scispace - formally typeset
Search or ask a question

Showing papers in "Oecologia in 1998"


Journal ArticleDOI
TL;DR: Meta-analytic methods used to summarize and interpret more than 500 reports of effects of elevated CO2 on woody plant biomass accumulation and partitioning, gas exchange, and leaf nitrogen and starch content provide robust, statistically defensible estimates of elevatedCO2 effect sizes for use in forest and climate model parameterization.
Abstract: Quantitative integration of the literature on the effect of elevated CO2 on woody plants is important to aid our understanding of forest health in coming decades and to better predict terrestrial feedbacks on the global carbon cycle. We used meta-analytic methods to summarize and interpret more than 500 reports of effects of elevated CO2 on woody plant biomass accumulation and partitioning, gas exchange, and leaf nitrogen and starch content. The CO2 effect size metric we used was the log-transformed ratio of elevated compared to am- bient response means weighted by the inverse of the variance of the log ratio. Variation in effect size among studies was partitioned according to the presence of in- teracting stress factors, length of CO2 exposure, func- tional group status, pot size, and type of CO2 exposure facility. Both total biomass (WT) and net CO2 assimi- lation (A) increased significantly at about twice ambient CO2, regardless of growth conditions. Low soil nutrient availability reduced the CO2 stimulation of WT by half, from + 31% under optimal conditions to + 16%, while low light increased the response to + 52%. We found no significant shifts in biomass allocation under high CO2. Interacting stress factors had no effect on the magnitude of responses of A to C02, although plants grown in growth chambers had significantly lower responses (+19%) than those grown in greenhouses or in open-top chambers (+ 54%). We found no consistent evidence for photosynthetic acclimation to CO2 enrichment except in trees grown in pots <0.5 1 (-36%) and no significant CO2 effect on stomatal conductance. Both leaf dark respiration and leaf nitrogen were significantly reduced under elevated CO2 (-18% and -16% respectively, data expressed on a leaf mass basis), while leaf starch content increased significantly except in low nutrient grown gymnosperms. Our results provide robust, statistically defensible estimates of elevated CO2 effect sizes against which new results may be compared or for use in forest and climate model parameterization.

1,267 citations


Journal ArticleDOI
TL;DR: It is hypothesized that the life form “tree” is limited at treeline altitudes by the potential investment, rather than production, of assimilates (growth as such,rather than photosynthesis or the carbon balance, being limited), and root zone temperature, though largely unknown, is likely to be most critical.
Abstract: In this review I first compile data for the worldwide position of climate-driven alpine treelines. Causes for treeline formation are then discussed with a global perspective. Available evidence suggests a combination of a general thermal boundary for tree growth, with regionally variable “modulatory” forces, including the presence of certain taxa. Much of the explanatory evidence found in the literature relates to these modulatory aspects at regional scales, whereas no good explanations emerged for the more fundamental global pattern related to temperature per se, on which this review is focused. I hypothesize that the life form “tree” is limited at treeline altitudes by the potential investment, rather than production, of assimilates (growth as such, rather than photosynthesis or the carbon balance, being limited). In shoots coupled to a cold atmosphere, meristem activity is suggested to be limited for much of the time, especially at night. By reducing soil heat flux during the growing season the forest canopy negatively affects root zone temperature. The lower threshold temperature for tissue growth and development appears to be higher than 3°C and lower than 10°C, possibly in the 5.5–7.5°C range, most commonly associated with seasonal means of air temperature at treeline positions. The physiological and developmental mechanisms responsible have yet to be analyzed. Root zone temperature, though largely unknown, is likely to be most critical.

1,218 citations


Journal ArticleDOI
TL;DR: It is argued that an allometric perspective on growth, allocation, resource uptake, and resource utilization can help to understand and quantify the mechanisms through which plants compete.
Abstract: When plants are competing, larger individuals often obtain a disproportionate share of the contested resources and suppress the growth of their smaller neighbors, a phenomenon called size-asymmetric competition. We review what is known about the mechanisms that give rise to and modify the degree of size asymmetry in competition among plants, and attempt to clarify some of the confusion in the literature on size asymmetry. We broadly distinguish between mechanisms determined primarily by characteristics of contested resource from those that are influenced by the growth and behavior of the plants themselves. To generate size asymmetric resource competition, a resource must be “pre-emptable.” Because of its directionality, light is the primary, but perhaps not the only, example of a pre-emptable resource. The available data suggest that competition for mineral nutrients is often size symmetric (i.e., contested resources are divided in proportion to competitor sizes), but the potential role of patchily and/or episodically supplied nutrients in causing size asymmetry is largely unexplored. Virtually nothing is known about the size symmetry of competition for water. Plasticity in morphology and physiology acts to reduce the degree of size asymmetry in competition. We argue that an allometric perspective on growth, allocation, resource uptake, and resource utilization can help us understand and quantify the mechanisms through which plants compete.

946 citations


Journal ArticleDOI
TL;DR: A review of laboratory and field evidence supporting hydraulic lift can be found in this paper, where the authors discuss some of the consequences of this below-ground behavior for the ecology of plants.
Abstract: Hydraulic lift is the passive movement of water from roots into soil layers with lower water potential, while other parts of the root system in moister soil layers, usually at depth, are absorbing water. Here, we review the brief history of laboratory and field evidence supporting this phenomenon and discuss some of the consequences of this below-ground behavior for the ecology of plants. Hydraulic lift has been shown in a relatively small number of species (27 species of herbs, grasses, shrubs, and trees), but there is no fundamental reason why it should not be more common as long as active root systems are spanning a gradient in soil water potential (Ψs) and that the resistance to water loss from roots is low. While the majority of documented cases of hydraulic lift in the field are for semiarid and arid land species inhabiting desert and steppe environments, recent studies indicate that hydraulic lift is not restricted to these species or regions. Large quantities of water, amounting to an appreciable fraction of daily transpiration, are lifted at night. This temporary partial rehydration of upper soil layers provides a source of water, along with soil moisture deeper in the profile, for transpiration the following day and, under conditions of high atmospheric demand, can substantially facilitate water movement through the soil-plant-atmosphere system. Release of water into the upper soil layers has been shown to afford the opportunity for neighboring plants to utilize this source of water. Also, because soils tend to dry from the surface downward and nutrients are usually most plentiful in the upper soil layers, lifted water may provide moisture that facilitates favorable biogeochemical conditions for enhancing mineral nutrient availability, microbial processes, and the acquisition of nutrients by roots. Hydraulic lift may also prolong or enhance fine-root activity by keeping them hydrated. Such indirect benefits of hydraulic lift may have been the primary selective force in the evolution of this process. Alternatively, hydraulic lift may simply be the consequence of roots not possessing true rectifying properties (i.e., roots are leaky to water). Finally, the direction of water movement may also be downward or horizontal if the prevailing Ψs gradient so dictates, i.e., inverse, or lateral, hydraulic lift. Such downward movement through the root system may allow growth of roots in otherwise dry soil at depth, permitting the establishment of many phreatophytic species.

