scispace - formally typeset
Search or ask a question

Showing papers in "Oncogene in 2001"


Journal ArticleDOI
30 Apr 2001-Oncogene
TL;DR: Amongst the Jun proteins, c-Jun is unique in its ability to positively regulate cell proliferation through the repression of tumor suppressor gene expression and function, and induction of cyclin D1 transcription.
Abstract: A plethora of physiological and pathological stimuli induce and activate a group of DNA binding proteins that form AP-1 dimers. These proteins include the Jun, Fos and ATF subgroups of transcription factors. Recent studies using cells and mice deficient in individual AP-1 proteins have begun to shed light on their physiological functions in the control of cell proliferation, neoplastic transformation and apoptosis. Above all such studies have identified some of the target genes that mediate the effects of AP-1 proteins on cell proliferation and death. There is evidence that AP-1 proteins, mostly those that belong to the Jun group, control cell life and death through their ability to regulate the expression and function of cell cycle regulators such as Cyclin D1, p53, p21(cip1/waf1), p19(ARF) and p16. Amongst the Jun proteins, c-Jun is unique in its ability to positively regulate cell proliferation through the repression of tumor suppressor gene expression and function, and induction of cyclin D1 transcription. These actions are antagonized by JunB, which upregulates tumor suppressor genes and represses cyclin D1. An especially important target for AP-1 effects on cell life and death is the tumor suppressor p53, whose expression as well as transcriptional activity, are modulated by AP-1 proteins.

1,661 citations


Journal ArticleDOI
05 Apr 2001-Oncogene
TL;DR: Evidence that implicates p53 in controlling entry into mitosis when cells enter G2 with damaged DNA or when they are arrested in S phase due to depletion of the substrates required for DNA synthesis is reviewed.
Abstract: p53 protects mammals from neoplasia by inducing apoptosis, DNA repair and cell cycle arrest in response to a variety of stresses. p53-dependent arrest of cells in the G1 phase of the cell cycle is an important component of the cellular response to stress. Here we review recent evidence that implicates p53 in controlling entry into mitosis when cells enter G2 with damaged DNA or when they are arrested in S phase due to depletion of the substrates required for DNA synthesis. Part of the mechanism by which p53 blocks cells at the G2 checkpoint involves inhibition of Cdc2, the cyclin-dependent kinase required to enter mitosis. Cdc2 is inhibited simultaneously by three transcriptional targets of p53, Gadd45, p21, and 14-3-3σ. Binding of Cdc2 to Cyclin B1 is required for its activity, and repression of the cyclin B1 gene by p53 also contributes to blocking entry into mitosis. p53 also represses the cdc2 gene, to help ensure that cells do not escape the initial block. Genotoxic stress also activates p53-independent pathways that inhibit Cdc2 activity, activation of the protein kinases Chk1 and Chk2 by the protein kinases Atm and Atr. Chk1 and Chk2 inhibit Cdc2 by inactivating Cdc25, the phosphatase that normally activates Cdc2. Chk1, Chk2, Atm and Atr also contribute to the activation of p53 in response to genotoxic stress and therefore play multiple roles. p53 induces transcription of the reprimo, B99, and mcg10 genes, all of which contribute to the arrest of cells in G2, but the mechanisms of cell cycle arrest by these genes is not known. Repression of the topoisomerase II gene by p53 helps to block entry into mitosis and strengthens the G2 arrest. In summary, multiple overlapping p53-dependent and p53-independent pathways regulate the G2/M transition in response to genotoxic stress.

1,512 citations


Journal ArticleDOI
12 Apr 2001-Oncogene
TL;DR: Using this novel protein microarray, the state of pro-survival checkpoint proteins at the microscopic transition stage from patient matched histologically normal prostate epithelium to prostate intraepithelial neoplasia and then to invasive prostate cancer is longitudinally analysed.
Abstract: Protein arrays are described for screening of molecular markers and pathway targets in patient matched human tissue during disease progression. In contrast to previous protein arrays that immobilize the probe, our reverse phase protein array immobilizes the whole repertoire of patient proteins that represent the state of individual tissue cell populations undergoing disease transitions. A high degree of sensitivity, precision and linearity was achieved, making it possible to quantify the phosphorylated status of signal proteins in human tissue cell subpopulations. Using this novel protein microarray we have longitudinally analysed the state of pro-survival checkpoint proteins at the microscopic transition stage from patient matched histologically normal prostate epithelium to prostate intraepithelial neoplasia (PIN) and then to invasive prostate cancer. Cancer progression was associated with increased phosphorylation of Akt (P<0.04), suppression of apoptosis pathways (P<0.03), as well as decreased phosphorylation of ERK (P<0.01). At the transition from histologically normal epithelium to PIN we observed a statistically significant surge in phosphorylated Akt (P<0.03) and a concomitant suppression of downstream apoptosis pathways which proceeds the transition into invasive carcinoma.

