scispace - formally typeset
Search or ask a question

Showing papers in "Oecologia in 1997"


Journal ArticleDOI
TL;DR: Case studies re-evaluating three different types of biodiversity experiments demonstrate that the increases found in such ecosystem properties as productivity, nutrient use efficiency, and stability were actually caused by “hidden treatments” that altered plant biomass and productivity.
Abstract: Interactions between biotic and abiotic pro- cesses complicate the design and interpretation of eco- logical experiments. Separating causality from simple correlation requires distinguishing among experimental treatments, experimental responses, and the many pro- cesses and properties that are correlated with either the treatments or the responses, or both. When an experi- mental manipulation has multiple components, but only one of them is identified as the experimental treatment, erroneous conclusions about cause and eAect relation- ships are likely because the actual cause of any observed response may be ignored in the interpretation of the experimental results. This unrecognized cause of an observed response can be considered a ''hidden treat- ment.'' Three types of hidden treatments are potential problems in biodiversity experiments: (1) abiotic condi- tions, such as resource levels, or biotic conditions, such as predation, which are intentionally or unintentionally altered in order to create diAerences in species numbers for ''diversity'' treatments; (2) non-random selection of species with particular attributes that produce treatment diAerences that exceed those due to ''diversity'' alone; and (3) the increased statistical probability of including a species with a dominant negative or positive eAect (e.g., dense shade, or nitrogen fixation) in randomly selected groups of species of increasing number or ''diversity.'' In each of these cases, treatment responses that are actually the result of the ''hidden treatment'' may be inadver- tently attributed to variation in species diversity. Case studies re-evaluating three diAerent types of biodiversity experiments demonstrate that the increases found in such ecosystem properties as productivity, nutrient use eAciency, and stability (all of which were attributed to higher levels of species diversity) were actually caused by ''hidden treatments'' that altered plant biomass and productivity.

1,601 citations


Journal ArticleDOI
TL;DR: In this article, the root biomass density is estimated based on existing data from the literature and linear regression analysis is used to determine if a reliable method to estimate root density for forests could be developed.
Abstract: Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard methods are much less common. The goal of this work was to determine if a reliable method to estimate root biomass density for forests could be developed based on existing data from the literature. The forestry literature containing root biomass measurements was reviewed and summarized and relationships between both root biomass density (Mg ha−1) and root:shoot ratios (R/S) as dependent variables and various edaphic and climatic independent variables, singly and in combination, were statistically tested. None of the tested independent variables of aboveground biomass density, latitude, temperature, precipitation, temperature:precipitation ratios, tree type, soil texture, and age had important explanatory value for R/S. However, linear regression analysis showed that aboveground biomass density, age, and latitudinal category were the most important predictors of root biomass density, and together explained 84% of the variation. A comparison of root biomass density estimates based on our equations with those based on use of generalized R/S ratios for forests in the United States indicated that our method tended to produce estimates that were about 20% higher.

1,334 citations


Journal ArticleDOI
TL;DR: It is suggested that C4 dicots may not have been selected until CO2 concentrations reached their lowest levels during glacial maxima in the Quaternary, and it is proposed that leaf venation patterns play a role in increasing the light-use efficiency of most C4 monocots.
Abstract: The objectives of this synthesis are (1) to review the factors that influence the ecological, geographical, and palaeoecological distributions of plants possessing C4 photosynthesis and (2) to propose a hypothesis/model to explain both the distribution of C4 plants with respect to temperature and CO2 and why C4 photosynthesis is relatively uncommon in dicotyledonous plants (hereafter dicots), especially in comparison with its widespread distribution in monocotyledonous species (hereafter monocots). Our goal is to stimulate discussion of the factors controlling distributions of C4 plants today, historically, and under future elevated CO2 environments. Understanding the distributions of C3/C4 plants impacts not only primary productivity, but also the distribution, evolution, and migration of both invertebrates and vertebrates that graze on these plants. Sixteen separate studies all indicate that the current distributions of C4 monocots are tightly correlated with temperature: elevated temperatures during the growing season favor C4 monocots. In contrast, the seven studies on C4 dicot distributions suggest that a different environmental parameter, such as aridity (combination of temperature and evaporative potential), more closely describes their distributions. Differences in the temperature dependence of the quantum yield for CO2 uptake (light-use efficiency) of C3 and C4 species relate well to observed plant distributions and light-use efficiency is the only mechanism that has been proposed to explain distributional differences in C3/C4 monocots. Modeling of C3 and C4 light-use efficiencies under different combinations of atmospheric CO2 and temperature predicts that C4-dominated ecosystems should not have expanded until atmospheric CO2 concentrations reached the lower levels that are thought to have existed beginning near the end of the Miocene. At that time, palaeocarbonate and fossil data indicate a simultaneous, global expansion of C4-dominated grasslands. The C4 monocots generally have a higher quantum yield than C4 dicots and it is proposed that leaf venation patterns play a role in increasing the light-use efficiency of most C4 monocots. The reduced quantum yield of most C4 dicots is consistent with their rarity, and it is suggested that C4 dicots may not have been selected until CO2 concentrations reached their lowest levels during glacial maxima in the Quaternary. Given the intrinsic light-use efficiency advantage of C4 monocots, C4 dicots may have been limited in their distributions to the warmest ecosystems, saline ecosystems, and/or to highly disturbed ecosystems. All C4 plants have a significant advantage over C3 plants under low atmospheric CO2 conditions and are predicted to have expanded significantly on a global scale during full-glacial periods, especially in tropical regions. Bog and lake sediment cores as well as pedogenic carbonates support the hypothesis that C4 ecosystems were more extensive during the last glacial maximum and then decreased in abundance following deglaciation as atmospheric CO2 levels increased.

