scispace - formally typeset
Search or ask a question
JournalISSN: 0954-4224

Nutrition Research Reviews 

Cambridge University Press
About: Nutrition Research Reviews is an academic journal published by Cambridge University Press. The journal publishes majorly in the area(s): Population & Medicine. It has an ISSN identifier of 0954-4224. Over the lifetime, 595 publications have been published receiving 51252 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.
Abstract: Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.

2,312 citations

Journal ArticleDOI
TL;DR: The AUROC analyses indicate that WHtR may be a more useful global clinical screening tool than WC, with a weighted mean boundary value of 0·5, supporting the simple public health message ‘keep your waist circumference to less than half your height’.
Abstract: This systematic review collated seventy-eight studies exploring waist-to-height ratio (WHtR) and waist circumference (WC) or BMI as predictors of diabetes and CVD, published in English between 1950 and 2008. Twenty-two prospective analyses showed that WHtR and WC were significant predictors of these cardiometabolic outcomes more often than BMI, with similar OR, sometimes being significant predictors after adjustment for BMI. Observations from crosssectional analyses, forty-four in adults, thirteen in children, supported these predictions. Receiver operator characteristic (ROC) analysis revealed mean area under ROC (AUROC) values of 0·704, 0·693 and 0·671 for WHtR, WC and BMI, respectively. Mean boundary values for WHtR, covering all cardiometabolic outcomes, from studies in fourteen different countries and including Caucasian, Asian and Central American subjects, were 0·50 for men and 0·50 for women. WHtR and WC are therefore similar predictors of diabetes and CVD, both being stronger than, and independent of, BMI. To make firmer statistical comparison, a meta-analysis is required. The AUROC analyses indicate that WHtR may be a more useful global clinical screening tool than WC, with a weighted mean boundary value of 0·5, supporting the simple public health message ‘keep your waist circumference to less than half your height’. Waist-to-height ratio: Waist circumference: BMI: Central obesity: Abdominal obesity: Obesity

1,054 citations

Journal ArticleDOI
TL;DR: The present review discusses the most relevant methodological considerations and highlights specific recommendations regarding number of subjects, sex, subject status, inclusion and exclusion criteria, pre-test conditions, CHO test dose, blood sampling procedures, sampling times, test randomisation and calculation of glycaemic response area under the curve.
Abstract: The glycaemic index (GI) concept was originally introduced to classify different sources of carbohydrate (CHO)-rich foods, usually having an energy content of > 80 % from CHO, to their effect on post-meal glycaemia. It was assumed to apply to foods that primarily deliver available CHO, causing hyperglycaemia. Low-GI foods were classified as being digested and absorbed slowly and high-GI foods as being rapidly digested and absorbed, resulting in different glycaemic responses. Low-GI foods were found to induce benefits on certain risk factors for CVD and diabetes. Accordingly it has been proposed that GI classification of foods and drinks could be useful to help consumers make 'healthy food choices' within specific food groups. Classification of foods according to their impact on blood glucose responses requires a standardised way of measuring such responses. The present review discusses the most relevant methodological considerations and highlights specific recommendations regarding number of subjects, sex, subject status, inclusion and exclusion criteria, pre-test conditions, CHO test dose, blood sampling procedures, sampling times, test randomisation and calculation of glycaemic response area under the curve. All together, these technical recommendations will help to implement or reinforce measurement of GI in laboratories and help to ensure quality of results. Since there is current international interest in alternative ways of expressing glycaemic responses to foods, some of these methods are discussed.

881 citations

Journal ArticleDOI
TL;DR: Benefits of nutrigenomics to study complex physiological effects of the ‘whole-grain package’, and the most promising ways for improving the nutritional quality of cereal products are discussed.
Abstract: Epidemiological studies have clearly shown that whole-grain cereals can protect against obesity, diabetes, CVD and cancers. The specific effects of food structure (increased satiety, reduced transit time and glycaemic response), fibre (improved faecal bulking and satiety, viscosity and SCFA production, and/or reduced glycaemic response) and Mg (better glycaemic homeostasis through increased insulin secretion), together with the antioxidant and anti-carcinogenic properties of numerous bioactive compounds, especially those in the bran and germ (minerals, trace elements, vitamins, carotenoids, polyphenols and alkylresorcinols), are today well-recognised mechanisms in this protection. Recent findings, the exhaustive listing of bioactive compounds found in whole-grain wheat, their content in whole-grain, bran and germ fractions and their estimated bioavailability, have led to new hypotheses. The involvement of polyphenols in cell signalling and gene regulation, and of sulfur compounds, lignin and phytic acid should be considered in antioxidant protection. Whole-grain wheat is also a rich source of methyl donors and lipotropes (methionine, betaine, choline, inositol and folates) that may be involved in cardiovascular and/or hepatic protection, lipid metabolism and DNA methylation. Potential protective effects of bound phenolic acids within the colon, of the B-complex vitamins on the nervous system and mental health, of oligosaccharides as prebiotics, of compounds associated with skeleton health, and of other compounds such as alpha-linolenic acid, policosanol, melatonin, phytosterols and para-aminobenzoic acid also deserve to be studied in more depth. Finally, benefits of nutrigenomics to study complex physiological effects of the 'whole-grain package', and the most promising ways for improving the nutritional quality of cereal products are discussed.

871 citations

Journal ArticleDOI
TL;DR: The history of using high-fat diets to induce obesity in animals is described, the consequences of changing the amount and type of dietary fats on weight gain, body composition and adipose tissue cellularity are clarified, and the contribution of genetics and sex is explored.
Abstract: Epidemiological studies have shown a positive relationship between dietary fat intake and obesity Since rats and mice show a similar relationship, they are considered an appropriate model for studying dietary obesity The present paper describes the history of using high-fat diets to induce obesity in animals, aims to clarify the consequences of changing the amount and type of dietary fats on weight gain, body composition and adipose tissue cellularity, and explores the contribution of genetics and sex, as well as the biochemical basis and the roles of hormones such as leptin, insulin and ghrelin in animal models of dietary obesity The major factors that contribute to dietary obesity - hyperphagia, energy density and post-ingestive effects of the dietary fat - are discussed Other factors that affect dietary obesity including feeding rhythmicity, social factors and stress are highlighted Finally, we comment on the reversibility of high-fat diet-induced obesity

758 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202322
202240
202143
202022
201919
201815