910 citations


Journal ArticleDOI
TL;DR: Fog, as a meteorological factor, plays an important role in the water relations of the plants and in the hydrology of the forest, and the results presented suggest that proportional use of fog water by plants increased during the mild El Niño year of 1993.
Abstract: Fog has been viewed as an important source of moisture in many coastal ecosystems, yet its impor- tance for the plants which inhabit these ecosystems is virtually unknown. Here, I report the results of a 3-year investigation of fog inputs and the use of fog water by plants inhabiting the heavily fog inundated coastal redwood (Sequoia sempervirens) forests of northern California. During the study period, 34%, on average, of the annual hydrologic input was from fog drip oA the redwood trees themselves (interception input). When trees were absent, the average annual input from fog was only 17%, demonstrating that the trees significantly in- fluence the magnitude of fog water input to the ecosys- tem. Stable hydrogen and oxygen isotope analyses of water from fog, rain, soil water, and xylem water ex- tracted from the dominant plant species were used to characterize the water sources used by the plants. An isotopic mixing model was employed to then quantify how much fog water each plant used each month during the 3-year study. In summer, when fog was most fre- quent, 19% of the water within S. sempervirens, and 66% of the water within the understory plants came from fog after it had dripped from tree foliage into the soil; for S. sempervirens, this fog water input comprised 13-45% of its annual transpiration. For all plants, there was a significant reliance on fog as a water source, es- pecially in summer when rainfall was absent. Depen- dence on fog as a moisture source was highest in the year when rainfall was lowest but fog inputs normal. Inter- estingly, during the mild El Nino year of 1993, when the ratio of rainfall to fog water input was significantly higher and fog inputs were lower, both the proportion and coeAcient of variation in how much fog water was used by plants increased. An explanation for this is that while fog inputs were lower than normal in this El Nino year, they came at a time when plant demand for water was highest (summer). Therefore, proportional use of fog water by plants increased. The results presented suggest that fog, as a meteorological factor, plays an important role in the water relations of the plants and in the hydrology of the forest. These results demonstrate the importance of understanding the impacts of climatic factors and their oscillations on the biota. The results have important implications for ecologists, hydrologists, and forest managers interested in fog-inundated eco- systems and the plants which inhabit them.

552 citations


Journal ArticleDOI
TL;DR: It is suggested that “hydraulic redistribution” of water in tree roots is significant in maintaining root viability, facilitating root growth in dry soils and modifying resource availability.
Abstract: Plant roots transfer water between soil layers of different water potential thereby significantly affecting the distribution and availability of water in the soil profile We used a modification of the heat pulse method to measure sap flow in roots of Grevillea robusta and Eucalyptus camaldulensis and demonstrated a redistribution of soil water from deeper in the profile to dry surface horizons by the root system This phenomenon, termed “hydraulic lift” has been reported previously However, we also demonstrated that after the surface soils were rewetted at the break of season, water was transported by roots from the surface to deeper soil horizons – the reverse of the “hydraulic lift” behaviour described for other woody species We suggest that “hydraulic redistribution” of water in tree roots is significant in maintaining root viability, facilitating root growth in dry soils and modifying resource availability

546 citations


Journal ArticleDOI
TL;DR: Differences between species in organic leaf nitrogen content per se were no longer important and higher PNUEmax of the high SLA species was due to a higher fraction of N in␣photosynthetic compounds and a higher Rubisco specific activity (for high-light grown plants).
Abstract: Factors that contribute to interspecific varia- tion in photosynthetic nitrogen-use eAciency (PNUE, the ratio of CO2 assimilation rate to leaf organic nitro- gen content) were investigated, comparing ten dicoty- ledonous species that diAer inherently in specific leaf area (SLA, leaf area:leaf dry mass). Plants were grown hydroponically in controlled environment cabinets at two irradiances (200 and 1000 lmol m -2 s -1 ). CO2 and irradiance response curves of photosynthesis were mea- sured followed by analysis of the chlorophyll, Rubisco, nitrate and total nitrogen contents of the leaves. At both irradiances, SLA ranged more than twofold across spe- cies. High-SLA species had higher in situ rates of pho- tosynthesis per unit leaf mass, but similar rates on an area basis. The organic N content per unit leaf area was lower for the high-SLA species and consequently PNUE at ambient light conditions (PNUEamb) was higher in those plants. DiAerences were somewhat smaller, but still present, when PNUE was determined at saturating irradiances (PNUEmax). An assessment was made of the relative importance of the various factors that underlay interspecific variation in PNUE. For plants grown under low irradiance, PNUEamb of high-SLA species was higher primarily due to their lower N content per unit leaf area. Low-SLA species clearly had an overinvest- ment in photosynthetic N under these conditions. In addition, high SLA-species allocated a larger fraction of organic nitrogen to thylakoids and Rubisco, which fur- ther increased PNUEamb. High-SLA species grown un- der high irradiance showed higher PNUEamb mainly due to a higher Rubisco specific activity. Other factors that contributed were again their lower contents of Norg per unit leaf area and a higher fraction of photosynthetic N in electron transport and Rubisco. For PNUEmax, dif- ferences between species in organic leaf nitrogen content per se were no longer important and higher PNUEmax of the high SLA species was due to a higher fraction of N in photosynthetic compounds (for low-light plants) and a higher Rubisco specific activity (for high-light grown plants).

520 citations


Journal ArticleDOI
TL;DR: The relationships between Rd and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.
Abstract: Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (/4max)- However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between Rd measured at a standard temperature and leaf life-span, N, SLA and ^max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed coni- fers) in six biomes traversing the Americas: alpine tun- dra/subalpine forest, was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based Rd (Rd.mass) de- creased sharply with increasing leaf life-span and was positively related to SLA and mass-based Amax and leaf

491 citations


Journal ArticleDOI
TL;DR: This analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures, which is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming.
Abstract: C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) - regardless of the photosynthetic superiority of the C4 pathway - in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation - particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred.

488 citations


Journal ArticleDOI
TL;DR: It is emphasized that care must be taken in the calibration stage to prevent propagation of poor analytical work through NIRS, but, used properly, NirS offers ecologists enormous analytical power.
Abstract: Many ecological studies rely heavily on chemical analysis of plant and animal tissues. Often, there is limited time and money to perform all the required analyses and this can result in less than ideal sampling schemes and poor levels of replication. Near infrared reflectance spectroscopy (NIRS) can relieve these constraints because it can provide quick, non-destructive and quantitative analyses of an enormous range of organic constituents of plant and animal tissues. Near infrared spectra depend on the number and type of C\(\)H, N\(\)H and O\(\)H bonds in the material being analyzed. The spectral features are then combined with reliable compositional or functional analyses of the material in a predictive statistical model. This model is then used to predict the composition of new or unknown samples. NIRS can be used to analyze some specific elements (indirectly – e.g., N as protein) or well-defined compounds (e.g., starch) or more complex, poorly defined attributes of substances (e.g., fiber, animal food intake) have also been successfully modeled with NIRS technology. The accuracy and precision of the reference values for the calibration data set in part determines the quality of the predictions made by NIRS. However, NIRS analyses are often more precise than standard laboratory assays. The use of NIRS is not restricted to the simple determination of quantities of known compounds, but can also be used to discriminate between complex mixtures and to identify important compounds affecting attributes of interest. Near infrared reflectance spectroscopy is widely accepted for compositional and functional analyses in agriculture and manufacturing but its utility has not yet been recognized by the majority of ecologists conducting similar analyses. This paper aims to stimulate interest in NIRS and to illustrate some of the enormous variety of uses to which it can be put. We emphasize that care must be taken in the calibration stage to prevent propagation of poor analytical work through NIRS, but, used properly, NIRS offers ecologists enormous analytical power.

476 citations


Journal ArticleDOI
TL;DR: Adult abundances in this damselfish species were strongly influenced by the densities of different predators and the availability of preferred refuges, suggesting that transient predators may be even more important than the residents.
Abstract: Patterns in juvenile mortality rates can have a profound affect on the distribution and abundance of adult individuals, and may be the result of a number of interacting factors. Field observations at Lizard Island (Great Barrier Reef, Australia) showed that for a coral reef damselfish, Pomacentrus moluccensis, juvenile mortality (over 1 year) varied between 20 and almost 100% among sites. Correlative data showed that juvenile mortality increased as a function of initial densities (recruitment), predator densities and the availability of preferred coral substrata. A multiple regression showed that these three variables together did not explain significantly more variation in mortality than the single factor showing the strongest relationship. This appeared to be because recruitment, predator densities and preferred coral substrata were all highly correlated, suggesting that one, two or all of these factors may be influencing juvenile mortality rates. One hypothesis was that density-dependent mortality in juveniles was the result of an interaction between predators (which appear to aggregate at high-recruitment sites) and the availability of preferred substrata (predator refuges). We tested this hypothesis by using both laboratory and field experiments to see whether fish predation could significantly alter survivorship of this damselfish, and whether this impact was dependent upon the coral substratum. The laboratory experiment was designed to test the effects of three common predators (Pseudochromis fuscus, Cephalopholis boenak and Thalassoma lunare) and three different coral substrata that varied in their complexity (Pocillopora damicornis, Acropora nasuta and A. nobilis) on the survival of juvenile Pomacentrus moluccensis. There was a significant interaction between predator species and microhabitat in determining survival. Pseudochromis fuscus and C. boenak were both significantly better at capturing juvenile damselfish than T. lunare. Juvenile survivorship was significantly better when they were given the more complex corals, Pocillopora damicornis and A. nasuta, compared with those given the open-structured species A. nobilis. This pattern reflects habitat selection in the field. Predators differed in their strike rates and the proportion of strikes that were successful, but all exhibited greater success at prey capture where A. nobilis was provided as shelter. The interaction between the effect of predator species and microhabitat structure on damselfish survival was tested in the field for a cohort of juvenile Pomacentrus moluccensis. We examined juvenile survival in the presence and absence of two predators that co-occur on natural patch reefs (C. boenak and Pseudochromis fuscus). The experimental patch reefs we used for this purpose were constructed from both high complexity (Pocillopora damicornis) and low complexity (A. nobilis) coral substrata. Both juveniles and predators were translocated to reefs at natural densities. The effects of predation were clearly dependent upon the microhabitat. Reefs of the high-complexity coral with predators supported the same high numbers of Pomacentrus moluccensis as the reefs with no resident predators. However, damselfish abundance was significantly lower on low-complexity reefs with resident predators, relative to the other treatments. Background rates of loss were high, even on preferred coral in the absence of the manipulated predator, suggesting that transient predators may be even more important than the residents. We suggest that adult abundances in this species were strongly influenced by the densities of different predators and the availability of preferred refuges.

Journal ArticleDOI
TL;DR: The pattern of decreased foliar nutrient concentrations per unit leaf area and of increased lignin indicates a shift from relatively high nutrient availability to relatively high carbon gain by producers as annual precipitation increases, and nitrogen cycling, the pattern of higher inorganic soil nitrogen concentrations in the drier sites, together with the progressively depleted δ15N signature in both soils and vegetation, suggests that nitrogen cycling is more open at the driers sites, with smaller losses relative to turnover.
Abstract: We evaluated soil and foliar nutrients in five native forests in Hawai'i with annual rainfall ranging from 500 mm to 5500 mm. All of the sites were at the same elevation and of the same substrate age; all were native-dominated forests containing Metrosiderospolymorpha Gaud. Soil concentrations of extractable NO3-N and PO4-P, as well as major cations (Ca, Mg, and K), decreased with increasing annual precipitation, and δ15N values became more depleted in both soils and vegetation. For M.polymorpha leaves, leaf mass per area (LMA) and lignin concentrations increased significantly, while δ13C values became more depleted with increasing precipitation. Foliar phosphorus, and major cation (Ca, Mg, and K) concentrations for M.polymorpha all decreased significantly with increasing precipitation. For other native forest species, patterns of LMA, δ13C, and δ15N generally mirrored the pattern observed for M. polymorpha. Decreasing concentrations of available rock-derived nutrients in soil suggest that the effect of increased rainfall on leaching outweighs the effect of increasing precipitation on weathering. The pattern of decreased foliar nutrient concentrations per unit leaf area and of increased lignin indicates a shift from relatively high nutrient availability to relatively high carbon gain by producers as annual precipitation increases. For nitrogen cycling, the pattern of higher inorganic soil nitrogen concentrations in the drier sites, together with the progressively depleted δ15N signature in both soils and vegetation, suggests that nitrogen cycling is more open at the drier sites, with smaller losses relative to turnover as annual precipitation increases.

Journal ArticleDOI
TL;DR: Overall, invasive species appear to be better suited than native species to capturing and utilizing light resources, particularly in high-light environments such as those characterized by relatively high levels of disturbance.
Abstract: Growth, biomass allocation, and photosynthetic characteristics of seedlings of five invasive non-indigenous and four native species grown under different light regimes were studied to help explain the success of invasive species in Hawaiian rainforests. Plants were grown under three greenhouse light levels representative of those found in the center and edge of gaps and in the understory of Hawaiian rainforests, and under an additional treatment with unaltered shade. Relative growth rates (RGRs) of invasive species grown in sun and partial shade were significantly higher than those for native species, averaging 0.25 and 0.17 g g−1 week−1, respectively, while native species averaged only 0.09 and 0.06 g g−1 week−1, respectively. The RGR of invasive species under the shade treatment was 40% higher than that of native species. Leaf area ratios (LARs) of sun and partial-shade-grown invasive and native species were similar but the LAR of invasive species in the shade was, on average, 20% higher than that of native species. There were no differences between invasive and native species in biomass allocation to shoots and roots, or in leaf mass per area across light environments. Light-saturated photosynthetic rates (Pmax) were higher for invasive species than for native species in all light treatments. Pmax of invasive species grown in the sun treatment, for example, ranged from 5.5 to 11.9 μmol m−2 s−1 as compared with 3.0−4.5 μmol m−2 s−1 for native species grown under similar light conditions. The slope of the linear relationship between Pmax and dark respiration was steeper for invasive than for native species, indicating that invasive species assimilate more CO2 at a lower respiratory cost than native species. These results suggest that the invasive species may have higher growth rates than the native species as a consequence of higher photosynthetic capacities under sun and partial shade, lower dark respiration under all light treatments, and higher LARs when growing under shade conditions. Overall, invasive species appear to be better suited than native species to capturing and utilizing light resources, particularly in high-light environments such as those characterized by relatively high levels of disturbance.

Journal ArticleDOI
TL;DR: The combination of environmentally induced variability in physiological and anatomical characteristics and genetically determined variation in morphological traits allows Hawaiian M. polymorpha to attain and dominate an extremely wide ecological distribution not observed in other tree species.
Abstract: Metrosideros polymorpha, a dominant tree species in Hawaiian ecosystems, occupies a wide range of habitats. Complementary field and common-garden studies of M. polymorpha populations were conducted across an altitudinal gradient at two different substrate ages to ascertain if the large phenotypic variation of this species is determined by genetic differences or by phenotypic modifications resulting from environmental conditions. Several characteristics, including ecophysiological behavior and anatomical features, were largely induced by the environment. However, other characteristics, particularly leaf morphology, appeared to be mainly determined by genetic background. Common garden plants exhibited higher average rates of net assimilation (5.8 μmol CO2 m−2 s−1) and higher average stomatal conductance (0.18 mol H2O m−2 s−1) than their field counterparts (3.0 μmol CO2 m−2 s−1, and 0.13 mol H2O m−2 s−1 respectively). Foliar δ13C of most common-garden plants was similar among sites of origin with an average value of −26.9‰. In contrast, mean values of foliar δ13C in field plants increased substantially from −29.5‰ at low elevation to −24.8‰ at high elevation. Leaf mass per unit area increased significantly as a function of elevation in both field and common garden plants; however, the range of values was much narrower in common garden plants (211–308 g m−2 for common garden versus 107–407 g m−2 for field plants). Nitrogen content measured on a leaf area basis in common garden plants ranged from 1.4 g m−2 to 2.4 g m−2 and from 0.8 g m−2 to 2.5 g m−2 in field plants. Photosynthetic nitrogen use efficiency (PNUE) decreased 50% with increasing elevation in field plants and only 20% in plants from young substrates in the common garden. This was a result of higher rates of net CO2 assimilation in the common garden plants. Leaf tissue and cell layer thickness, and degree of leaf pubescence increased significantly with elevation in field plants, whereas in common garden plants, variation with elevation of origin was much narrower, or was entirely absent. Morphological characteristics such as leaf size, petiole length, and internode length decreased with increasing elevation in the field and were retained when grown in the common garden, suggesting a potential genetic basis for these traits. The combination of environmentally induced variability in physiological and anatomical characteristics and genetically determined variation in morphological traits allows Hawaiian M. polymorpha to attain and dominate an extremely wide ecological distribution not observed in other tree species.

Journal ArticleDOI
TL;DR: Based on the relationships between structural parameters and standing biomass, in particular with the use of the “self-thinning rule”, population dynamics models are proposed.
Abstract: The article presents new results on the structure and the above-ground biomass of the various population types of mangroves in French Guiana. Nine mangrove stands were studied, each composed of three to ten adjoining plots with areas that varied depending on the density of the populations. Structural parameters and indices were calculated. Individuals representative of the three groups of taxa present were felled:Avicennia germinans (L) Stearn, Rhizophora spp., and Laguncularia racemosa (L) Gaertn. The trunks, branches and leaves were sorted and weighed separately. The biomass was obtained by determining the allometric relationships, the general equation selected being of the type y = aoxa1, where the diameter (x) is the predictive variable. The total above-ground biomass varied from 31 t ha−1 for the pioneer stages to 315 t ha−1 for mature coastal mangroves, but with large variations depending on the structural characteristics at each site. The results place the Guianese mangroves among those with high biomass, although lower than those reported for Asia. Based on the relationships between structural parameters and standing biomass, in particular with the use of the “self-thinning rule”, population dynamics models are proposed.

Journal ArticleDOI
TL;DR: It is shown that immediately after wildfire fresh charcoal can have important effects in Boreal forest ecosystems dominated by ericaceous dwarf shrubs, and this is likely to provide a major contribution to the rejuvenating effects of wildfire on forest ecosystems.
Abstract: Wildfire is the principal disturbance regime in northern Boreal forests, where it has important rejuvenating effects on soil properties and encourages tree seedling regeneration and growth. One possible agent of this rejuvenation is fire-produced charcoal, which adsorbs secondary metabolites such as humus phenolics produced by ericaceous vegetation in the absence of fire, which retard nutrient cycling and tree seedling growth. We investigated short-term ecological effects of charcoal on the Boreal forest plant-soil system in a glasshouse experiment by planting seedlings of Betula pendula and Pinus sylvestris in each of three humus substrates with and without charcoal, and with and without phenol-rich Vaccinium myrtillus litter. These three substrates were from: (1) a high-productivity site with herbaceous ground vegetation; (2) a site of intermediate productivity dominated by ericaceous ground vegetation; and (3) an unproductive site dominated by Cladina spp. Growth of B. pendula was stimulated by charcoal addition and retarded by litter addition in the ericaceous substrate (but not in the other two), presumably because of the high levels of phenolics present in that substrate. Growth of P. sylvestris, which was less sensitive to substrate origin than was B. pendula, was unresponsive to charcoal. Charcoal addition enhanced seedling shoot to root ratios of both tree species, but again only for the ericaceous substrate. This response is indicative of greater N uptake and greater efficiency of nutrient uptake (and presumably less binding of nutrients by phenolics) in the presence of charcoal. These effects were especially pronounced for B. pendula, which took up 6.22 times more nitrogen when charcoal was added. Charcoal had no effect on the competitive balance between B. pendula and P. sylvestris, probably due to the low intensity of competition present. Juvenile mosses and ferns growing in the pots were extremely responsive to charcoal for all sites; fern prothalli were entirely absent in the ericaceous substrate unless charcoal was also present. Charcoal stimulated active soil microbial biomass in some instances, and also exerted significant although idiosyncratic effects on decomposition of the added litter. Our results provide clear evidence that immediately after wildfire fresh charcoal can have important effects in Boreal forest ecosystems dominated by ericaceous dwarf shrubs, and this is likely to provide a major contribution to the rejuvenating effects of wildfire on forest ecosystems.

Journal ArticleDOI
TL;DR: The data suggest that the δ15N pattern: non-mycorrhizal plants > ECM plants ≥ ERI plants is a general phenomenon in ecosystems with nutrient-deficient organogenic soils, and hypothesize that during microbial immobilization of soil ammonium the microbial N pool could become 15N-depleted and the remaining, plant-available soil ammonio-enriched.
Abstract: In this study we show that the natural abundance of the nitrogen isotope 15, δ15N, of plants in heath tundra and at the tundra-forest ecocline is closely correlated with the presence and type of mycorrhizal association in the plant roots. A total of 56 vascular plant species, 7 moss species, 2 lichens and 6 species of fungi from four heath and forest tundra sites in Greenland, Siberia and Sweden were analysed for δ15N and N concentration. Roots of vascular plants were examined for mycorrhizal colonization, and the soil organic matter was analysed for δ15N, N concentration and soil inorganic, dissolved organic and microbial N. No arbuscular mycorrhizal (AM) colonizations were found although potential host plants were present in all sites. The dominant species were either ectomycorrhizal (ECM) or ericoid mycorrhizal (ERI). The δ15N of ECM or ERI plants was 3.5-7.7‰ lower than that of non-mycorrhizal (NON) species in three of the four sites. This corresponds to the results in our earlier study of mycorrhiza and plant δ15N which was limited to one heath and one fellfield in N Sweden. Hence, our data suggest that the δ15N pattern: NON/AM plants > ECM plants ≥ ERI plants is a general phenomenon in ecosystems with nutrient-deficient organogenic soils. In the fourth site, a␣birch forest with a lush herb/shrub understorey, the differences between functional groups were considerably smaller, and only the ERI species differed (by 1.1‰) from the NON species. Plants of all functional groups from this site had nearly twice the leaf N concentration as that found in the same species at the other three sites. It is likely that low inorganic N availability is a prerequisite for strong δ15N separation among functional groups. Both ECM roots and fruitbodies were 15N enriched compared to leaves which suggests that the difference in δ15N between plants with different kinds of mycorrhiza could be due to isotopic fractionation at the␣fungal-plant interface. However, differences in δ15N between soil N forms absorbed by the plants could also contribute to the wide differences in plant δ15N found in most heath and forest tundra ecosystems. We hypothesize that during microbial immobilization of soil ammonium the microbial N pool could become 15N-depleted and the remaining, plant-available soil ammonium 15N-enriched. The latter could be a main source of N for NON/AM plants which usually have high δ15N. In contrast, amino acids and other soil organic N compounds presumably are 15N-depleted, similar to plant litter, and ECM and ERI plants with high uptake of these N forms hence have low leaf δ15N. Further indications come from the δ15N of mosses and lichens which was similar to that of ECM plants. Tundra cryptogams (and ECM and ERI plants) have previously been shown to have higher uptake of amino acid than ammonium N; their low δ15N might therefore reflect the δ15N of free amino acids in the soil. The concentration of dissolved organic N was 3-16 times higher than that of inorganic N in the sites. Organic nitrogen could be an important N source for ECM and, in particular, ERI plants in heath and forest tundra ecosystems with low release rate of inorganic N from the soil organic matter.

Journal ArticleDOI
TL;DR: The results indicate that redstarts (primarily females) in female-biased habitats suffered a decline in physiological condition, which could in turn influence their departure schedules, migration patterns and even their condition and arrival schedules on the breeding grounds.
Abstract: During the non-breeding season, many species of territorial migratory birds exhibit a non-random pattern of habitat distribution, with males and females occupying different habitats. In this study, we examined possible physiological consequences arising from such habitat segregation in one migrant passerine species, the American redstart (Setophaga ruticilla), on its non-breeding grounds in Jamaica, West Indies. For 2 years, we measured concentrations of corticosterone, at the time of capture (baseline) and 30 min after capture (profile of acute corticosterone secretion), in redstarts in two distinct habitats, one occupied predominately by males and one mostly by females. All redstarts in both habitat types exhibited similar concentrations of baseline corticosterone levels in fall (October), whereas in spring (March–April), redstarts in female-biased habitat exhibited significantly higher baseline levels regardless of age or sex. In fall, all individuals in both habitats exhibited significant increases in corticosterone concentration with capture and handling, but in spring only redstarts (both sexes) in male-biased habitat continued to exhibit acute corticosterone secretion. Redstarts in female-biased habitat had elevated baseline corticosterone levels and reduced acute corticosterone secretion. In spring, baseline corticosterone concentration was negatively correlated with body mass, suggesting muscle catabolism associated with high corticosterone concentrations or possibly that birds are leaner as a result of increased foraging effort. These results indicate that redstarts (primarily females) in female-biased habitats suffered a decline in physiological condition, which could in turn influence their departure schedules, migration patterns and even their condition and arrival schedules on the breeding grounds. Thus, segregation of populations into habitats of different quality during the non-breeding period may have ramifications throughout the annual cycle of such migratory species. Furthermore, these results show the usefulness of plasma corticosterone levels as indicators of physiological condition and thus habitat quality for birds during the non-breeding period.

Journal ArticleDOI
TL;DR: The level of structural redundancy may be an indirect measure of the resilience or compensation potential within an assemblage by extracting a series of subsets of species that closely matches that for the whole community.
Abstract: In multivariate analyses of the effects of both natural and anthropogenic environmental variability on community composition, many species are interchangeable in the way that they characterise the samples, giving rise to the concept of structural redundancy in community composition. Here, we develop a method of quantifying the extent of this redundancy by extracting a series of subsets of species, the multivariate response pattern of each of which closely matches that for the whole community. Structural redundancy is then reflected in the number of such subsets, which we term “response units”, that can be extracted without replacement. We have applied this technique to the effects of the Amoco-Cadiz oil-spill on marine macrobenthos in the Bay of Morlaix, France, and to the natural interannual variability of macrobenthos at two stations off the coast of Northumberland, England. Structural redundancy is shown to be remarkably high, with the number and sizes of subsets being comparable in all three examples. Taxonomic/functional groupings of species within the differing response units change in abundance in the same way over time. The response units are shown to possess a wide taxonomic spread and, using two different types of randomisation test, demonstrated to have a taxonomically and functionally coherent structure. The level of structural redundancy may therefore be an indirect measure of the resilience or compensation potential within an assemblage.

Journal ArticleDOI
TL;DR: The results of these studies suggest that the levels of nutrients and secondary compounds in gall tissue are usually markedly different to those of surrounding plant tissue, and that gall-formers may produce species-specific and temporally variable changes in the chemical composition of gall tissue.
Abstract: The chemical composition of galled and ungalled plant tissue was compared in a series of experiments. Gall and adjacent plant tissue was analysed for 20 species of gall-former on 11 different plant species. There were clear differences between galled and ungalled tissue in levels of nutrients and secondary compounds. Gall tissue generally contained lower levels of nitrogen and higher levels of phenolic compounds than ungalled plant tissue. The gall tissue produced by the same plant in response to different species of gall-former differed in chemical composition, as did the gall-tissue from young and mature galls of the same species. The chemical differences between gall and plant tissues were studied in more detail in two field manipulations. Firstly, the seasonal changes in phenolic biosynthesis in Pontania proxima and P. pedunculi (Hymenoptera: Tenthredinidae) gall tissue were compared to those of their host plants, Salix alba and S. caprea. In both types of gall tissue, phenolic levels declined as the season progressed, but levels in the surrounding plant tissue increased. When the gall insects were killed with insecticide, phenolic levels in the galled tissue dropped to the same level as those in adjacent plant tissue. Secondly, the density of Cynips divisa (Hymenoptera: Cynipidae) galls on Quercus robur leaves was reduced by removing half the galls present, either those from the central region of the leaf or those from the edge. Decreasing gall density increased the size of the remaining galls and the weight of the insects, but these effects were most marked when the galls remaining were growing centrally on the leaf, i.e. when the galls from the edge had been removed. Decreasing gall density increased the nitrogen content of the remaining galls, again to a greater extent in galls growing centrally on the leaf. The results of these studies suggest that the levels of nutrients and secondary compounds in gall tissue are usually markedly different to those of surrounding plant tissue, and that gall-formers may produce species-specific and temporally variable changes in the chemical composition of gall tissue.

Journal ArticleDOI
TL;DR: In two laboratory experiments using tilapia and common carp, a significant negative correlation was found between lipid content in the carcass dry matter and δ13C of total dry matter, but there was no influence on the δ 13C of fat-free dry matter or lipids.
Abstract: In two laboratory experiments using tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio), we investigated the effect of lipid content in the fish carcass on the stable carbon isotope ratio (δ13C). In both experiments, a significant negative correlation was found between lipid content in the carcass dry matter and δ13C of total dry matter, but there was no influence on the δ13C of fat-free dry matter or lipids. As the lipid content of fish is known to vary with reproductive stage, season or nutritional state, separate analysis of fractions of the proximate composition of dry matter will lead to more reliable results than analysing the whole body. The differences in δ13C between diet and fish carcass (trophic shift) were different for the two species, calling for feeding trials under controlled conditions using the species and the feeds in question before applying the stable isotope tracer technique in the analysis of food webs.

Journal ArticleDOI
TL;DR: It is suggested that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner.
Abstract: Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner.

Journal ArticleDOI
TL;DR: It is concluded that climatic disturbance does not provide opportunities for increased amino acid uptake by K. myosuroides, but that this plant competes well for amino acid N under non-stressed conditions, especially when soils are warm.
Abstract: Amino acids have been shown to be a potentially significant N source for the alpine sedge, Kobresia myosuroides. We hypothesised that freeze-thaw and dry-rewet events allow this plant species increased access to amino acids by disrupting microbial cells, which decreases the size of competing microbial populations, but increases soil amino acid concentrations. To test this hypothesis, we characterized freeze-thaw and dry-rewet events in the field and simulated them in laboratory experiments on plant-soil microcosms. In one experiment, 15N,13C-[2]-glycine was added to microcosms that had previously been subjected to a freeze-thaw or dry-rewet event, and isotopic concentrations in the plant and microbial fractions were compared to non-stressed controls. Microbial biomass and uptake of the labeled glycine were unaffected by the freezing and drying treatments, but microbial uptake of 15N was lower in the two warmer treatments (dry-rewet and summer control) then in the two colder treatments (freeze-thaw and fall control). Plant uptake of glycine-15N was decreased by climatic disturbance, and uptake in plants that had been frozen appeared to be dependent on the severity of the freeze. The fact that intact glycine was absorbed by the plants was confirmed by near equal enrichment of plant tissues in 13C and 15N. Plants under optimal conditions recovered 3.5% of the added 15N and microbes recovered 5.0%. The majority of the 13C and 15N label remained in a non-extractable fraction in the bulk soil. To better understand the isolated influences of environmental perturbations on soil amino acid pools and population sizes of amino-acid utilizing microbes, separate experiments were performed in which soils, alone, were subjected to drying and rewetting or freezing and thawing. Potential respiration of glycine and glutamate (substrate-induced respiration; SIR) by the soil microbial communities was unaffected by a single freeze-thaw event. Glycine SIR was decreased slightly (∼10%) by the most extreme drying treatment, but glutamate SIR was not significantly affected. Freezing lowered the concentration of water-extractable amino acids while drying increased their concentration. We interpret the surprising former result as either a decrease in proteolytic activity in frozen soils relative to amino acid uptake, or a stimulation in microbial uptake by physical nutrient release from the soil. We conclude that climatic disturbance does not provide opportunities for increased amino acid uptake by K. myosuroides, but that this plant competes well for amino acid N under non-stressed conditions, especially when soils are warm. We also note that this alpine tundra microbial community's high resistance to freeze-thaw and dry-rewet events is novel and contrasts with studies in other ecosystems.

Journal ArticleDOI
TL;DR: The RPM, which emphasizes the primary role of autotrophic production in large rivers, is the most viable of the remaining two ecosystem models for the constricted-channel region of the Ohio based on stable isotope linkage between sources and consumers of organic matter in the food web.
Abstract: Analyses of stable isotope (δ13C and δ15N) and C:N ratios of food webs within a floodplain and a constricted-channel region of the Ohio River during October 1993 and July 1994 indicate that the increasingly influential flood pulse concept (FPC) does not, for either location, adequately address food web structure for this very large river Furthermore, results of this study suggest that the riverine productivity model (RPM) is more appropriate than the widely known river continuum concept (RCC) for the constricted region of this river These␣conclusions are based on stable isotope analyses of potential sources of organic matter (riparian C3 trees, riparian C4 grasses and agricultural crops, submerged macrophytes, benthic filamentous algae, benthic particulate organic matter, and transported organic matter containing detritus and phytoplankton) and various functional feeding groups of invertebrate and fish consumers The FPC, which stresses the key contribution of organic matter, particularly terrestrial organic matter, originating from the floodplain to riverine food webs, was judged inappropriate for the floodplain region of the Ohio River for hydrodynamic and biotic reasons The rising limb and peak period of discharge typically occur in November through March when temperatures are low (generally much less than 10°C) and greater than bank-full conditions are relatively unpredictable and short-lived The major food potentially available to riverine organisms migrating into the floodplain would be decaying vegetation because autotrophic production is temperature and light limited and terrestrial insect production is minimal at that time It is clear from our data that terrestrial C4 plants contribute little, if anything, to the consumer food web (based on δ13C values), and δ15N values for C3 plants, coarse benthic organic matter, and fine benthic organic matter were too depleted (∼7-12‰ lower than most invertebrate consumer values) for this organic matter to be supporting the food web The RPM, which emphasizes the primary role of autotrophic production in large rivers, is the most viable of the remaining two ecosystem models for the constricted-channel region of the Ohio based on stable isotope linkage between sources and consumers of organic matter in the food web The most important form of food web organic matter is apparently transported (suspended) fine (FTOM) and ultra-fine particulate organic matter We propose that phytoplankton and detritus of an autochthonous origin in the seston would represent a more usable energy source for benthic (bivalve molluscs, hydropsychid caddisflies) and planktonic (microcrustaceans) suspension feeders than the more refractory allochthonous materials derived from upstream processing of terrestrial organic matter Benthic grazers depend heavily on nonfilamentous benthic algae (based on gut analysis from a separate study), but filamentous benthic algae have no apparent connection to invertebrate consumers (based on δ13C values) Amphipod and crayfish show a strong relationship to aquatic macrophytes (possibly through detrital organic matter rather than living plant tissue) These observations contrast with the prediction of the RCC that food webs in large rivers are based principally on refractory FTOM and dissolved organic matter from upstream inefficiencies in organic-matter processing and the bacteria growing upon these suspended or dissolved detrital compounds The conclusions drawn here for the Ohio River cannot yet be extended to other floodplain and constricted-channel rivers in temperate and tropical latitudes until more comparable data are available on relatively pristine and moderately regulated rivers

Journal ArticleDOI
TL;DR: The results suggest that the foraging of subordinate ant species in open Mediterranean habitats is influenced more by temperature than by competition of dominants, although an effect of dominant on subordinates has been shown in a few cases.
Abstract: In this paper we test the influence of temperature and interference competition by dominant species on the foraging of subordinate species in Mediterranean ant communities. We have analyzed the changes in resource use by subordinate species in plots with different abundances of dominant ants, and in different periods of the day and the year, i.e., at different temperatures. The expected effects of competition by dominant species on foraging of subordinates were only detected for two species in the number of baits occupied per day, and for one species in the number of foragers at pitfall traps. In all three cases, subordinate species were less represented at baits or in traps in plots with a high density of dominants than in plots with a medium or low density of dominants. The number of workers per bait, and the foraging efficiency of subordinate species did not differ in plots differing in dominant abundance. Daily activity rhythms and curves of temperature versus foraging activity of subordinate species were also similar in plots with different abundance of dominant species, indicating no effect of dominants on the foraging times of subordinates. Instead, temperature had a considerable effect on the foraging of subordinate species. A significant relationship was found between maximum daily temperature and several variables related to foraging (the number of foragers at pitfall traps, the number of baits occupied per day, and the number of workers per bait) of a number subordinate species, both in summer and autumn. These results suggest that the foraging of subordinate ant species in open Mediterranean habitats is influenced more by temperature than by competition of dominants, although an effect of dominants on subordinates has been shown in a few cases. In ant communities living in these severe and variable environments, thermal tolerance reduces the importance of competition, and the mutual exclusion usually found between dominant and subordinate species appears to be the result of physiological specialization to different temperature ranges.

Journal ArticleDOI
TL;DR: Forty ecotypes of Arabidopsis thaliana were selected from a wide range of latitudes to investigate genetic variation in plant size and relative growth rate (RGR) along a latitudinal gradient, finding that RGR may be a conservative trait, whose variation is constrained by the trade-off between its physiological and morphological components.
Abstract: Latitude is an important determinant of local environmental conditions that affect plant growth. Forty ecotypes of Arabidopsis thaliana were selected from a wide range of latitudes (from 16°N to 63°N) to investigate genetic variation in plant size and relative growth rate (RGR) along a latitudinal gradient. Plants were grown in a greenhouse for 31 days, during which period three consecutive harvests were performed. Plants from high latitudes tended to have smaller plant size in terms of seed size, cotyledon width, rosette size, number of rosette leaves, size (leaf area) of the largest leaves, total leaf area, and total dry weight per plant than those from low latitudes. The mean (±SE) RGR across ecotypes was 0.229 (±0.0013) day−1. There was, however, significant ecotypic variation, with RGR being negatively correlated with latitude. The two main components of RGR, leaf area ratio (LAR) and unit leaf rate (ULR), were also correlated with latitude: LAR increased with increasing latitude while ULR decreased with increasing latitude. It was also found that RGR tended to be negatively correlated with LAR, specific leaf area (SLA) and specific root length (SRL) but to be positively correlated with mean area per leaf (MAL) and ULR. The variation in RGR among ecotypes was relatively small compared with that in the other traits. RGR may be a conservative trait, whose variation is constrained by the trade-off between its physiological (i.e. ULR) and morphological (i.e. LAR) components.

Journal ArticleDOI
TL;DR: This study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels, and attributes the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stone flies on Baetis behaviour.
Abstract: We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities.

Journal ArticleDOI
TL;DR: Monitoring the population and community responses of small mammals on replicated 4-ha plots in an East African savanna habitat demonstrated that ungulates can have strong and rapid impacts on small mammal abundance and diversity in East Africansavannas.
Abstract: The impacts of ungulates on small mammals in an East African savanna habitat were investigated by monitoring the population and community responses of small mammals on replicated 4-ha plots from which ungulates had been excluded. The dominant small mammal in this habitat is the pouched mouse, Saccostomusmearnsi, a medium-sized murid rodent. Eight other small mammal species, including Arvicanthis sp., Mus sp., Mastomys sp., Dendromus sp., Crocidura sp., and, rarely, Tatera sp., Aethomys sp., and Acomys sp., were also captured. The dominant ungulates are elephant (Loxodonta africana), giraffe (Giraffa camelopardalis), Grevy's and common zebra (Equus grevyi and E. burchelli), buffalo (Syncerus cafer), eland (Taurotragus oryx), Grant's gazelle (Gazella granti), and domestic cattle. Within 1 year, S. mearnsi populations had responded dramatically to the exclusion of large mammals by a two-fold increase in density, a difference that was maintained through pronounced seasonal fluctuations in the second year. Though individual pouched mice showed no significant differences in their use of space with and without ungulates, male S. mearnsi maintained significantly higher body weights in the absence of ungulates, indicating that habitat quality had increased. One other species, Mastomys sp., also increased in the absence of ungulates. Overall, the small mammal community maintained relatively constant species diversity on the plots to which ungulates did not have access. On the plots to which ungulates did have access, on the other hand, there was a rapid 75% decrease in diversity in the control plots during one trapping session. Ungulates are most likely affecting small mammals through their effects on food quality, since there were no detectable differences in their exposure to predators, as determined by vegetative cover, in the absence of ungulates. These results demonstrate that ungulates can have strong and rapid impacts on small mammal abundance and diversity in East African savannas, an interaction which has not previously been given serious consideration.

Journal ArticleDOI
TL;DR: The results show that root growth and the consequent input of carbon to soil in these communities is controlled by radiation flux not temperature, and that plants growing in these upland environments may acclimate strongly to low temperatures.
Abstract: We have measured the rates of root production and death and of root respiration in situ under two grasslands along an altitudinal gradient in the northern Pennines, UK, represented by a lowland site at 171 m in an agricultural setting, and three upland sites between 480 and 845 m. One grassland was dominated by Festuca ovina and was on a brown earth soil; the other was dominated by Juncus squarrosus and Nardus stricta and occurred on a peaty gley. The natural altitudinal gradient was extended by transplantation. Although root biomass and root production (estimated using minirhizotrons) both showed pronounced seasonal peaks, there was no simple altitudinal gradient in either variable, and neither root production nor root death rate was a simple function of altitude. Increased root accumulation in summer was a function of change in the length of the growing season, not of soil temperature. Root populations in winter were similar at all sites, showing that increased production at some sites was accompanied by increased turnover, a conclusion confirmed by cohort analyses. Respiration rate, measured in the field by extracting roots and measuring respiration at field temperature in an incubator, was unrelated to temperature. The temperature sensitivity of respiration (expressed as the slope of a plot of log respiration rate against temperature) showed no simple seasonal or altitudinal pattern. Both root growth (under Festuca) and respiration rate were, however, closely related to radiation fluxes, averaged over the previous 10 days for growth and 2 days for respiration. The temperature sensitivity of respiration was a function of soil temperature at the time of measurement. These results show that root growth and the consequent input of carbon to soil in these communities is controlled by radiation flux not temperature, and that plants growing in these upland environments may acclimate strongly to low temperatures. Most carbon cycle models assume that carbon fluxes to soil are powerfully influenced by temperature, but that assumption is based largely on short-term studies and must be reassessed.

Journal ArticleDOI
TL;DR: The findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs in the shortgrass steppe of northeastern Colorado.
Abstract: We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C4 shrub) and Bouteloua gracilis (a C4 grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs.