalt to help users better understand the enrichment results. WebGestalt can be freely accessed through http://www.webgestalt.org or http://bioinfo.vanderbilt.edu/webgestalt/.

1,442 citations


Journal ArticleDOI
TL;DR: A novel alignment-free method, Coding Potential Assessment Tool (CPAT), which rapidly recognizes coding and noncoding transcripts from a large pool of candidates, and is approximately four orders of magnitude faster than Coding-Potential Calculator and Phylo Codon Substitution Frequencies.
Abstract: Thousands of novel transcripts have been identified using deep transcriptome sequencing. This discovery of large and ‘hidden’ transcriptome rejuvenates the demand for methods that can rapidly distinguish between coding and noncoding RNA. Here, we present a novel alignment-free method, Coding Potential Assessment Tool (CPAT), which rapidly recognizes coding and noncoding transcripts from a large pool of candidates. To this end, CPAT uses a logistic regression model built with four sequence features: open reading frame size, open reading frame coverage, Fickett TESTCODE statistic and hexamer usage bias. CPAT software outperformed (sensitivity: 0.96, specificity: 0.97) other state-of-the-art alignment-based software such as Coding-Potential Calculator (sensitivity: 0.99, specificity: 0.74) and Phylo Codon Substitution Frequencies (sensitivity: 0.90, specificity: 0.63). In addition to high accuracy, CPAT is approximately four orders of magnitude faster than Coding-Potential Calculator and Phylo Codon Substitution Frequencies, enabling its users to process thousands of transcripts within seconds. The software accepts input sequences in either FASTA- or BED-formatted data files. We also developed a web interface for CPAT that allows users to submit sequences and receive the prediction results almost instantly.

1,413 citations


Journal ArticleDOI
TL;DR: OrganellarGenomeDraw (OGDRAW), a suite of software tools that enable users to create high-quality visual representations of both circular and linear annotated genome sequences provided as GenBank files or accession numbers, is developed.
Abstract: Mitochondria and plastids (chloroplasts) are cell organelles of endosymbiotic origin that possess their own genetic information. Most organellar DNAs map as circular double-stranded genomes. Across the eukaryotic kingdom, organellar genomes display great size variation, ranging from ∼15 to 20 kb (the size of the mitochondrial genome in most animals) to >10 Mb (the size of the mitochondrial genome in some lineages of flowering plants). We have developed OrganellarGenomeDraw (OGDRAW), a suite of software tools that enable users to create high-quality visual representations of both circular and linear annotated genome sequences provided as GenBank files or accession numbers. Although all types of DNA sequences are accepted as input, the software has been specifically optimized to properly depict features of organellar genomes. A recent extension facilitates the plotting of quantitative gene expression data, such as transcript or protein abundance data, directly onto the genome map. OGDRAW has already become widely used and is available as a free web tool (http://ogdraw.mpimp-golm.mpg.de/). The core processing components can be downloaded as a Perl module, thus also allowing for convenient integration into custom processing pipelines.

1,290 citations


Journal ArticleDOI
TL;DR: The PSIPRED Protein Analysis Workbench unites all of the previously available analysis methods into a single web-based framework and provides a greatly streamlined user interface with a number of new features to allow users to better explore their results.
Abstract: Here, we present the new UCL Bioinformatics Group’s PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/.

1,287 citations


Journal ArticleDOI
TL;DR: The implementation of CNCI offered highly accurate classification of transcripts assembled from whole-transcriptome sequencing data in a cross-species manner, that demonstrated gene evolutionary divergence between vertebrates, and invertebrates, or between plants, and provided a long non-coding RNA catalog of orangutan.
Abstract: It is a challenge to classify protein-coding or non-coding transcripts, especially those re-constructed from high-throughput sequencing data of poorly annotated species. This study developed and evaluated a powerful signature tool, Coding-Non-Coding Index (CNCI), by profiling adjoining nucleotide triplets to effectively distinguish protein-coding and non-coding sequences independent of known annotations. CNCI is effective for classifying incomplete transcripts and sense-antisense pairs. The implementation of CNCI offered highly accurate classification of transcripts assembled from whole-transcriptome sequencing data in a cross-species manner, that demonstrated gene evolutionary divergence between vertebrates, and invertebrates, or between plants, and provided a long non-coding RNA catalog of orangutan. CNCI software is available at http://www.bioinfo.org/software/cnci.