959 citations


Journal ArticleDOI
03 May 2001-Oncogene
TL;DR: It is shown that Src and JAK family tyrosine kinases cooperate to mediate constitutive Stat3 activation in the absence of EGF stimulation in model human breast cancer cell lines, suggesting that tyrosINE kinases transduce signals through Stat3 protein that contribute to the growth and survival of human breast cancers cells in culture and potentially in vivo.
Abstract: Constitutive activation of signal transducer and activator of transcription (STAT) proteins has been detected in a wide variety of human primary tumor specimens and tumor cell lines including blood malignancies, head and neck cancer, and breast cancer. We have previously demonstrated a high frequency of Stat3 DNA-binding activity that is constitutively-induced by an unknown mechanism in human breast cancer cell lines possessing elevated EGF receptor (EGF-R) and c-Src kinase activities. Using tyrosine kinase selective inhibitors, we show here that Src and JAK family tyrosine kinases cooperate to mediate constitutive Stat3 activation in the absence of EGF stimulation in model human breast cancer cell lines. Inhibition of Src or JAKs results in dose-dependent suppression of Stat3 DNA-binding activity, which is accompanied by growth inhibition and induction of programmed cell death. In addition, transfection of a dominant-negative form of Stat3 leads to growth inhibition involving apoptosis of breast cancer cells. These results indicate that the biological effects of the Src and JAK tyrosine kinase inhibitors are at least partially mediated by blocking Stat3 signaling. While EGF-R kinase activity is not required for constitutive Stat3 activation in breast cancer cells, EGF stimulation further increases STAT DNA-binding activity, consistent with an important role for EGF-R in STAT signaling and malignant progression. Analysis of primary breast tumor specimens from patients with advanced disease revealed that the majority exhibit elevated STAT DNA-binding activity compared to adjacent non-tumor tissues. Our findings, taken together, suggest that tyrosine kinases transduce signals through Stat3 protein that contribute to the growth and survival of human breast cancer cells in culture and potentially in vivo.

781 citations


Journal ArticleDOI
30 Apr 2001-Oncogene
TL;DR: Pharmacological interference with the NFAT:AP-1 interaction may be useful in selective manipulation of the immune response, and Balanced activation of NFAT and AP-1 is known to be required for productive immune responses, but the role of NFT-1 interactions in other cell types and biological processes remains to be understood.
Abstract: Combinatorial regulation is a powerful mechanism that enables tight control of gene expression, via integration of multiple signaling pathways that induce different transcription factors required for enhanceosome assembly. The four calcium-regulated transcription factors of the NFAT family act synergistically with AP-1 (Fos/Jun) proteins on composite DNA elements which contain adjacent NFAT and AP-1 binding sites, where they form highly stable ternary complexes to regulate the expression of diverse inducible genes. Concomitant induction of NFAT and AP-1 requires concerted activation of two different signaling pathways: calcium/calcineurin, which promotes NFAT dephosphorylation, nuclear translocation and activation; and protein kinase C (PKC)/Ras, which promotes the synthesis, phosphorylation and activation of members of the Fos and Jun families of transcription factors. A fifth member of the NFAT family, NFAT5, controls the cellular response to osmotic stress, by a mechanism that requires dimer formation and is independent of calcineurin or of interaction with AP-1. Pharmacological interference with theNFAT:AP-1 interaction may be useful in selective manipulation of the immune response. Balanced activation of NFAT and AP-1 is known to be required for productive immune responses, but the role of NFAT:AP-1 interactions in other cell types and biological processes remains to be understood.

747 citations


Journal ArticleDOI
28 May 2001-Oncogene
TL;DR: New findings will likely enhance the understanding of the myriad roles of DNA methylation in disease as well as point the way to novel therapies to prevent or repair these defects.
Abstract: The field of epigenetics has recently moved to the forefront of studies relating to diverse processes such as transcriptional regulation, chromatin structure, genome integrity, and tumorigenesis. Recent work has revealed how DNA methylation and chromatin structure are linked at the molecular level and how methylation anomalies play a direct causal role in tumorigenesis and genetic disease. Much new information has also come to light regarding the cellular methylation machinery, known as the DNA methyltransferases, in terms of their roles in mammalian development and the types of proteins they are known to interact with. This information has forced a new view for the role of DNA methyltransferases. Rather than enzymes that act in isolation to copy methylation patterns after replication, the types of interactions discovered thus far indicate that DNA methyltransferases may be components of larger complexes actively involved in transcriptional control and chromatin structure modulation. These new findings will likely enhance our understanding of the myriad roles of DNA methylation in disease as well as point the way to novel therapies to prevent or repair these defects.

740 citations


Journal ArticleDOI
30 Apr 2001-Oncogene
TL;DR: A better molecular understanding of the cell-context dependent function of AP-1 in cell proliferation and apoptosis, in bone biology as well as in multistep tumorigenesis is obtained.
Abstract: Genetically modified mice have provided important insights into the biological functions of the dimeric transcription factor complex AP-1. Extensive analyses of mice and cells with genetically modified Fos or Jun proteins provide novel insights into the physiological functions of AP-1 proteins. Using knock-out strategies it was found that some components, such as c-Fos, FosB and JunD are dispensable, whereas others, like c-Jun, JunB and Fra-1 are essential in embryonic development and/or in the adult organism. Besides the specific roles of AP-1 proteins in developmental processes, we are beginning to obtain a better molecular understanding of the cell-context dependent function of AP-1 in cell proliferation and apoptosis, in bone biology as well as in multistep tumorigenesis.