1,238 citations


Journal ArticleDOI
TL;DR: The results of this study support the use of PRI as an interspecific index of photosynthetic radiation use efficiency for leaves and canopies in full sun, but not across wide ranges in illumination from deep shade to full sun.
Abstract: The photochemical reflectance index (PRI), derived from narrow-band reflectance at 531 and 570 nm, was explored as an indicator of photosynthetic radiation use efficiency for 20 species representing three functional types: annual, deciduous perennial, and evergreen perennial. Across species, top-canopy leaves in full sun at midday exhibited a strong correlation between PRI and ΔF/Fm′, a fluorescence-based index of photosystem II (PSII) photochemical efficiency. PRI was also significantly correlated with both net CO2 uptake and radiation use efficiency measured by gas exchange. When species were examined by functional type, evergreens exhibited significantly reduced midday photosynthetic rates relative to annual and deciduous species. This midday reduction was associated with reduced radiation use efficiency, detectable as reduced net CO2 uptake, PRI, and ΔF/Fm′ values, and increased levels of the photoprotective xanthophyll cycle pigment zeaxanthin. For each functional type, nutrient deficiency led to reductions in both PRI and ΔF/Fm′ relative to fertilized controls. Laboratory experiments exposing leaves to diurnal courses of radiation and simulated midday stomatal closure demonstrated that PRI changed rapidly with both irradiance and leaf physiological state. In these studies, PRI was closely correlated with both ΔF/Fm' and radiation use efficiency determined from gas exchange at all but the lowest light levels. Examination of the difference spectra upon exposure to increasing light levels revealed that the 531 nm Δ reflectance signal was composed of two spectral components. At low irradiance, this signal was dominated by a 545-nm component, which was not closely related to radiation use efficiency. At progressively higher light levels above 100 μmol m−2 s−1, the 531-nm signal was increasingly dominated by a 526-nm component, which was correlated with light use efficiency and with the conversion of the xanthophyll pigment violaxanthin to antheraxanthin and zeaxanthin. Further consideration of the two components composing the 531-nm signal could lead to an index of photosynthetic function applicable over a wide range of illumination. The results of this study support the use of PRI as an interspecific index of photosynthetic radiation use efficiency for leaves and canopies in full sun, but not across wide ranges in illumination from deep shade to full sun. The discovery of a consistent relationship between PRI and photosynthetic radiation use efficiency for top-canopy leaves across species, functional types, and nutrient treatments suggests that relative photosynthetic rates could be derived with the “view from above” provided by remote reflectance measurements if issues of canopy and stand structure can be resolved.

1,024 citations


Journal ArticleDOI
TL;DR: A strategy is derived that can help to dispel the existing ”confusion of tongues” on the subject of ”stability” and prevent its future recurrence, and consists of three questions that should be kept in mind when communicating about stability properties.
Abstract: We present an inventory and analysis of discussions of ecological stability, considering 163 definitions of 70 different stability concepts. Our aim is to derive a strategy that can help to dispel the existing ”confusion of tongues” on the subject of ”stability” and prevent its future recurrence. The strategy consists of three questions that should be kept in mind when communicating about stability properties. These three questions should overcome the three main sources of confusion in terminology. Firstly, which stability properties are being addressed in the stability statement? Our analysis shows that the general term ”stability” is so ambiguous as to be useless.It can be replaced by the stability properties ”staying essentially unchanged” (constancy), ”returning to the reference state (or dynamic) after a temporary disturbance” (resilience), and ”persistence through time of an ecological system” (persistence). Second, to what ecological situation does the statement refer? An ecological situation is defined by a set of features that, taken as a whole, determine the domain of validity of a stability statement. The six most important features form the ”ecological checklist”, which serves to classify ecological situations and thereby provides a system of coordinates for communication. The six points are: variable of interest, level of description, reference state, disturbance, spatial scale and temporal scale. Thirdly, is the statement anchored in the situation in question, or is there unacceptable generalisation by inferring ”stability” of the whole system from a certain stability property in a certain ecological ecological situation? This question separates the scientifically valuable content of a statement from the desire for general statements which is often projected through stability statements.

738 citations


Journal ArticleDOI
TL;DR: It is suggested that the factors controlling nested subset structure can be thought of as four filters that species pass to occur at a site: a samplingfilter, a distance filter, a habitat filter, and an area filter – and three constraints on community homogeneity: evolutionary history, recent history, and spatial variation in the environment.
Abstract: We present a broad comparative assessment of nested subsets in species composition among ecological communities. We assembled presence-absence data from a broad range of taxa, geographic regions, and spatial scales; and subjected this collection of datasets to common analyses, including a variety of metrics for measuring nestedness and null hypotheses against which to evaluate them. Here we identify ecological patterns in the prevalence and strength of nested subset structure, and assess differences and biases among the available methodologies. In all, we compiled 279 presence-absence matrices, of which 163 do not overlap in their coverage of species and sites. The survey includes studies on vertebrates, arthropods, mollusks, plants, and other taxa; from north temperate, tropical, and south temperate latitudes. Our results were as follows. Statistically significant nestedness was common. Assemblages from landbridge archipelagos were strongly nested, and immigration experiments were least nested. This adds further empirical support to the hypothesis that extinction plays a major role in producing nested structure. Nestedness was positively correlated with the ratio of the areas of the largest and smallest sites, suggesting that the range in area of sites affects nestedness. Taxonomic differences in nestedness were weak. Higher taxonomic levels showed stronger nesting than their constituent lower taxa. We observed no effect of distance of isolation on nestedness; nor any effects of latitude. With regard to methodology, the metrics Nc and Ut yielded similar results, although Nc proved slightly more flexible in use, and deals differently with tied sites. Similarities also exist in the behavior of N0 ("N") and Up, and between N1 and Ua. Standardized nestedness metrics were mostly insensitive to matrix size, and were useful in comparative analyses among presence-absence matrices. Most metrics were affected by the proportion of presences in the matrix. All analyses of nestedness, therefore, should test for bias due to matrix fill. We suggest that the factors controlling nested subset structure can be thought of as four filters that species pass to occur at a site: a sampling filter, a distance filter, a habitat filter, and an area filter - and three constraints on community homogeneity: evolutionary history, recent history, and spatial variation in the environment. The scale of examination can also have important effects on the degree of nestedness observed.

620 citations


Journal ArticleDOI
TL;DR: Hydrogen isotopes may become a powerful tool for linking breeding and wintering grounds of neotropical migrant songbirds, as well as other migratory species moving between isotopically distinct regions.
Abstract: Recent studies have shown that stable hydrogen isotope ratios (δD) in the tissues of animals often correlate with δD of local precipitation. Here we examined the relationship between δD in feathers and growing season precipitation for neotropical migrant songbirds breeding over a continent-wide isotopic gradient. δD values were determined on feathers of 140 individuals of 6 species of wild insectivorous forest songbirds (Setophaga ruticilla, Empidonax minimus, Vermivora peregrinus, Catharus ustulatus, Seiurus aurocapillus, Hylocichla mustelina) taken from 14 breeding locations across North America. The δD of feathers was strongly correlated with the δD of growing season precipitation at breeding sites across North America. As feather hydrogen is metabolically inert after growth, this relationship was then used to assess the breeding origins of wintering migrants. Deuterium values of feathers from 64 individuals representing 5 species of migrants (Helmitheros vermivorus, Wilsonia citrina, Hylocichla mustelina, Dumetella carolinensis, Seirus aurocapillus) at a wintering site in Guatemala were consistent with those predicted from the known breeding ranges of these species. This study demonstrates hydrogen isotopes may become a powerful tool for linking breeding and wintering grounds of neotropical migrant songbirds, as well as other migratory species moving between isotopically distinct regions.

522 citations


Journal ArticleDOI
TL;DR: Preliminary analyses of the δD and δ13C composition of feathers collected from warblers in their Caribbean winter grounds indicate that these individuals were mostly from northern breeding populations, and variances in isotope ratios in samples from local areas in winter tended to be larger than those in summer, suggesting that individuals from different breeding localities may mix in winter habitats.
Abstract: To determine whether stable isotopes can be used for identifying the geographic origins of migratory bird populations, we examined the isotopic composition of hydrogen (deuterium, δD), carbon (δ13C), and strontium (δ87Sr) in tissues of a migratory passerine, the black-throated blue warbler (Dendroica caerulescens), throughout its breeding range in eastern North America. δD and δ13C values in feathers, which are grown in the breeding area, varied systematically along a latitudinal gradient, being highest in samples from the southern end of the species’ breeding range in Georgia and lowest in southern Canada. In addition, δD decreased from east to west across the northern part of the breeding range, from New Brunswick to Michigan. δ87Sr ratios were highest in the Appalachian Mountains, and decreased towards the west. These patterns are consistent with geographical variation in the isotopic composition of the natural environment, i.e., with that of precipitation, plants, and soils for δD, δ13C, and δ87Sr, respectively. Preliminary analyses of the δD and δ13C composition of feathers collected from warblers in their Caribbean winter grounds indicate that these individuals were mostly from northern breeding populations. Furthermore, variances in isotope ratios in samples from local areas in winter tended to be larger than those in summer, suggesting that individuals from different breeding localities may mix in winter habitats. These isotope markers, therefore, have the potential for locating the breeding origins of migratory species on their winter areas, for quantifying the degree of mixing of breeding populations on migratory and wintering sites, and for documenting other aspects of the population structure migratory animals – information needed for studies of year-round ecology of these species as well as for their conservation. Combining information from several stable isotopes will help to increase the resolution for determining the geographic origins of individuals in such highly vagile populations.

429 citations


Journal ArticleDOI
TL;DR: The demonstration of a salt marsh–channel linkage in these systems affirms that these habitats should be managed as a single ecosystem and that the restoration of intertidal marshes for endangered birds and other biota is compatible with enhancement of coastal fish populations.
Abstract: Carbon, nitrogen, and sulfur stable isotopes were used to characterize the food webs (i.e., sources of carbon and trophic status of consumers) in Tijuana Estuary and San Dieguito Lagoon. Producer groups were most clearly differentiated by carbon, then by sulfur, and least clearly by nitrogen isotope measurements. Consumer 15N isotopic enrichment suggested that there are four trophic levels in the Tijuana Estuary food web and three in San Dieguito Lagoon. A significant difference in multiple isotope ratio distributions of fishes between wetlands suggested that the food web of San Dieguito Lagoon is less complex than that of Tijuana Estuary. Associations among sources and consumers indicated that inputs from intertidal macroalgae, marsh microalgae, and Spartina foliosa provide the organic matter that supports invertebrates, fishes, and the light-footed clapper rail (Rallus longirostris levipes). These three producers occupy tidal channels, low salt marsh, and mid salt marsh habitats. The only consumer sampled that appears dependent upon primary productivity from high salt marsh habitat is the sora (Porzana carolina). Two- and three-source mixing models identified Spartina as the major organic matter source for fishes, and macroalgae for invertebrates and the light-footed clapper rail in Tijuana Estuary. In San Dieguito Lagoon, a system lacking Spartina, inputs of macroalgae and microalgae support fishes. Salicornia virginica, S. subterminalis, Monanthochloe littoralis, sewage- derived organic matter, and suspended particulate organic matter were deductively excluded as dominant, direct influences on the food web. The demonstration of a salt marsh-channel linkage in these systems affirms that these habitats should be managed as a single ecosystem and that the restoration of intertidal marshes for endangered birds and other biota is compatible with enhancement of coastal fish populations; heretofore, these have been considered to be competing objectives.