Journal ArticleDOI
TL;DR: Adaptations of the type II CRISPR/Cas system leading to successful expression of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.
Abstract: The type II CRISPR/Cas system from Streptococcus pyogenes and its simplified derivative, the Cas9/single guide RNA (sgRNA) system, have emerged as potent new tools for targeted gene knockout in bacteria, yeast, fruit fly, zebrafish and human cells. Here, we describe adaptations of these systems leading to successful expression of the Cas9/sgRNA system in two dicot plant species, Arabidopsis and tobacco, and two monocot crop species, rice and sorghum. Agrobacterium tumefaciens was used for delivery of genes encoding Cas9, sgRNA and a non-fuctional, mutant green fluorescence protein (GFP) to Arabidopsis and tobacco. The mutant GFP gene contained target sites in its 5' coding regions that were successfully cleaved by a CAS9/sgRNA complex that, along with error-prone DNA repair, resulted in creation of functional GFP genes. DNA sequencing confirmed Cas9/sgRNA-mediated mutagenesis at the target site. Rice protoplast cells transformed with Cas9/sgRNA constructs targeting the promoter region of the bacterial blight susceptibility genes, OsSWEET14 and OsSWEET11, were confirmed by DNA sequencing to contain mutated DNA sequences at the target sites. Successful demonstration of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.

Journal ArticleDOI
TL;DR: It is found that HMMER3 E-value estimates seem to be less accurate for families that feature periodic patterns of compositional bias, such as the ones typically observed in coiled-coils, which supports the continued use of manually curated inclusion thresholds in the Pfam database.
Abstract: Detection of protein homology via sequence similarity has important applications in biology, from protein structure and function prediction to reconstruction of phylogenies. Although current methods for aligning protein sequences are powerful, challenges remain, including problems with homologous overextension of alignments and with regions under convergent evolution. Here, we test the ability of the profile hidden Markov model method HMMER3 to correctly assign homologous sequences to >13,000 manually curated families from the Pfam database. We identify problem families using protein regions that match two or more Pfam families not currently annotated as related in Pfam. We find that HMMER3 E-value estimates seem to be less accurate for families that feature periodic patterns of compositional bias, such as the ones typically observed in coiled-coils. These results support the continued use of manually curated inclusion thresholds in the Pfam database, especially on the subset of families that have been identified as problematic in experiments such as these. They also highlight the need for developing new methods that can correct for this particular type of compositional bias.

Journal ArticleDOI
TL;DR: A Cas9 nuclease mutant that retains DNA-binding activity and can be engineered as a programmable transcription repressor by preventing the binding of the RNA polymerase to promoter sequences or as a transcription terminator by blocking the running RNAP is described.
Abstract: The ability to artificially control transcription is essential both to the study of gene function and to the construction of synthetic gene networks with desired properties. Cas9 is an RNA-guided doublestranded DNA nuclease that participates in the CRISPR-Cas immune defense against prokaryotic viruses. We describe the use of a Cas9 nuclease mutant that retains DNA-binding activity and can be engineered as a programmable transcription repressor by preventing the binding of the RNA polymerase (RNAP) to promoter sequences or as a transcription terminator by blocking the running RNAP. In addition, a fusion between the omega subunit of the RNAP and a Cas9 nuclease mutant directed to bind upstream promoter regions can achieve programmable transcription activation. The simple and efficient modulation of gene expression achieved by this technology is a useful asset for the study of gene networks and for the development of synthetic biology and biotechnological applications.

Journal ArticleDOI
TL;DR: DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA- microT-CDS, which has been updated to incorporate miRBase version 18 and Ensembl version 69.
Abstract: MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANAmicroT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA–gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANAmicroT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines.

Journal ArticleDOI
TL;DR: The recent integration of bovine data makes InnateDB the first integrated network analysis platform for this agriculturally important model organism, and a range of improvements to the integrated bioinformatics solutions are reported.
Abstract: InnateDB (http://www.innatedb.com) is an integrated analysis platform that has been specifically designed to facilitate systems-level analyses of mammalian innate immunity networks, pathways and genes. In this article, we provide details of recent updates and improvements to the database. InnateDB now contains >196 000 human, mouse and bovine experimentally validated molecular interactions and 3000 pathway annotations of relevance to all mammalian cellular systems (i.e. not just immune relevant pathways and interactions). In addition, the InnateDB team has, to date, manually curated in excess of 18 000 molecular interactions of relevance to innate immunity, providing unprecedented insight into innate immunity networks, pathways and their component molecules. More recently, InnateDB has also initiated the curation of allergy- and asthma-related interactions. Furthermore, we report a range of improvements to our integrated bioinformatics solutions including web service access to InnateDB interaction data using Proteomics Standards Initiative Common Query Interface, enhanced Gene Ontology analysis for innate immunity, and the availability of new network visualizations tools. Finally, the recent integration of bovine data makes InnateDB the first integrated network analysis platform for this agriculturally important model organism.

Journal ArticleDOI
TL;DR: The sequence analysis tool IgBLAST is developed, which has the capability to analyse nucleotide and protein sequences and can process sequences in batches and allows searches against the germline gene databases and other sequence databases simultaneously to minimize the chance of missing possibly the best matching germline V gene.
Abstract: The variable domain of an immunoglobulin (IG) sequence is encoded by multiple genes, including the variable (V) gene, the diversity (D) gene and the joining (J) gene. Analysis of IG sequences typically requires identification of each gene, as well as a comparison of sequence variations in the context of defined regions. General purpose tools, such as the BLAST program, have only limited use for such tasks, as the rearranged nature of an IG sequence and the variable length of each gene requires multiple rounds of BLAST searches for a single IG sequence. Additionally, manual assembly of different genes is difficult and error-prone. To address these issues and to facilitate other common tasks in analysing IG sequences, we have developed the sequence analysis tool IgBLAST (http://www.ncbi.nlm.nih.gov/igblast/). With this tool, users can view the matches to the germline V, D and J genes, details at rearrangement junctions, the delineation of IG V domain framework regions and complementarity determining regions. IgBLAST has the capability to analyse nucleotide and protein sequences and can process sequences in batches. Furthermore, IgBLAST allows searches against the germline gene databases and other sequence databases simultaneously to minimize the chance of missing possibly the best matching germline V gene.

Journal ArticleDOI
TL;DR: Improvements to the BLAST report are described, design decisions are discussed, other improvements to the search page and database documentation are described and plans for future development are outlined.
Abstract: The Basic Local Alignment Search Tool (BLAST) website at the National Center for Biotechnology (NCBI) is an important resource for searching and aligning sequences. A new BLAST report allows faster loading of alignments, adds navigation aids, allows easy downloading of subject sequences and reports and has improved usability. Here, we describe these improvements to the BLAST report, discuss design decisions, describe other improvements to the search page and database documentation and outline plans for future development. The NCBI BLAST URL is http://blast.ncbi.nlm.nih.gov.

Journal ArticleDOI
TL;DR: A novel regulatory role of the eIF2α–ATF4 pathway is revealed in the fine-tuning of the autophagy gene transcription program in response to stresses.
Abstract: In response to different environmental stresses, eIF2α phosphorylation represses global translation coincident with preferential translation of ATF4, a master regulator controlling the transcription of key genes essential for adaptative functions. Here, we establish that the eIF2α/ATF4 pathway directs an autophagy gene transcriptional program in response to amino acid starvation or endoplasmic reticulum stress. The eIF2α-kinases GCN2 and PERK and the transcription factors ATF4 and CHOP are also required to increase the transcription of a set of genes implicated in the formation, elongation and function of the autophagosome. We also identify three classes of autophagy genes according to their dependence on ATF4 and CHOP and the binding of these factors to specific promoter cis elements. Furthermore, different combinations of CHOP and ATF4 bindings to target promoters allow the trigger of a differential transcriptional response according to the stress intensity. Overall, this study reveals a novel regulatory role of the eIF2α–ATF4 pathway in the fine-tuning of the autophagy gene transcription program in response to stresses.

Journal ArticleDOI
TL;DR: The highly improved antiSMASH 2.0 now supports input of multiple related sequences simultaneously (multi-FASTA/GenBank/EMBL), which allows the analysis of draft genomes comprising multiple contigs, and direct analysis of protein sequences is now possible.
Abstract: Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved antiSMASH 2.0 release, available at http://antismash.secondarymetabolites.org/. For the new version, antiSMASH was entirely re-designed using a plug-and-play concept that allows easy integration of novel predictor or output modules. antiSMASH 2.0 now supports input of multiple related sequences simultaneously (multi-FASTA/GenBank/EMBL), which allows the analysis of draft genomes comprising multiple contigs. Moreover, direct analysis of protein sequences is now possible. antiSMASH 2.0 has also been equipped with the capacity to detect additional classes of secondary metabolites, including oligosaccharide antibiotics, phenazines, thiopeptides, homo-serine lactones, phosphonates and furans. The algorithm for predicting the core structure of the cluster end product is now also covering lantipeptides, in addition to polyketides and non-ribosomal peptides. The antiSMASH ClusterBlast functionality has been extended to identify sub-clusters involved in the biosynthesis of specific chemical building blocks. The new features currently make antiSMASH 2.0 the most comprehensive resource for identifying and analyzing novel secondary metabolite biosynthetic pathways in microorganisms.

Journal ArticleDOI
TL;DR: The Rfam database as mentioned in this paper is a collection of non-coding RNA families, primarily RNAs with a conserved RNA secondary structure, including both RNA genes and mRNA cis-regulatory elements.
Abstract: The Rfam database (available via the website at http://rfam.sanger.ac.uk and through our mirror at http://rfam.janelia.org) is a collection of non-coding RNA families, primarily RNAs with a conserved RNA secondary structure, including both RNA genes and mRNA cis-regulatory elements. Each family is represented by a multiple sequence alignment, predicted secondary structure and covariance model. Here we discuss updates to the database in the latest release, Rfam 11.0, including the introduction of genome-based alignments for large families, the introduction of the Rfam Biomart as well as other user interface improvements. Rfam is available under the Creative Commons Zero license.

Journal ArticleDOI
TL;DR: ConsensusPathDB has grown mainly due to the integration of 12 further databases; it now contains 215 541 unique interactions and 4601 pathways from overall 30 databases, and has re-implemented the graph visualization feature of Consensus pathDB using the Cytoscape.js library.
Abstract: Knowledge of the various interactions between molecules in the cell is crucial for understanding cellular processes in health and disease. Currently available interaction databases, being largely complementary to each other, must be integrated to obtain a comprehensive global map of the different types of interactions. We have previously reported the development of an integrative interaction database called ConsensusPathDB (http://ConsensusPathDB.org) that aims to fulfill this task. In this update article, we report its significant progress in terms of interaction content and web interface tools. ConsensusPathDB has grown mainly due to the integration of 12 further databases; it now contains 215 541 unique interactions and 4601 pathways from overall 30 databases. Binary protein interactions are scored with our confidence assessment tool, IntScore. The ConsensusPathDB web interface allows users to take advantage of these integrated interaction and pathway data in different contexts. Recent developments include pathway analysis of metabolite lists, visualization of functional gene/metabolite sets as overlap graphs, gene set analysis based on protein complexes and induced network modules analysis that connects a list of genes through various interaction types. To facilitate the interactive, visual interpretation of interaction and pathway data, we have re-implemented the graph visualization feature of ConsensusPathDB using the Cytoscape.js library.

Journal ArticleDOI
TL;DR: An update to the taverna tool suite is provided, highlighting new features and developments in the workbench and the Taverna Server.
Abstract: The Taverna workflow tool suite (http://www.taverna.org.uk) is designed to combine distributed Web Services and/or local tools into complex analysis pipelines. These pipelines can be executed on local desktop machines or through larger infrastructure (such as supercomputers, Grids or cloud environments), using the Taverna Server. In bioinformatics, Taverna workflows are typically used in the areas of high-throughput omics analyses (for example, proteomics or transcriptomics), or for evidence gathering methods involving text mining or data mining. Through Taverna, scientists have access to several thousand different tools and resources that are freely available from a large range of life science institutions. Once constructed, the workflows are reusable, executable bioinformatics protocols that can be shared, reused and repurposed. A repository of public workflows is available at http://www.myexperiment.org. This article provides an update to the Taverna tool suite, highlighting new features and developments in the workbench and the Taverna Server.

Journal ArticleDOI
TL;DR: It is demonstrated that CRISPR/Cas9 systems targeting the human hemoglobin β and C-C chemokine receptor type 5 genes have substantial off-target cleavage, especially within the hemoglobin δ and C of 2 genes, respectively, causing gross chromosomal deletions.
Abstract: The ability to precisely modify endogenous genes can significantly facilitate biological studies and disease treatment, and the clustered regularly interspaced short palindromic repeats (CRISPR) systems have the potential to be powerful tools for genome engineering. However, the target specificity of CRISPR systems is largely unknown. Here we demonstrate that CRISPR/Cas9 systems targeting the human hemoglobin β and C-C chemokine receptor type 5 genes have substantial off-target cleavage, especially within the hemoglobin δ and C-C chemokine receptor type 2 genes, respectively, causing gross chromosomal deletions. The guide strands of the CRISPR/Cas9 systems were designed to have a range of mismatches with the sequences of potential off-target sites. Off-target analysis was performed using the T7 endonuclease I mutation detection assay and Sanger sequencing. We found that the repair of the on-and off-target cleavage resulted in a wide variety of insertions, deletions and point mutations. Therefore, CRISPR/Cas9 systems need to be carefully designed to avoid potential off-target cleavage sites, including those with mismatches to the 12-bases proximal to the guide strand protospacer-adjacent motif.