726 citations


Journal ArticleDOI
30 Apr 2001-Oncogene
TL;DR: Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins, including opposite orientations of heterodimer binding and the ability to bend DNA.
Abstract: Fos and Jun family proteins regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with related bZIP proteins and with structurally unrelated transcription factors. These interactions at composite regulatory elements produce nucleoprotein complexes with high sequence-specificity and regulatory selectivity. Several general principles including binding cooperativity and conformational adaptability have emerged from studies of regulatory complexes containing Fos-Jun family proteins. The structural properties of Fos-Jun family proteins including opposite orientations of heterodimer binding and the ability to bend DNA can contribute to the assembly and functions of such complexes. The cooperative recruitment of transcription factors, coactivators and chromatin remodeling factors to promoter and enhancer regions generates multiprotein transcription regulatory complexes with cell- and stimulus-specific transcriptional activities. The gene-specific architecture of these complexes can mediate the selective control of transcriptional activity.

708 citations


Journal ArticleDOI
16 Aug 2001-Oncogene
TL;DR: Cell-culture-based studies support an important role for c-KIT signaling in GIST and suggest therapeutic potential for STI571 in patients afflicted by this chemoresistant tumor.
Abstract: Mutations in the c-KIT receptor occur somatically in many sporadic Gastrointestinal Stromal Tumors (GIST), and similar mutations have been identified at the germline level in kindreds with multiple GISTs. These mutations activate the tyrosine kinase activity of c-KIT and induce constitutive signaling. To investigate the function of activated c-KIT in GIST, we established a human GIST cell line, GIST882, which expresses an activating KIT mutation (K642E) in the first part of the cytoplasmic split tyrosine kinase domain. Notably, the K642E substitution is encoded by a homozygous exon 13 missense mutation, and, therefore, GIST882 cells do not express native KIT. GIST882 c-KIT protein is constitutively tyrosine phosphorylated, but tyrosine phosphorylation was rapidly and completely abolished after incubating the cells with the selective tyrosine kinase inhibitor STI571. Furthermore, GIST882 cells evidenced decreased proliferation and the onset of apoptotic cell death after prolonged incubation with STI571. Similar results were obtained after administering STI571 to a primary GIST cell culture that expressed a c-KIT exon 11 juxtamembrane mutation (K558NP). These cell-culture-based studies support an important role for c-KIT signaling in GIST and suggest therapeutic potential for STI571 in patients afflicted by this chemoresistant tumor.

683 citations


Journal ArticleDOI
01 Oct 2001-Oncogene
TL;DR: Tumor necrosis factor receptor-associated factors (TRAFS) were initially discovered as adaptor proteins that couple the tumor necrosisfactor receptor family to signaling pathways, and have been shown to be signal transducers of Toll/interleukin-1 family members.
Abstract: Tumor necrosis factor receptor-associated factors (TRAFS) were initially discovered as adaptor proteins that couple the tumor necrosis factor receptor family to signaling pathways. More recently they have also been shown to be signal transducers of Toll/interleukin-1 family members. Six members of the TRAF family have been identified. All TRAF proteins share a C-terminal homology region termed the TRAF domain that is capable of binding to the cytoplasmic domain of receptors, and to other TRAF proteins. In addition, TRAFs 2-6 have RING and zinc finger motifs that are important for signaling downstream events. TRAF proteins are thought to be important regulators of cell death and cellular responses to stress, and TRAF2, TRAF5 and TRAF6 have been demonstrated to mediate activation of NF-kappaB and JNK. TRAF proteins are expressed in normal and diseased tissue in a regulated fashion, suggesting that they play an important role in physiological and pathological processes.

632 citations


Journal ArticleDOI
10 Sep 2001-Oncogene
TL;DR: The origin of a large number of B cell lymphomas from GC B cells is likely closely related to aberrant hypermutation and isotype switching activity in these B cells, and the common denominator of these three processes in the formation of Ig-associated translocations is probably represented by the fact that each of these processes intrinsically generates double-strand DNA breaks.
Abstract: Reciprocal chromosomal translocations involving the immunoglobulin (Ig) loci are a hallmark of most mature B cell lymphomas and usually result in dysregulated expression of oncogenes brought under the control of the Ig enhancers. Although the precise mechanisms involved in the development of these translocations remains essentially unknown, a clear relationship has been established with the mechanisms that lead to Ig gene remodeling, including V(D)J recombination, isotype switching and somatic hypermutation. The common denominator of these three processes in the formation of Ig-associated translocations is probably represented by the fact that each of these processes intrinsically generates double-strand DNA breaks. Since isotype switching and somatic hypermutation occur in germinal center (GC) B cells, the origin of a large number of B cell lymphomas from GC B cells is likely closely related to aberrant hypermutation and isotype switching activity in these B cells.

Journal ArticleDOI
26 Nov 2001-Oncogene
TL;DR: The human papillomavirus E7 protein plays an important role in the viral life cycle by subverting the tight link between cellular differentiation and proliferation in normal epithelium, thus allowing the virus to replicate in differentiating epithelial cells that would have normally withdrawn from the cell division cycle.
Abstract: The human papillomavirus (HPV) E7 protein is one of only two viral proteins that remain expressed in HPV-associated human cancers. HPV E7 proteins share structural and functional similarities with oncoproteins encoded by other small DNA tumor viruses such as adenovirus E1A and SV40 large tumor antigen. The HPV E7 protein plays an important role in the viral life cycle by subverting the tight link between cellular differentiation and proliferation in normal epithelium, thus allowing the virus to replicate in differentiating epithelial cells that would have normally withdrawn from the cell division cycle. The transforming activities of E7 largely reflect this important function.

Journal ArticleDOI
01 Oct 2001-Oncogene
TL;DR: Paxillin is a focal adhesion-associated, phosphotyrosine-containing protein that may play a role in several signaling pathways and is likely to regulate cell spreading and motility.
Abstract: Paxillin is a focal adhesion-associated, phosphotyrosine-containing protein that may play a role in several signaling pathways. Paxillin contains a number of motifs that mediate protein-protein interactions, including LD motifs, LIM domains, an SH3 domain-binding site and SH2 domain-binding sites. These motifs serve as docking sites for cytoskeletal proteins, tyrosine kinases, serine/threonine kinases, GTPase activating proteins and other adaptor proteins that recruit additional enzymes into complex with paxillin. Thus paxillin itself serves as a docking protein to recruit signaling molecules to a specific cellular compartment, the focal adhesions, and/or to recruit specific combinations of signaling molecules into a complex to coordinate downstream signaling. The biological function of paxillin coordinated signaling is likely to regulate cell spreading and motility.

Journal ArticleDOI
04 Jan 2001-Oncogene
TL;DR: A novel sequence, designated ASPL, fused in-frame to TFE3 exon 4 (type 1 fusion) or exon 3 (type 2 fusion), supporting ASPL-TFE3 as its oncogenically significant fusion product is established and establishing the utility of this assay in the diagnosis of ASPS.
Abstract: Alveolar soft part sarcoma (ASPS) is an unusual tumor with highly characteristic histopathology and ultrastructure, controversial histogenesis, and enigmatic clinical behavior. Recent cytogenetic studies have identified a recurrent der(17) due to a non-reciprocal t(X;17)(p11.2;q25) in this sarcoma. To define the interval containing the Xp11.2 break, we first performed FISH on ASPS cases using YAC probes for OATL1 (Xp11.23) and OATL2 (Xp11.21), and cosmid probes from the intervening genomic region. This localized the breakpoint to a 160 kb interval. The prime candidate within this previously fully sequenced region was TFE3, a transcription factor gene known to be fused to translocation partners on 1 and X in some papillary renal cell carcinomas. Southern blotting using a TFE3 genomic probe identified non-germline bands in several ASPS cases, consistent with rearrangement and possible fusion of TFE3 with a gene on 17q25. Amplification of the 5' portion of cDNAs containing the 3' portion of TFE3 in two different ASPS cases identified a novel sequence, designated ASPL, fused in-frame to TFE3 exon 4 (type 1 fusion) or exon 3 (type 2 fusion). Reverse transcriptase PCR using a forward primer from ASPL and a TFE3 exon 4 reverse primer detected an ASPL-TFE3 fusion transcript in all ASPS cases (12/12: 9 type 1, 3 type 2), establishing the utility of this assay in the diagnosis of ASPS. Using appropriate primers, the reciprocal fusion transcript, TFE3-ASPL, was detected in only one of 12 cases, consistent with the non-reciprocal nature of the translocation in most cases, and supporting ASPL-TFE3 as its oncogenically significant fusion product. ASPL maps to chromosome 17, is ubiquitously expressed, and matches numerous ESTs (Unigene cluster Hs.84128) but no named genes. The ASPL cDNA open reading frame encodes a predicted protein of 476 amino acids that contains within its carboxy-terminal portion of a UBX-like domain that shows significant similarity to predicted proteins of unknown function in several model organisms. The ASPL-TFE3 fusion replaces the N-terminal portion of TFE3 by the fused ASPL sequences, while retaining the TFE3 DNA-binding domain, implicating transcriptional deregulation in the pathogenesis of this tumor, consistent with the biology of several other translocation-associated sarcomas. Oncogene (2001) 20, 48 - 57.

Journal ArticleDOI
12 Jul 2001-Oncogene
TL;DR: It is suggested that blockade of NF-κB activity in PC-3M cells inhibits angiogenesis, invasion, and metastasis in an orthotopic nude mouse model.
Abstract: Since the NF-kappaB/relA transcription factor is constitutively activated in human prostate cancer cells, we determined whether blocking NF-kappaB/relA activity in human prostate cancer cells affected their angiogenesis, growth, and metastasis in an orthotopic nude mouse model. Highly metastatic PC-3M human prostate cancer cells were transfected with a mutated IkappaBalpha (IkappaBalphaM), which blocks NF-kappaB activity. Parental (PC-3M), control vector-transfected (PC-3M-Neo), and IkappaBalphaM-transfected (PC-3M-IkappaBalphaM) cells were injected into the prostate gland of nude mice. PC-3M and PC-3M-Neo cells produced rapidly growing tumors and regional lymph node metastasis, whereas PC-3M-IkappaBalphaM cells produced slow growing tumors with low metastatic potential. NF-kappaB signaling blockade significantly inhibited in vitro and in vivo expression of three major proangiogenic molecules, VEGF, IL-8, and MMP-9, and hence decreased neoplastic angiogenesis. Inhibition of NF-kappaB activity in PC-3M cells also resulted in the downregulation of MMP-9 mRNA and collagenase activity, resulting in decreased invasion through Matrigel. Collectively, these data suggest that blockade of NF-kappaB activity in PC-3M cells inhibits angiogenesis, invasion, and metastasis.

Journal ArticleDOI
10 Sep 2001-Oncogene
TL;DR: Interestingly, whilst all MLL fusion proteins tested so far phenocopy each other with respect to in vitro immortalization, the latency period required for the onset of acute leukemia in vivo is variable and partner protein dependent.
Abstract: The MLL (Mixed Lineage Leukemia) gene is a common target for chromosomal translocations associated with human acute leukemias. These translocations result in a gain of MLL function by generating novel chimeric proteins containing the amino-terminus of MLL fused in-frame with one of 30 distinct partner proteins. Structure/function studies using an in vitro myeloid progenitor immortalization assay have revealed that at least four nuclear partner proteins contribute transcriptional effector properties to MLL to produce a range of chimeric transcription factors with leukemogenic potential. Mouse models suggest that expression of an MLL fusion protein is necessary but not sufficient for leukemogenesis. Interestingly, whilst all MLL fusion proteins tested so far phenocopy each other with respect to in vitro immortalization, the latency period required for the onset of acute leukemia in vivo is variable and partner protein dependent. We discuss potential mechanisms that may account for the ability of distinct MLL fusion proteins to promote short or long latency leukemogenesis.

Journal ArticleDOI
01 Nov 2001-Oncogene
TL;DR: It is shown that an increase in the level of expression of Bcl-2 in the human prostate carcinoma cell line LNCaP observed in response to hormone withdrawal is further augmented by TNF-α treatment, and this effect is abated by inhibitors of NF-κB.
Abstract: This work presents direct evidence that the bcl-2 gene is transcriptionally regulated by nuclear factor-kappa B (NF-kappa B) and directly links the TNF-alpha/NF-kappa B signaling pathway with Bcl-2 expression and its pro-survival response in human prostate carcinoma cells. DNase I footprinting, gel retardation and supershift analysis identified a NF-kappa B site in the bcl-2 p2 promoter. In the context of a minimal promoter, this bcl-2 p2 site 1 increased transcription 10-fold in the presence of the p50/p65 expression vectors, comparable to the increment observed with the consensus NF-kappa B site, while for the full p2 promoter region transcriptional activity was increased sixfold by over-expression of NF-kappa B, an effect eliminated by mutating the bcl-2 p2 site 1. The expression of Bcl-2 has been linked to the hormone-resistant phenotype of advanced prostate cancer. Here we show that an increase in the level of expression of Bcl-2 in the human prostate carcinoma cell line LNCaP observed in response to hormone withdrawal is further augmented by TNF-alpha treatment, and this effect is abated by inhibitors of NF-kappa B. Concomitantly, bcl-2 p2 promoter studies in LNCaP cells show a 40-fold increase in promoter activity after stimulation with TNF-alpha in the absence of hormone.

Journal ArticleDOI
26 Nov 2001-Oncogene
TL;DR: This review discusses the interactions of the cellular proteins with which E6 interacts in the light of their respective contributions to the malignant progression of HPV transformed cells.
Abstract: The Human Papillomavirus (HPV) E6 protein is one of three oncoproteins encoded by the virus. It has long been recognized as a potent oncogene and is intimately associated with the events that result in the malignant conversion of virally infected cells. In order to understand the mechanisms by which E6 contributes to the development of human malignancy many laboratories have focused their attention on identifying the cellular proteins with which E6 interacts. In this review we discuss these interactions in the light of their respective contributions to the malignant progression of HPV transformed cells.

Journal ArticleDOI
28 May 2001-Oncogene
TL;DR: A novel hypothesis, termed the ‘ready production label’ model, explains the results in the literature and suggests that phosphorylation of histone H3 is a part of a complex signaling mechanism.
Abstract: Histone H3 is specifically phosphorylated during both mitosis and meiosis in patterns that are specifically coordinated in both space and time Histone H3 phosphorylation may initiate at different phases of the cell division in different organisms, but metaphase chromosomes are always found to be heavily phosphorylated Upon exit of mitosis/meiosis a global dephosphorylation of H3 takes place Potential candidates for H3 kinases are described and their hypothetical mechanism of action on highly condensed chromatin templates is discussed In addition, a novel hypothesis for the role of histone H3 phosphorylation during cell division is proposed This hypothesis, termed the 'ready production label' model, explains the results in the literature and suggests that phosphorylation of histone H3 is a part of a complex signaling mechanism

Journal ArticleDOI
20 Sep 2001-Oncogene
TL;DR: It is shown that PI3-K/Akt signaling mediates growth, survival, and cell cycle regulatory effects of IL-6 in MM, and LY294002 completely abrogates this signaling cascade.
Abstract: Previous studies demonstrate that interleukin-6 (IL-6) mediates growth and survival in human multiple myeloma (MM) cells via the MEK/MAPK and JAK/STAT signaling pathways, respectively. IL-6 also confers protection against Dexamethasone (Dex)-induced apoptosis via activation of protein tyrosine phosphatase (SHP2). In the current study, we characterized IL-6 triggered phophatidylinositol-3 kinase/Akt kinase (PI3-K/Akt) signaling in MM cells. IL-6 induces Akt/PKB phosphorylation in a time and dose dependent manner in MM.1S MM cells. IL-6 also induced phosphorylation of downstream targets of Akt, including Bad, GSK-3beta, and FKHR, confirming Akt activation. Inhibition of Akt activation by the PI3-K inhibitor LY294002 partially blocked IL-6 triggered MEK/MAPK activation and proliferation in MM.1S cells, suggesting cross-talk between PI3-K and MEK signaling. We demonstrate that Dex-induced apoptosis in MM.1S cells is mediated by downstream activation of caspase-9, with resultant caspase-3 cleavage; and conversely, that IL-6 triggers activation of PI3-K and its association with SHP2, inactivates caspase-9, and protects against Dex-induced apoptosis. LY294002 completely abrogates this signaling cascade, further confirming the importance of PI3-K/Akt signaling in conferring the protective effect of IL-6 against Dex-induced apoptosis. Finally, we show that IL-6 triggered PI3-K/Akt signaling in MM.1S cells inactivates forkhead transcriptional factor (FKHR), with related G1/S phase transition, whereas LY294002 blocks this signaling, resulting in upregulation of p27(KIP1) and G1 growth arrest. Our data therefore suggest that PI3-K/Akt signaling mediates growth, survival, and cell cycle regulatory effects of IL-6 in MM.

Journal ArticleDOI
26 Mar 2001-Oncogene
TL;DR: The recent identification of Zn2+-dependent metalloproteinases and transmembrane growth factor precursors as critical elements in GPCR-induced EGFR transactivation pathways has defined new components of a cellular communication network of rapidly increasing complexity.
Abstract: Communication between different cellular signaling systems has emerged as a common principle that enables cells to integrate a multitude of signals from its environment. Transactivation of the epidermal growth factor receptor (EGFR) represents the paradigm for cross-talk between G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). The recent identification of Zn2+-dependent metalloproteinases and transmembrane growth factor precursors as critical elements in GPCR-induced EGFR transactivation pathways has defined new components of a cellular communication network of rapidly increasing complexity. Further elucidation of the molecular details of the EGFR transactivation mechanism will provide new understanding of its relevance for normal physiological processes and their pathophysiological deviations.

Journal ArticleDOI
29 Oct 2001-Oncogene
TL;DR: The data on the known PML isoforms and splice variants are summarized and a new unifying nomenclature is presented, suggesting that these sequences are indispensable for function, but differ in their C-terminal sequences.
Abstract: PML is a component of a multiprotein complex, termed nuclear bodies, and the PML protein was originally discovered in patients suffering from acute promyelocytic leukaemia (APL). APL is associated with a reciprocal chromosomal translocation of chromosomes 15 and 17, which results in a fusion protein comprising PML and the retinoic acid receptor alpha. The PML genomic locus is approximately 35 kb and is subdivided into nine exons. A large number of alternative spliced transcripts are synthesized from the PML gene, resulting in a variety of PML proteins ranging in molecular weight from 48-97 kDa. In this review we summarize the data on the known PML isoforms and splice variants and present a new unifying nomenclature. Although, the function/s of the PML variants are unclear, all PML isoforms contain an identical N-terminal region, suggesting that these sequences are indispensable for function, but differ in their C-terminal sequences. The N-terminal region harbours a RING-finger, two B-boxes and a predicted alpha-helical Coiled-Coil domain, that together form the RBCC/TRIM motif found in a large family of proteins. In PML this motif is essential for PML nuclear body formation in vivo and PML-homo and hetero interactions conferring growth suppressor, apoptotic and anti-viral activities. In APL oligomerization mediated by the RBCC/TRIM motif is essential for the transformation potential of the PML-RARalpha fusion protein.

Journal ArticleDOI
30 Apr 2001-Oncogene
TL;DR: Avian primary cells transformed by either Jun : Fra2 or Jun‬:‬ATF2 thus provide powerful tools for the investigation of the downstream pathways involved in oncogenesis, and further genetic studies with Jun dimerization mutants will be required to be precise and extend the specific roles of the Jun’s:”Fos and Jun”:’ATF dimers during cancer progression in avian and mammalian systems.
Abstract: Jun : Fos and Jun : ATF complexes represent two classes of AP-1 dimers that (1) preferentially bind to either heptameric or octameric AP-1 binding sites, and (2) are differently regulated by cellular signaling pathways and oncogene products. To discriminate between the functions of Jun : Fos, Jun : ATF and Jun : Jun, mutants were developed that restrict the ability of Jun to dimerize either to itself, or to Fos(-like) or ATF(-like) partners. Introduction of these mutants in chicken embryo fibroblasts shows that Jun : Fra2 and Jun : ATF2 dimers play distinct, complementary roles in in vitro oncogenesis by inducing either anchorage independence or growth factor independence, respectively. v-Jun : ATF2 rather than v-Jun : Fra2 triggers the development of primary fibrosarcomas in the chicken wing. Genes encoding extracellular matrix components seem to constitute an important subset of v-Jun : ATF2-target genes. Repression of the matrix component SPARC by Jun is essential for the induction of fibrosarcomas. Avian primary cells transformed by either Jun : Fra2 or Jun : ATF2 thus provide powerful tools for the investigation of the downstream pathways involved in oncogenesis. Further genetic studies with Jun dimerization mutants will be required to be precise and extend the specific roles of the Jun : Fos and Jun : ATF dimers during cancer progression in avian and mammalian systems.

Journal ArticleDOI
01 Oct 2001-Oncogene
TL;DR: The Crk family adaptors appear to play a role in mediating the action of human oncogenes like the leukaemia-inducing Bcr–Abl protein and this review summarizes some key findings and highlights recent insights.
Abstract: Crk family adaptors are widely expressed and mediate the timely formation of signal transduction protein complexes upon a variety of extracellular stimuli, including various growth and differentiation factors. Selective formation of multi-protein complexes by the Crk and Crk-like (CRKL) proteins depends on specific motifs recognized by their SH2 and SH3 domains. In the case of the first SH3 domains [SH3(1)] a P-x-x-P-x-K motif is crucial for highly selective binding, while the SH2 domains prefer motifs which conform to the consensus pY-x-x-P. Crk family proteins are involved in the relocalization and activation of several different effector proteins which include guanine nucleotide releasing proteins like C3G, protein kinases of the Abl- and GCK-families and small GTPases like Rap1 and Rac. Crk-type proteins have been found not only in vertebrates but also in flies and nematodes. Major insight into the function of Crk within organisms came from the genetic model organism C. elegans, where the Crk-homologue CED-2 regulates cell engulfment and phagocytosis. Other biological outcomes of the Crk-activated signal transduction cascades include the modulation of cell adhesion, cell migration and immune cell responses. Crk family adaptors also appear to play a role in mediating the action of human oncogenes like the leukaemia-inducing Bcr-Abl protein. This review summarizes some key findings and highlights recent insights and open questions.

Journal ArticleDOI
10 Sep 2001-Oncogene
TL;DR: Parts of c-myc gene activation and the function of the c-Myc protein are reviewed, suggesting that while c- myc is not required for cell proliferation, it acts as an integrator and accelerator of cellular metabolism and proliferation.
Abstract: c-MYC is the prototype for oncogene activation by chromosomal translocation. In contrast to the tightly regulated expression of c-myc in normal cells, c-myc is frequently deregulated in human cancers. Herein, aspects of c-myc gene activation and the function of the c-Myc protein are reviewed. The c-myc gene produces an oncogenic transcription factor that affects diverse cellular processes involved in cell growth, cell proliferation, apoptosis and cellular metabolism. Complete removal of c-myc results in slowed cell growth and proliferation, suggesting that while c-myc is not required for cell proliferation, it acts as an integrator and accelerator of cellular metabolism and proliferation.

Journal ArticleDOI
10 Sep 2001-Oncogene
TL;DR: Oncogenes dysregulated by primary IgH translocations in MM do not appear to confer an anti-apoptotic effect, but instead increase proliferation and/or inhibit differentiation.
Abstract: Multiple myeloma (MM), a malignant tumor of somatically mutated, isotype-switched plasma cells (PC), usually arises from a common benign PC tumor called Monoclonal Gammopathy of Undetermined Significance (MGUS). MM progresses within the bone marrow, and then to an extramedullary stage from which MM cell lines are generated. The incidence of IgH translocations increases with the stage of disease: 50% in MGUS, 60–65% in intramedullarly MM, 70–80% in extramedullary MM, and >90% in MM cell lines. Primary, simple reciprocal IgH translocations, which are present in both MGUS and MM, involve many partners and provide an early immortalizing event. Four chromosomal partners appear to account for the majority of primary IgH translocations: 11q13 (cyclin D1), 6p21 (cyclin D3), 4p16 (FGFR3 and MMSET), and 16q23 (c-maf). They are mediated primarily by errors in IgH switch recombination and less often by errors in somatic hypermutation, with the former dissociating the intronic and 3′ enhancer(s), so that potential oncogenes can be dysregulated on each derivative chromosome (e.g., FGFR3 on der14 and MMSET on der4). Secondary translocations, which sometimes do not involve Ig loci, are more complex, and are not mediated by errors in B cell specific DNA modification mechanisms. They involve other chromosomal partners, notably 8q24 (c-myc), and are associated with tumor progression. Consistent with MM being the malignant counterpart of a long-lived PC, oncogenes dysregulated by primary IgH translocations in MM do not appear to confer an anti-apoptotic effect, but instead increase proliferation and/or inhibit differentiation. The fact that so many different primary transforming events give rise to tumors with the same phenotype suggests that there is only a single fate available for the transformed cell.

Journal ArticleDOI
02 Aug 2001-Oncogene
TL;DR: Although breast carcinoma and sarcomas were numerically most frequent, the greatest increases relative to general population rates were in adrenocortical carcinomas and phyllodes tumour.
Abstract: The spectrum and frequency of cancers associated with germline TP53 mutations are uncertain. To address this issue a cohort of individuals from 28 families with Li-Fraumeni syndrome, segregating germline TP53 mutations was established. Predicted cancers were estimated by applying age, morphology, site and sex-specific UK cancer statistics to person-years at risk. Observed and predicted cancers were compared and two-sided P-values calculated. Cancer types occurring to excess and showing P-values <0.02, were designated strongly associated with germline TP53 mutations. These were removed from the data and a second round of analyses performed. Cancer types with P-values <0.02 and 0.02-0.05 in the second round analyses were considered moderately and weakly associated respectively. Strongly associated cancers were: breast carcinoma, soft tissue sarcomas, osteosarcoma, brain tumours, adrenocortical carcinoma, Wilms' tumour and phyllodes tumour. Carcinoma of pancreas was moderately associated. Leukaemia and neuroblastoma were weakly associated. Other common carcinomas including lung, colon, bladder, prostate, cervix and ovary did not occur to excess. Although breast carcinoma and sarcomas were numerically most frequent, the greatest increases relative to general population rates were in adrenocortical carcinoma and phyllodes tumour. We conclude that germline TP53 mutations do not simply increase general cancer risk. There are tissue-specific effects.

Journal ArticleDOI
07 Jun 2001-Oncogene
TL;DR: Staurosporine induces apoptotic cell death through at least two redundant parallel pathways normally coexist in L1210/S cells, however, the early cell death mechanism depending on caspase activation disguises the late casp enzyme-independent apoptotic process.
Abstract: Sensitivity of tumor cells to anticancer therapy depends on the ability of the drug to induce apoptosis. However, multiple signaling pathways control this induction and thus determine this sensitivity. We report here that staurosporine, a well known inducer of apoptosis in a wide range of cell lines, displays distinct ability to trigger apoptosis in two different L1210 sublines (termed L1210/S and L1210/0). Staurosporine treatment resulted in an early cell death (within 3 h) in L1210/S cells, while in L1210/0 cells, death occurred only after 12 h. In both instances, death occurred by apoptosis. A broad spectrum caspase inhibitor, Z-VAD-fmk, blocked early apoptosis in L1210/S cells but did not confer any protection on late apoptosis in L1210/0 cells. Protection by Z-VAD-fmk observed in L1210/S cells was not lasting and unmasked a secondary process of cell death that also exhibited characteristics of apoptosis. Thus, staurosporine induces apoptotic cell death through at least two redundant parallel pathways. These two pathways normally coexist in L1210/S cells. However, the early cell death mechanism depending on caspase activation disguises the late caspase-independent apoptotic process. Staurosporine-induced apoptosis in L1210/0 cells develops only by the caspase-independent mechanism due to a general defect in caspase activation.

Journal ArticleDOI
27 Jul 2001-Oncogene
TL;DR: Agents which act to inhibit TNFα may abrogate the paracrine growth and survival advantage conferred by MM cell adhesion in the BM microenvironment.
Abstract: In this study we demonstrate that tumor necrosis factor alpha (TNFalpha) triggers only modest proliferation, as well as p44/p42 mitogen-activated protein kinase (MAPK) and NF-kappaB activation, in MM.1S multiple myeloma (MM) cells. TNFalpha also activates NF-kappaB and markedly upregulates (fivefold) secretion of interleukin-6 (IL-6), a myeloma growth and survival factor, in bone marrow stromal cells (BMSCs). TNFalpha in both a dose and time dependent fashion induced expression of CD11a (LFA-1), CD54 (intercellular adhesion molecule-1, ICAM-1), CD106 (vascular cell adhesion molecule-1, VCAM-1), CD49d (very late activating antigen-4, VLA-4), and/or MUC-1 on MM cell lines; as well as CD106 (VCAM-1) and CD54 (ICAM-1) expression on BMSCs. This resulted in increased (2-4-fold) per cent specific binding of MM cells to BMSCs, with related IL-6 secretion. Importantly, the proteasome inhibitor PS-341 abrogated TNFalpha-induced NF-kappaB activation, induction of ICAM-1 or VCAM-1, and increased adhesion of MM cells to BMSCs. Agents which act to inhibit TNFalpha may therefore abrogate the paracrine growth and survival advantage conferred by MM cell adhesion in the BM microenvironment.

Journal ArticleDOI
15 Nov 2001-Oncogene
TL;DR: The results suggest that NF-κB and AP-1 may play a role in the survival of prostate cancer cells, and curcumin abrogates their survival mechanisms.
Abstract: While the role of nuclear transcription factor activator protein-1 (AP-1) in cell proliferation, and of nuclear factor-kappaB (NF-kappaB) in the suppression of apoptosis are known, their role in survival of prostate cancer cells is not well understood We investigated the role of NF-kappaB and AP-1 in the survival of human androgen-independent (DU145) and -dependent (LNCaP) prostate cancer cell lines Our results show that the faster rate of proliferation of DU145 cells when compared to LNCaP cells correlated with the constitutive expression of activated NF-kappaB and AP-1 in DU-145 cells The lack of constitutive expression of NF-kappaB and AP-1 in LNCaP cells also correlated with their sensitivity to the antiproliferative effects of tumor necrosis factor (TNF) TNF induced NF-kappaB activation but not AP-1 activation in LNCaP cells In DU145 cells both c-Fos and c-Jun were expressed and treatment with TNF activated c-Jun NH2-terminal kinase (JNK), needed for AP-1 activation In LNCaP cells, however, only low levels of c-Jun was expressed and treatment with TNF minimally activated JNK Treatment of cells with curcumin, a chemopreventive agent, suppressed both constitutive (DU145) and inducible (LNCaP) NF-kappaB activation, and potentiated TNF-induced apoptosis Curcumin alone induced apoptosis in both cell types, which correlated with the downregulation of the expression of Bcl-2 and Bcl-xL and the activation of procaspase-3 and procaspase-8 Overall, our results suggest that NF-kappaB and AP-1 may play a role in the survival of prostate cancer cells, and curcumin abrogates their survival mechanisms