363 citations


Journal ArticleDOI
TL;DR: The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality may exert more than a proximal control over net N Mineralization by influencing soil organic matter quality throughout the soil profile independent of climate.
Abstract: The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate.

342 citations


Journal ArticleDOI
TL;DR: Investigation of seasonal and annual changes in diets of martens in response to the changing abundance of small rodents on Chichagof Island, Southeast Alaska concluded that martens, as true generalist predators, switched to alternative prey when their principal food was not readily available on a seasonal or annual basis.
Abstract: Theory predicts that generalist predators will switch to alternative prey when preferred foods are not readily available. Studies on the feeding ecology of the American marten (Martes americana) throughout North America suggest that this mustelid is a generalist predator feeding largely on voles (Microtus sp.; Cle- thrionomys sp.). We investigated seasonal and annual changes in diets of martens in response to the changing abundance of small rodents (Peromyscus keeni, and Microtus longicaudus) on Chichagof Island, Southeast Alaska, using stable isotope analysis. We hypothesized that martens would feed primarily on small rodents during years with high abundance of these prey species, whereas during years of low abundance of prey, martens would switch to feed primarily on the seasonally avail- able carcasses of salmon. We also hypothesized that home-range location on the landscape (i.e., access to salmon streams) would determine the type of food consumed by martens, and martens feeding on preferred prey would exhibit better body condition than those feeding on other foods. We live-captured 75 martens repeatedly, from mid-February to mid-December 1992- 1994. We also obtained marten carcasses from trappers during late autumn 1991 and 1992, from which we randomly sub-sampled 165 individuals. Using stable isotope ratios and a multiple-source mixing model, we inferred that salmon carcasses composed a large portion of the diet of martens in autumn during years of low abundance of rodents (1991 and 1992). When small ro- dents were available in high numbers (1993 and 1994), they composed the bulk of the diet of martens in au- tumn, despite salmon carcasses being equally available in all years. Selection for small rodents occurred only in seasons in which abundance of small rodents was low. Logistic regression revealed that individuals with access to salmon streams were more likely to incorporate salmon carcasses in their diet during years of low abundance of small rodents. Using stable isotope anal- ysis on repeated samples from the same individuals, we explored some of the factors underlying feeding habits of individuals under variable ecological conditions. We were unable to demonstrate that body weights of live- captured male and female martens diAered significantly between individuals feeding on marine-derived or ter- restrial diets. Therefore, martens, as true generalist predators, switched to alternative prey when their prin- cipal food was not readily available on a seasonal or annual basis. Although salmon carcasses were not a preferred food for martens, they provided a suitable alternative to maintain body condition during years when small rodents were not readily available.

Journal ArticleDOI
TL;DR: The data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to mineralize from less than 1% to greater than 25% of the carbon fixed in ANPP, while over- winter N2O fluxes range from less the half to an order of magnitude higher than growing season fluxes.
Abstract: Fluxes of CO2 and N2O were measured from both natural and experimentally augmented snowpacks during the winters of 1993 and 1994 on Niwot Ridge in the Colorado Front Range. Consistent snow cover in- sulated the soil surface from extreme air temperatures and allowed heterotrophic activity to continue through much of the winter. In contrast, soil remained frozen at sites with inconsistent snow cover and production did not begin until snowmelt. Fluxes were measured when soil temperatures under the snow ranged from -5∞ Ct o 0 ∞C, but there was no significant relationship between flux for either gas and temperature within this range. While early developing snowpacks resulted in warmer minimum soil temperatures allowing production to continue for most of the winter, the highest CO2 fluxes were recorded at sites which experienced a hard freeze before a consistent snowpack developed. Consequently, the seasonal flux of CO2AC from snow covered soils was related both to the severity of freeze and the duration of snow cover. Over-winter CO2AC loss ranged from 0.3 g Cm ) 2 season )1 at sites characterized by inconsistent snow cover to 25.7 g C m )2 season )1 at sites that expe- rienced a hard freeze followed by an extended period of snow cover. In contrast to the pattern observed with C loss, a hard freeze early in the winter did not result in greater N2OAN loss. Both mean daily N2O fluxes and the total over-winter N2OAN loss were related to the length of time soils were covered by a consistent snow- pack. Over-winter N2OAN loss ranged from less 0.23 mg N m )2 from the latest developing, short duration snowpacks to 16.90 mg N m )2 from sites with early snow cover. These data suggest that over-winter heterotrophic activity in snow-covered soil has the potential to min- eralize from less than 1% to greater than 25% of the carbon fixed in ANPP, while over-winter N2O fluxes range from less than half to an order of magnitude higher than growing season fluxes. The variability in these fluxes suggests that small changes in climate which aAect the timing of seasonal snow cover may have a large eAect on C and N cycling in these environments.

Journal ArticleDOI
TL;DR: The prospect that the distribution and abundance of any species in a plant community may be positively affected by the effects that other species have on their competitors suggests that communities are organized by much more than “the fluctuating and fortuitous immigration of plants and an equally fluctuate and variable environment.
Abstract: The individualistic nature of communities is held as a fundamental ecological tenet by many ecologists. The empirical rationale for the individualistic hypothesis is largely based on gradient analyses in which plant species are almost always found to be arranged independently of one another in “continua” along environmental gradients. However, continua are correlative patterns and do not identify the processes that determine them, and so they do not necessarily preclude the possibility of interdependent interactions within plant communities. For example, the common occurrence of positive interactions suggests that plant species may not always be distributed independently of each other. If the distributions and abundances of species are enhanced by the presence of other species, their organization is not merely a coincidence of similar adaptation to the abiotic environment. Interpretations of gradient analyses also appear to assume that interactions among species should be similar at all points along environmental axes, and that groups of species should be associated at all points on a gradient if interdependence is to be accepted. However, virtually all types of ecological interactions have been shown to vary with changes in the abiotic environment, and a number of field experiments indicate that positive effects become stronger as abiotic stress increases. Furthermore, interactions among plants have been shown to shift from competition to facilitation along environmental continua. Thus, significant interdependence may occur even when species do not fully overlap in distribution. Higher-order, indirect interactions between animals and plants, and among plants, also suggest that interdependence within communities occurs. Eliminating a species involved in an indirect interaction may not necessarily mean that its beneficiary will be eliminated from a community, but the prospect that the distribution and abundance of any species in a plant community may be positively affected by the effects that other species have on their competitors suggests that communities are organized by much more than “the fluctuating and fortuitous immigration of plants and an equally fluctuating and variable environment” as stated by Henry Gleason. The ubiquity of direct and indirect positive interactions within plant communities provides a strong argument that communities are more interdependent than current theories allow.

Journal ArticleDOI
TL;DR: By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, it is determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla.
Abstract: Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other species in the community as well.

Journal ArticleDOI
TL;DR: Leaf carbon isotope discrimination, seasonal estimates of the leaf-to-air water vapor gradient on a molar basis, and leaf nitrogen contents were examined in riparian tree species along elevational transects in northern and southern Utah USA, suggesting that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations.
Abstract: Leaf carbon isotope discrimination (Δ), seasonal estimates of the leaf-to-air water vapor gradient on a molar basis (ω), and leaf nitrogen contents were examined in three riparian tree species (Populus fremontii, P. angustifolia, and Salix exigua) along elevational transects in northern and southern Utah USA (1500–2670 m and 600–1820 m elevational gradients, respectively). The ω values decreased with elevation for all species along transects. Plants growing at higher elevations exhibited lower Δ values than plants at lower elevations (P. fremontii, 22.9‰ and 19.5‰, respectively; P. angustifolia, 23.2‰ and 19.2‰, respectively; and S.␣exigua, 21.1‰ and 19.1‰, respectively). Leaf nitrogen content increased with elevation for all species, suggesting that photosynthetic capacity at a given intercellular carbon dioxide concentration was greater at higher elevations. Leaf Δ and nitrogen content values were highly correlated, implying that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations. No significant interannual differences were detected in carbon isotope discrimination.

Journal ArticleDOI
TL;DR: Early survival of fawns was low and highly variable over the years at both Chizé and Trois Fontaines, and demonstrated marked variations between cohorts that need to be taken into account when modelling roe deer population dynamics.
Abstract: Time- and sex-specific summer survival of roe deer fawns was estimated using capture-mark-recapture methods in two enclosed populations living in contrasting conditions. The population of Trois Fontaines (eastern France) was roughly constant in size throughout the study period, while in Chize (western France), the population experienced frequent summer droughts and numbers decreased continuously during the study. Early survival of fawns was low and highly variable over the years at both Chize and Trois Fontaines, and demonstrated marked variations between cohorts that need to be taken into account when modelling roe deer population dynamics. In Trois Fontaines, fawn survival was positively correlated with early body growth and total rainfall in May and June. In Chize, fawn survival decreased with increasing density and tended to increase with increasing rainfall in May and June and adult female body mass. These factors explained more than 75% of the variability in early survival observed in both populations. Variation between cohorts had different consequences for the two populations. At Trois Fontaines, cohort variation was limited to a numerical effect on early survival. However at Chize, cohort variation was long-lasting and affected the phenotypic quality of survivors at later ages, and thereby future survival and breeding abilities (both numerical and quality effects). Male and female fawns had similar survival over their first summer in both populations. This result contrasts with the lower survival of young males often observed in ungulates. Two ultimate causes can be proposed to account for the low and variable survival of roe deer fawns over the first summer: the high energy expenditures incurred by does during each breeding attempt and/or the low absolute body size of newborn roe deer fawns.

Journal ArticleDOI
TL;DR: Fire resistance may interact with competition: it is suggested that differences in fire resistance strategies have important effects on the structure and dynamics of savanna ecosystems.
Abstract: Bark properties (mainly thickness) are usually presented as the main explanation for tree survival in intense fires. Savanna fires are mild, frequent, and supposed to affect tree recruitment rather than adult survival: trunk profile and growth rate of young trees between two successive fires can also affect survival. These factors and fire severity were measured on a sample of 20 trees near the recruitment stage of two savanna species chosen for their contrasted fire resistance strategies (Crossopteryx febrifuga and Piliostigma thonningii). Crossopteryx has a higher intrinsic resistance to fire (bark properties) than Piliostigma: a 20-mm-diameter stem of Crossopteryx survives exposure to 650°C, while Piliostigma needs a diameter of at least 40 mm to survive. Crossopteryx has a thicker trunk than Piliostigma: for two trees of the same height, the basal diameter of Crossopteryx will be 1.6 times greater. Piliostigma grows 2.26 times faster than Crossopteryx between two successive fires. The two species have different fire resistance strategies: one relies on resistance of aboveground structures to fire, while the other relies on its ability to quickly re-build aboveground structures. Crossopteryx is able to recruit in almost any fire conditions while Piliostigma needs locally or temporarily milder fire conditions. In savannas, fire resistance is a complex property which cannot be assessed simply by measuring only one of its components, such as bark thickness. Bark properties, trunk profile and growth rate define strategies of fire resistance. Fire resistance may interact with competition: we suggest that differences in fire resistance strategies have important effects on the structure and dynamics of savanna ecosystems.

Journal ArticleDOI
TL;DR: The dependence of CO2 exchange dynamics on weather events suggests that daily balances in C accumulation are labile and can change from net carbon uptake to net release, primarily in high hummocks on fens under warmer, drier climatic conditions.
Abstract: Carbon dioxide (CO2) exchange was studied at flark (minerotrophic hollow), lawn and hummock microsites in an oligotrophic boreal pine fen. Statistical response functions were constructed for the microsites in order to reconstruct the annual CO2 exchange balance from climate data. Carbon accumulation was estimated from the annual net CO2 exchange, methane (CH4) emissions and leaching of carbon. Due to high water tables in the year 1993, the average carbon accumulation at the flark, Eriophorum lawn, Carex lawn and hummock microsites was high, 2.91, 6.08, 2.83 and 2.66 mol C m–2, respectively, and for the whole peatland it was 5.66 mol m–2 year–1. During the maximum primary production period in midsummer, hummocks with low water tables emitted less methane than predicted from the average net ecosystem exchange (NEE), while the Carex lawns emitted slightly more. CH4 release during that period corresponded to 16% of the contemporary NEE. Annual C accumulation rate did not correlate with annual CH4 release in the microsites studied, but the total community CO2 release seemed to be related to CH4 emissions in the wet microsites, again excluding the hummocks. The dependence of CO2 exchange dynamics on weather events suggests that daily balances in C accumulation are labile and can change from net carbon uptake to net release, primarily in high hummocks on fens under warmer, drier climatic conditions.

Journal ArticleDOI
TL;DR: Analysis of the response of gas exchange and stem sap flow of Tamarix and three co-occurring native phreatophytes to drought conditions in an early successional floodplain community in the Mojave Desert of southern Nevada suggests that the invasiveTamarix is the most drought tolerant of the four species, whereas Salix transpires the most water per unit leaf surface area and is the least tolerant of seasonal water stress.
Abstract: Tamarix ramosissima (Tamaricaceae) is a woody phreatophyte that has invaded thousands of hectares of floodplain habitat in the southwestern U.S. In this study, we examined the response of gas exchange and stem sap flow of Tamarix and three co-occurring native phreatophytes (Pluchea sericea (Asteraceae), Prosopis pubescens (Fabaceae) and Salix exigua (Salicaceae)) to drought conditions in an early successional floodplain community in the Mojave Desert of southern Nevada. In an analysis of a size/age series of each species across the whole floodplain (both mature and successional stands), stem growth rate was lowest for Tamarix. However, along the same successional chronosequence, Tamarix came to dominate the 50+ year old stands with dense thickets of high stem density. Xylem sap flow, when expressed on a sapwood area basis, was highest in Tamarix under early drought conditions, but comparable between the four species toward the end of the summer dry season. Multivariate analysis of the gas exchange data indicated that the four species differentiated based on water use under early drought conditions and separated based on plant water potential and leaf temperature (indices of drought effects) at the end of the summer dry season. This analysis suggests that the invasive Tamarix is the most drought tolerant of the four species, whereas Salix transpires the most water per unit leaf surface area and is the least tolerant of seasonal water stress. Therefore, Salix appears to be well adapted to early successional communities. However, as floodplains in this arid region become more desiccated with age, Tamarix assumes greater dominance due to its superior drought tolerance relative to native phreatophytes and its ability to produce high density stands and high leaf area.

Journal ArticleDOI
TL;DR: It is concluded that life forms are robust indicators of functional groups that are related to carbon and water fluxes within boreal ecosystems.
Abstract: We tested the hypothesis that life forms (trees, shrubs, forbs, and mosses; deciduous or evergreen) can be used to group plants with similar physiological characteristics. Carbon isotope ratios (δ13C) and carbon isotope discrimination (Δ) were used as functional characteristics because δ13C and Δ integrate information about CO2 and water fluxes, and so are useful in global change and scaling studies. We examined δ13C values of the dominant species in three boreal forest ecosystems: wet Picea mariana stands, mesic Populus tremuloides stands, and dry Pinus banksiana stands. Life form groups explained a significant fraction of the variation in leaf carbon isotope composition; seven life-form categories explained 50% of the variation in δ13C and 42% of the variation in Δ and 52% of the variance not due to intraspecific genetic differences (n=335). The life forms were ranked in the following order based on their values: evergreen trees

Journal ArticleDOI
TL;DR: On the black cotton soils of the Laikipia ecosystem in Kenya, two swollen-thorn acacia species support nine ant species, four of which are apparently obligate plant-ants, which are examples of coexisting diversity on an apparently uniform resource.
Abstract: On the black cotton soils of the Laikipia ecosystem in Kenya, two swollen-thorn acacia species support nine ant species, four of which are apparently obligate plant-ants. Among the ants, there are five species of Crematogaster, two species of Camponotus, and one each of Tetraponera and Lepisota. Acacia drepanolobium is host to four ant species that are both common and mutually exclusive. These four ant species, and an additional non-exclusive ant species, tend to occur on trees of different sizes, implying a succession of ant occupants. Nonetheless, all four exclusive species occur in substantial proportions on trees of intermediate size. There is direct evidence that an early successional ant species (Tetraponera penzigi) is actively evicted by two late successional ant species in the genus Crematogaster. There was also some evidence of height differentiation among ant species resident on A. seyal. Different acacia-ant species had different direct effects on A. drepanolobium. Extrafloral nectaries were eaten and destroyed only on trees inhabited by Tetraponera. Axillary shoots were eaten only on trees inhabited by C. nigriceps (potentially another early successional ant). This was associated with more new terminal shoots and healthier leaves than other trees, but also the virtual elimination of flowering and fruiting. Different resident acacia-ant species also had characteristic relationships with other insects. Among the four mutually exclusive ant species, only Crematogaster sjostedti was associated with two species of Camponotus, at least one of which (C. rufoglaucus) appears to be a foraging non-resident. A. drepanolobium trees occupied by C. sjostedti were also far more heavily infested with leaf galls than were trees occupied by other ant species. A. drepanolobium trees occupied by C. mimosae and C. sjostedti uniquely had tended adult scale insects. This diversity of ant inhabitants, and their strikingly different relationships with their hosts and other insect species, are examples of coexisting diversity on an apparently uniform resource.

Journal ArticleDOI
TL;DR: Specificity in the induced responses of tomato foliage to arthropod herbivores was investigated to understand the way in which plants coordinate and integrate induced responses against insects with other physiological processes.
Abstract: Specificity in the induced responses of tomato foliage to arthropod herbivores was investigated. We distinguished between two aspects of specificity: specificity of effect (the range of organisms affected by a given induced response), and specificity of elicitation (ability of the plant to generate distinct chemical responses to different damage types). Specificity of effect was investigated by examining the effect of restricted feeding by Helicoverpa zea on the resistance of tomato plants to an aphid species (Macrosiphum euphorbiae), a mite species (Tetranychus urticae), a noctuid species (Spodoptera exigua), and to a phytopathogen, Pseudomonas syringae pv. tomato. Prior H. zea feeding was found to increase the resistance of tomato plants to all four organisms. Specificity in elicitation was investigated by examining the effect of aphid feeding on the activities of four defense-related proteins and on the suitability of foliage for S. exigua. Aphid feeding was found to induce peroxidase and lipoxygenase activities but not polyphenol oxidase and proteinase inhibitor activities; this response is distinct from the response to H. zea feeding, which induces polyphenol oxidase and proteinase inhibitors but not peroxidase. Leaflets which had been fed upon by aphids were better sources of food for S. exigua than were leaflets which had not been fed upon by aphids. Studies of both these aspects of specificity are needed to understand the way in which plants coordinate and integrate induced responses against insects with other physiological processes.

Journal ArticleDOI
TL;DR: The δ13Cleaf and calculated ci/ca of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange.
Abstract: Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season.

Journal ArticleDOI
TL;DR: If atmospheric inputs are relevant to isotopic studies of the sources of nitrogen for canopied systems, then confident interpretation will require analysis of these inputs.
Abstract: Isotopic studies of nitrogen and sulphur inputs to plant/soil systems commonly rely on limited published data for the 15N/14N and 34S/32S ratios of nitrate, ammonium and sulphate in rainfall. For systems with well-developed plant canopies, however, inputs of these ions from dry deposition or particulates may be more important than rainfall. The manner in which isotopic fractionation between ions and gases may lead to dry deposition and particulates having 15N/14N or 34S/32S ratios different from those of rainfall is considered. Data for rainfall and throughfall in coniferous plantations are then discussed, and suggest that: (1) in line with expectations, nitrate washed from the canopy has 15N/14N ratios higher than those in rainfall; (2) the 15N/14N ratios of ammonium washed from the canopy are variable, with high ratios being found for canopies of higher pH in conditions of elevated ambient ammonia gas concentrations; and (3) in accord with expectations and previous work, 34S/32S ratios of sulphate washed from the canopy are not substantially different from those in rainfall. The study suggests that if atmospheric inputs are relevant to isotopic studies of the sources of nitrogen for canopied systems, then confident interpretation will require analysis of these inputs.

Journal ArticleDOI
TL;DR: Understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability.
Abstract: We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1-80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability.

Journal ArticleDOI
TL;DR: Pinfish used in field experiments provided an important link between habitats, allowing transfer of marsh-derived secondary production to subtidal seagrass beds and vice versa, and to maximize secondary production and utilization of intertidal marshes.
Abstract: In this study we used pinfish (Lagodon rhomboides) in field experiments to examine linkages between intertidal saltmarsh and adjacent subtidal habitats. Pinfish are more than twice as abundant in intertidal marshes adjacent to seagrass beds than in those adjacent to the unvegetated subtidal bottom. Movement of pinfish between the marsh edge and the adjacent subtidal habitat was greater for fish captured in areas with both intertidal and subtidal vegetation than in those with intertidal vegetation and adjacent unvegetated mudflats. This movement provides an important link between habitats, allowing transfer of marsh-derived secondary production to subtidal seagrass beds and vice versa. Pinfish held in enclosures with both intertidal and subtidal vegetation were, on average, approximately 90% heavier than fish held in enclosures with intertidal vegetation and unvegetated subtidal bottom. Because saltmarshes and seagrass beds contribute to the production of living marine resources, active measures are being taken to preserve and restore these habitats. The results from this study have direct application to decisions concerning site selection and optimal spatial proximity of saltmarsh and seagrass habitats in the planning of restoration and mitigation projects. To maximize secondary production and utilization of intertidal marshes, managers may opt to restore and/or preserve marshes adjacent to subtidal seagrass beds.

Journal ArticleDOI
TL;DR: Examination of branching root systems of two temperate tree species and two perennial herbs from horizontal rhizomes found the smallest tree roots may be the least expensive to construct but the most expensive to maintain based on an increase in N concentration with order.
Abstract: The objective of this study was to examine how root length, diameter, specific root length, and root carbon and nitrogen concentrations were related to root branching patterns. The branching root systems of two temperate tree species, Acer saccharum Marsh. and Fraxinus americana L., and two perennial herbs from horizontal rhizomes, Hydrophyllum canadense L. and Viola pubescens Ait., were quantified by dissecting entire root systems collected from the understory of an A. saccharum-Fagus grandifolia Ehrh. forest. The root systems of each species grew according to a simple branching process, with laterals emerging from the main roots some distance behind the tip. Root systems normally consisted of only 4–6 branches (orders). Root diameter, length, and number of branches declined with increasing order and there were significant differences among species. Specific root length increased with order in all species. Nitrogen concentration increased with order in the trees, but remained constant in the perennial herbs. More than 75% of the cumulative root length of tree seedling root systems was accounted for by short (2–10 mm) lateral roots almost always <0.3 mm in diameter. Simple assumptions suggest that many tree roots normally considered part of the dynamic fine-root pool (e.g., all roots <2.0 mm in diameter) are too large to exhibit rapid rates of production and mortality. The smallest tree roots may be the least expensive to construct but the most expensive to maintain based on an increase in N concentration with order.

Journal ArticleDOI
TL;DR: It is concluded that the overwinter depletion of somatic reserves has a significant selective impact on energy accumulation and allocation strategies in seasonal environments.
Abstract: This study focuses on the seasonal accumulation and depletion of somatic energy in the Atlantic silverside (Menidia menidia), an annual estuarine fish. Previous research revealed that northern silversides are subject to strong size-dependent winter mortality, while southern fish suffer no appreciable winter mortality. To examine whether there was geographic differentiation in allocation strategies, we compared temporal patterns of energy storage and utilization among three populations along this gradient in seasonality. The comparative design used monthly or biweekly samples of fish collected in the wild, as well as samples of fish from each population reared in a common environment, where genetic differences can be clarified. Somatic energy stores were quantified via gravimetric analysis of neutral storage lipids and lean tissue. Analysis revealed that small individuals maintained relatively low levels of lipid reserves, which may account for their lower survival in winter. Wild fish in the north rapidly accumulated large somatic reserves, which were depleted over the winter and then increased again during the subsequent spring breeding season. In wild southern fish, relatively small reserves accumulated slowly until breeding commenced in the spring. The common-environment comparison of somatic storage patterns revealed a genetic basis for among-population differences in reserve accumulation rates, but no differences in the amount of reserves stored. We conclude that the overwinter depletion of somatic reserves has a significant selective impact on energy accumulation and allocation strategies in seasonal environments.

Journal ArticleDOI
TL;DR: Leaf turnover rates based on leaf fall estimates and litter standing crop were 10- to 20-fold higher than estimated from rates of leaf degradation, indicating the significant effect of leaf transport by tides and crabs.
Abstract: The hypothesis that rates of litter turnover in mangroves are controlled by local geophysical processes such as tides has been studied at sites with mostly small tides ( 3 m) river-dominated tropical estuary in Ecuador (2.5°S latitude). There were statistical effects of site and depth on soil salinities, but all mean salinities were M2 > M1) and season (rainy > dry) effects on leaf degradation, and both effects were related to differences in the initial nitrogen content of senescent leaves. Mean leaf litter standing crop among the sites ranged from 1.53 to 9.18 g m−2, but amounts were strongly seasonal with peak values during September in both years of our study (no significant year effect) at all three sites. Leaf turnover rates based on leaf fall estimates and litter standing crop were 10- to 20-fold higher than estimated from rates of leaf degradation, indicating the significant effect of leaf transport by tides and crabs. Field experiments demonstrated that the mangrove crab can remove daily additions of leaf material within 1 h at all three sites, except during August–October, when the crab is inactive on the forest floor. Even though there is seasonally elevated leaf accumulation on the forest floor during this time, leaf turnover rates are much higher than expected based on leaf degradation, demonstrating the importance of tidal export. This is the first description of how crabs influence litter dynamics in the New World tropics, and results are similar to higher rates of crab transport of leaf litter in the Old World tropics. Even in riverine mangroves with high geophysical energies, patterns of litter dynamics can be influenced by ecological processes such as crab transport.

Journal ArticleDOI
TL;DR: Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr, and it was found that very young seedlings are decoupled from Grasses in this system, which may facilitate germination and early establishment of Q.emoryi within extant stands of native grasses.
Abstract: Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr. We predicted that (1) tree seedlings and bunchgrasses utilize shallow sources of soil water, (2) mature savanna trees use deeper sources of water, and (3) trees switch from shallow to deep water sources within 1 year of germination. We found that Q. emoryi trees, saplings, and seedlings (about 2 months, 1 year, and 2 years old), and the dominant bunchgrass [Trachypogon montufari (H.B.K.) Nees.] utilized seasonally available moisture from different depths within the soil profile depending on size/age relationships. Sapling and mature Q. emoryi acquired water from >50 cm deep, 2-month-old seedlings utilized water from <15 cm, and 1- and 2-year-old seedlings and grasses used water from between 20 cm and 35 cm. This suggests that very young seedlings are decoupled from grasses in this system, which may facilitate germination and early establishment of Q. emoryi within extant stands of native grasses. The potential for subsequent interaction between Q. emoryi and native grasses was evidenced by similar patterns of soil water use by 1- and 2-year-old seedlings and grasses. Q. emoryi seedlings did not switch from shallow to deep sources of soil water within 2 years of germination: water use by these seedlings apparently becomes independent of water use by grasses after 2 years of age. Finally, older trees (saplings, mature trees) use water from deeper soil layers than grasses, which may facilitate the stable coexistence of mature trees and grasses. Potential shifts in the seasonality of precipitation may alter interactions between woody plants and grasses within temperate savannas characterized by bimodal precipitation regimes: reductions in summer precipitation or soil moisture may be particularly detrimental to warm-season grasses and seedlings of Q. emoryi.