Journal ArticleDOI
TL;DR: The GalaxyRefine web server, freely available at http://galaxy.seoklab.org/refine, is based on a refinement method that has been successfully tested in CASP10 and can improve both global and local structure quality on average, when used for refining the models generated by state-of-the-art protein structure prediction servers.
Abstract: The quality of model structures generated by contemporary protein structure prediction methods strongly depends on the degree of similarity between the target and available template structures. Therefore, the importance of improving template-based model structures beyond the accuracy available from template information has been emphasized in the structure prediction community. The GalaxyRefine web server, freely available at http://galaxy.seoklab.org/refine, is based on a refinement method that has been successfully tested in CASP10. The method first rebuilds side chains and performs side-chain repacking and subsequent overall structure relaxation by molecular dynamics simulation. According to the CASP10 assessment, this method showed the best performance in improving the local structure quality. The method can improve both global and local structure quality on average, when used for refining the models generated by state-of-the-art protein structure prediction servers.

Journal ArticleDOI
TL;DR: This work proposes a novel approach to background correction for Infinium HumanMethylation data to account for technical variation in background fluorescence signal, and demonstrates that within- and between-platform artefacts can be substantially reduced, with concomitant improvement in sensitivity.
Abstract: We propose a novel approach to background correction for Infinium HumanMethylation data to account for technical variation in background fluorescence signal. Our approach capitalizes on a new use for the Infinium I design bead types to measure non-specific fluorescence in the colour channel opposite of their design (Cy3/Cy5). This provides tens of thousands of features for measuring background instead of the much smaller number of negative control probes on the platforms (n = 32 for HumanMethylation27 and n = 614 for HumanMethylation450, respectively). We compare the performance of our methods with existing approaches, using technical replicates of both mixture samples and biological samples, and demonstrate that within- and between-platform artefacts can be substantially reduced, with concomitant improvement in sensitivity, by the proposed methods.

Journal ArticleDOI
TL;DR: EcoCyc is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in Eco cycl.
Abstract: EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.

Journal ArticleDOI
TL;DR: The R package Piano is developed that collects a range of GSA methods into the same system, for the benefit of the end-user, and suggests to use a consensus scoring approach, based on multiple GSA runs, in combination with the directionality classes.
Abstract: Gene set analysis (GSA) is used to elucidate genome-wide data, in particular transcriptome data. A multitude of methods have been proposed for this step of the analysis, and many of them have been compared and evaluated. Unfortunately, there is no consolidated opinion regarding what methods should be preferred, and the variety of available GSA software and implementations pose a difficulty for the end-user who wants to try out different methods. To address this, we have developed the R package Piano that collects a range of GSA methods into the same system, for the benefit of the end-user. Further on we refine the GSA workflow by using modifications of the gene-level statistics. This enables us to divide the resulting gene set P-values into three classes, describing different aspects of gene expression directionality at gene set level. We use our fully implemented workflow to investigate the impact of the individual components of GSA by using microarray and RNA-seq data. The results show that the evaluated methods are globally similar and the major separation correlates well with our defined directionality classes. As a consequence of this, we suggest to use a consensus scoring approach, based on multiple GSA runs. In combination with the directionality classes, this constitutes a more thorough basis for an enriched biological interpretation.

Journal ArticleDOI
TL;DR: The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique and will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments.
Abstract: MetaboLights (http://www.ebi.ac.uk/metabolights) is the first general-purpose, open-access repository for metabolomics studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Metabolomic profiling is an important tool for research into biological functioning and into the systemic perturbations caused by diseases, diet and the environment. The effectiveness of such methods depends on the availability of public open data across a broad range of experimental methods and conditions. The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique. It will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments. Studies automatically receive a stable unique accession number that can be used as a publication reference (e.g. MTBLS1). At present, the repository includes 15 submitted studies, encompassing 93 protocols for 714 assays, and span over 8 different species including human, Caenorhabditis elegans, Mus musculus and Arabidopsis thaliana. Eight hundred twenty-seven of the metabolites identified in these studies have been mapped to ChEBI. These studies cover a variety of techniques, including NMR spectroscopy and mass spectrometry.

Journal ArticleDOI
TL;DR: These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types.
Abstract: The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape