scispace - formally typeset
Search or ask a question

Showing papers in "Parasitology Research in 2015"


Journal ArticleDOI
TL;DR: Some crucial challenges about eco-friendly control of mosquito vectors are focused on, mainly the improvement of behavior-based control strategies (sterile insect technique (SIT) and “boosted SIT”) and plant-borne mosquitocidals, including green-synthesized nanoparticles.
Abstract: Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating pathogens and parasites. In this scenario, vector control is crucial. Mosquito larvae are usually targeted using organophosphates, insect growth regulators, and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. Newer and safer tools have been recently implemented to enhance control of mosquitoes. Here, I focus on some crucial challenges about eco-friendly control of mosquito vectors, mainly the improvement of behavior-based control strategies (sterile insect technique (“SIT”) and “boosted SIT”) and plant-borne mosquitocidals, including green-synthesized nanoparticles. A number of hot areas that need further research and cooperation among parasitologists, entomologists, and behavioral ecologists are highlighted.

497 citations


Journal ArticleDOI
TL;DR: Current knowledge on the effectiveness of plant-borne ovicides against major mosquito vectors of medical and veterinary importance is reviewed, with a general trend that C. quinquefasciatus eggs were the most resistant to botanical ovicides.
Abstract: Mosquitoes (Diptera: Culicidae) are a huge threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. Culicidae control is of crucial importance. Mosquito eggs, larvae, and pupae are usually targeted using organophosphates, insect growth regulators, and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment, and induce resistance in a number of species. Eco-friendly tools have been recently implemented against mosquito vectors, including botanical insecticides. The majority of researches focused on larvicides (745 SCOPUS results, July 2015) and adult repellents (434 SCOPUS results), while limited efforts were conducted to identify effective ovicides of botanical origin (59 SCOPUS results). Here, I review current knowledge on the effectiveness of plant-borne ovicides against major mosquito vectors of medical and veterinary importance. The majority of researches focused on the toxicity of crude extracts, their fractions, or essential oils against three important mosquito vectors, Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. As a general trend, C. quinquefasciatus eggs were the most resistant to botanical ovicides. Five studies proposed selected compounds from plant extracts and essential oils as ovicides effective at few parts per million. However, no efforts were conducted to shed light on possible mechanisms underlying the toxicity of plant-borne ovicides. In the final section, a number of hot issues needing further research and cooperation among parasitologists, entomologists, and researchers working in natural product chemistry are outlined.

278 citations


Journal ArticleDOI
TL;DR: The information gained can be used in the development of new botanical insecticides based on essential oils (EOs) and particularly in the creation of formulations.
Abstract: The efficacy of 30 aromatic compounds and their mutual binary combinations was assessed for acute toxicity against the larvae Culex quinquefasciatus. Based on comparison of the lethal doses, thymol and p-cymene were selected as the most effective (LD50 = 18 and 21 mg L−1, respectively, and LD90 = 25 and 30 mg L−1, respectively). Although the LD50 for terpinolene and trans-anethole was also estimated at 21 mg L−1, their LD90 was significantly higher compared to the substances above (245 and 34 mg L−1, respectively). In total, 435 binary combinations were tested, of which 249 combinations showed a significant synergistic effect, while 74 combinations showed a significant antagonistic effect on mortality. Only nine substances were identified as being able to create a synergistic effect with more than 20 substances: limonene, trans-anethole, 4-allylanisole, carvacrol, isoeugenol, menthone, carvone, borneol, and camphor. The highest synergistic effect on larval mortality was achieved for the combinations: eugenol and isoeugenol, carvone and carvacrol, carvone and 4-allylanisole, carvone and α-terpineol, carvone and menthone, limonene and trans-anethole, limonene and menthone, α-pinene and menthone, β-citronellol and menthone, carvacrol and 4-allylanisole, carvacrol and terpineol, α-terpinene and trans-anethole, camphor and menthone, camphene and menthone, and 4-allylanisole and menthone. Significant differences between achieved mortality and the mutual mixing ratio were found for the five selected binary mixtures that had shown the most significant synergistic effect in the previous tests. The mixture of limonene and trans-anethole showed the highest mortality, with the mixing ratio 1:1; the mixture of eugenol and isoeugenol caused 90.2 % mortality, with the mixing ratio 1:3. One hundred percent mortality was achieved if carvacrol was contained in a mixture with carvone in a ratio >2. After a comparison of all our results, based on our experiments, we can choose two pairs that caused mortality higher than 90 % in concentrations lower than 20 mg L−1: limonene and trans-anethole (with the mixing ratio 1:1), and carvone and carvacrol (with the mixing ratio 1:2–3). The information gained can thus be used in the development of new botanical insecticides based on essential oils (EOs) and particularly in the creation of formulations.

226 citations


Journal ArticleDOI
TL;DR: This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools.
Abstract: Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV–vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7 %, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools.

198 citations


Journal ArticleDOI
TL;DR: Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti and further research on structure–activity relationships of AgNP against other d Dengue serotypes is urgently required.
Abstract: Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required.

179 citations


Journal ArticleDOI
TL;DR: Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors.
Abstract: Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC50 and LC90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors.

168 citations


Journal ArticleDOI
TL;DR: This study showed that seaweed-synthesized silver nanoparticles can be proposed in synergy with biological control agents against Culex larvae, since their use leads to little detrimental effects against aquatic predators, such as copepods.
Abstract: Nearly1.4billionpeoplein73countriesworldwide are threatened by lymphatic filariasis, a parasitic infection that leadstoadiseasecommonlyknownaselephantiasis.Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is rep- resented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparti- cles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We pro- posed a novel methodof seaweed-mediatedsynthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then,we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against

140 citations


Journal ArticleDOI
TL;DR: Silver nanoparticles synthesized using the aqueous extract of the seaweed Sargassum muticum for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools.
Abstract: Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this research, silver nanoparticles (AgNP) were synthesized using the aqueous extract of the seaweed Sargassum muticum. The production of AgNP was confirmed by surface plasmon resonance band illustrated in UV–vis spectrophotometry. AgNP were characterized by FTIR, SEM, EDX, and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and mean size was 43–79 nm. Toxicity of AgNP was assessed against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. In laboratory, AgNP were highly toxic against larvae and pupae of the three mosquito species. Maximum efficacy was observed against A. stephensi larvae, with LC50 ranging from 16.156 ppm (larva I) to 28.881 ppm (pupa). In the field, a single treatment with AgNP (10 × LC50) in water storage reservoirs was effective against the three mosquito vectors, allowing complete elimination of larval populations after 72 h. In ovicidal experiments, egg hatchability was reduced by 100 % after treatment with 30 ppm of AgNP. Ovideterrence assays highlighted that 10 ppm of AgNP reduced oviposition rates of more than 70 % in A. aegypti, A. stephensi, and C. quinquefasciatus (OAI = −0.61, −0.63, and −0.58, respectively). Antibacterial properties of AgNP were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. AgNP tested at 50 ppm evoked growth inhibition zones larger than 5 mm in all tested bacteria. Overall, the chance to use S. muticum-synthesized AgNP for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools. This is the first report about ovicidal activity of metal nanoparticles against mosquito vectors.

125 citations


Journal ArticleDOI
TL;DR: This study investigates the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae.
Abstract: Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30–70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I–IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control.

111 citations


Journal ArticleDOI
Lifu Wang1, Zhitao Li1, Jia Shen1, Zhen Liu1, Jinyi Liang1, Xiaoying Wu1, Xi Sun1, Zhongdao Wu1 
TL;DR: There are exosome-like vesicles derived by S. japonicum adult worms, and the exosomes can mediate M1-type immune- activity of macrophage, and it is demonstrated that macrophages were preferentially differentiated into the M1 subtype while being treated with S.Japonicum.
Abstract: Exosomes are 30–100-nm membrane vesicles of endocytic origin that are released into the extracellular space upon fusion of the multi-vesicular bodies (MVB) with the plasma membrane, while initial studies described that the role of exosomes was a reticulocyte cargo-disposal mechanism allowing remodeling of the plasma membrane during the maturation of reticulocytes to erythrocytes. Recent studies indicate that exosomes are secreted by most cells and pathogens and play an important role in intercellular signaling and exert regulatory function by carrying bioactive molecules. As numerous pathogens, adult worm of Schistosoma japonicum (S. japonicum) reside in mesenteric veins of definitive host including man and mammal animals. It was reported that the worms or the eggs also have specialized secretion systems to export effector proteins or other molecules into host target cells. However, the mechanisms involved remained unclear. This study investigated the isolation of the exosome-like vesicles secreted by S. japonicum adult worms and its immune activity on microphage in vitro. In this report, we identified exosome-based secretion as a new mechanism for protein secretion by S. japonicum. Electron microscopy tomography revealed the previously unidentified ultrastructural detail of exosome-like vesicles with high resolution; they were found to be typical spherical shape and to have a diverse population that varies in size of 30–100 nm. Exosome-like vesicles isolated from S. japonicum contained a significantly different protein compared with debris pelleted and the apoptosis body. We also demonstrate that macrophages were preferentially differentiated into the M1 subtype while being treated with S. japonicum exosome-like vesicles. This study reveals there are exosome-like vesicles derived by S. japonicum adult worms, and the exosome-like vesicles can mediate M1-type immune- activity of macrophage.

109 citations


Journal ArticleDOI
TL;DR: Overall, neem cake can be proposed as an eco-friendly and low-cost source of chemicals to build newer and safer control tools against mosquito vectors.
Abstract: Mosquitoes (Diptera: Culicidae) represent an important threat to millions of people worldwide, since they act as vectors for important pathogens, such as malaria, yellow fever, dengue and West Nile. Control programmes mainly rely on chemical treatments against larvae, indoor residual spraying and insecticide-treated bed nets. In recent years, huge efforts have been carried out to propose new eco-friendly alternatives, with a special focus on the evaluation of plant-borne mosquitocidal compounds. Major examples are neem-based products (Azadirachta indica A. Juss, Meliaceae) that have been proven as really effective against a huge range of pests of medical and veterinary importance, including mosquitoes. Recent research highlighted that neem cake, a cheap by-product from neem oil extraction, is an important source of mosquitocidal metabolites. In this review, we examined (i) the latest achievements about neem cake metabolomics with special reference to nor-terpenoid and related content; (ii) the neem cake ovicidal, larvicidal and pupicidal toxicity against Aedes, Anopheles and Culex mosquito vectors; (iii) its non-target effects against vertebrates; and (iv) its oviposition deterrence effects on mosquito females. Overall, neem cake can be proposed as an eco-friendly and low-cost source of chemicals to build newer and safer control tools against mosquito vectors.

Journal ArticleDOI
TL;DR: It is demonstrated herein that several partial sequences misassigned either to T16 or to T4, actually belong to at least two separate and distinct genotypes, and reassign these partial sequences to the genotype T20.
Abstract: Acanthamoeba species are ubiquitous amoebae able to cause important infections in humans and other vertebrates. The full/near-full sequences (>2000 bp) of the small subunit ribosomal RNA gene (SSU rDNA or 18S rDNA) are used to cluster Acanthamoeba as genotypes, labeled T1 to T20. Genotype T15 remains an exception, being described only partially on a 1500-bp fragment. Strains are thus usually identified based on their 18S identity matches with reference strains, often using shorter (<500 bp) diagnostic fragments of the gene. Nevertheless, short fragments (<1000 bp) have been used to propose genotypes. This has been criticized, and doubts arise therefore on possible confusion leading to classify distinct partial sequences with a same label(s). We demonstrate herein that several partial sequences misassigned either to T16 or to T4, actually belong to at least two separate and distinct genotypes. We obtained the full 18S rDNA of a strain previously typed as T16 on the basis of a small fragment and demonstrated that it actually belongs to the recently described T19. We propose the name Acanthamoeba micheli sp. nov., for this strain. Furthermore, partial molecular phylogenies were performed to show that several other misassigned T16 partial sequences belong to a new genotype. This latter includes also misassigned T4 partial sequences, only recently available as full sequences and labeled as T20. We thus reassign these partial sequences to the genotype T20. Longer sequences, ideally at least 90 % of the total gene length, should be obtained from strains to ensure reliable diagnostic and phylogenetic results.

Journal ArticleDOI
TL;DR: In the face of emerging strains with different epidemiological profiles resulting from genetic diversity, including drug-resistant genotypes, the colonization phenomenon desires particular attention, discussed in this article.
Abstract: Pneumocystis pneumonia is an opportunistic disease caused by invasion of unicellular fungus Pneumocystis jirovecii. Initially, it was responsible for majority of morbidity and mortality cases among HIV-infected patients, which later have been reduced due to the introduction of anti-retroviral therapy, as well as anti-Pneumocystis prophylaxis among these patients. Pneumocystis pneumonia, however, is still a significant cause of mortality among HIV-negative patients being under immunosuppression caused by different factors, such as transplant recipients as well as oncologically treated ones. The issue of pneumocystosis among these people is particularly emphasized in the article, since rapid onset and fast progression of severe symptoms result in high mortality rate among these patients, who thereby represent the group of highest risk of developing Pneumocystis pneumonia. In contrast, fungal invasion in immunocompetent people usually leads to asymptomatic colonization, which frequent incidence among healthy infants has even suggested the possibility of its association with sudden unexpected infant death syndrome. In the face of emerging strains with different epidemiological profiles resulting from genetic diversity, including drug-resistant genotypes, the colonization phenomenon desires particular attention, discussed in this article. We also summarize specific and sensitive methods, required for detection of Pneumocystis invasion and for distinguish colonization from the disease.

Journal ArticleDOI
TL;DR: Major control measures for bovine anaplasmosis and tick-borne fever include rearing of tick-resistant breeds, endemic stability, breeding Anaplasma-free herds, identification of regional vectors, domestic/wild reservoirs and control, habitat modification, biological control, chemotherapy, and vaccinations.
Abstract: Anaplasma marginale and Anaplasma phagocytophilum are the most important tick-borne bacteria of veterinary and public health significance in the family Anaplasmataceae. The objective of current review is to provide knowledge on ecology and epidemiology of A. phagocytophilum and compare major similarities and differences of A. marginale and A. phagocytophilum. Bovine anaplasmosis is globally distributed tick-borne disease of livestock with great economic importance in cattle industry. A. phagocytophilum, a cosmopolitan zoonotic tick transmitted pathogen of wide mammalian hosts. The infection in domestic animals is generally referred as tick-borne fever. Concurrent infections exist in ticks, domestic and wild animals in same geographic area. All age groups are susceptible, but the prevalence increases with age. Movement of susceptible domestic animals from tick free non-endemic regions to disease endemic regions is the major risk factor of bovine anaplasmosis and tick-borne fever. Recreational activities or any other high-risk tick exposure habits as well as blood transfusion are important risk factors of human granulocytic anaplasmosis. After infection, individuals remain life-long carriers. Clinical anaplasmosis is usually diagnosed upon examination of stained blood smears. Generally, detection of serum antibodies followed by molecular diagnosis is usually recommended. There are problems of sensitivity and cross-reactivity with both the Anaplasma species during serological tests. Tetracyclines are the drugs of choice for treatment and elimination of anaplasmosis in animals and humans. Universal vaccine is not available for either A. marginale or A. phagocytophilum, effective against geographically diverse strains. Major control measures for bovine anaplasmosis and tick-borne fever include rearing of tick-resistant breeds, endemic stability, breeding Anaplasma-free herds, identification of regional vectors, domestic/wild reservoirs and control, habitat modification, biological control, chemotherapy, and vaccinations (anaplasmosis and/or tick vaccination). Minimizing the tick exposure activities, identification and control of reservoirs are important control measures for human granulocytic anaplasmosis.

Journal ArticleDOI
TL;DR: This is the first report concerning larvicidal toxicity of NSO against A. albopictus and ovideterrence against Culicidae in the field and the chance to use chemicals from the NSO EA fraction seems promising, since they are effective at lower doses, if compared to synthetic products currently marketed, and could be an advantageous alternative to build newer and safer mosquito control tools.
Abstract: Neem seed oil (NSO) of Azadirachta indica (Meliaceae) contains more than 100 determined biologically active compounds, and many formulations deriving from them showed toxicity, antifeedancy and repellence against a number of arthropod pests. However, it is widely known that botanical products can differ in their chemical composition and bioactivity, as function of the production site and production process. We used high-performance thin layer chromatography (HPTLC) to investigate differences in chemical constituents of NSOs from three production sites. HPTLC analyses showed several differences in chemical abundance and diversity among NSOs, with special reference to limonoids. Furthermore, the three NSOs and their fractions of increasing polarities [i.e. ethyl acetate (EA) fraction and butanol (BU) fraction] were evaluated for larvicidal toxicity and field oviposition deterrence against the Asian tiger mosquito, Aedes albopictus, currently the most invasive mosquito worldwide. Results from bioactivity experiments showed good toxicity of NSOs and EA fractions against A. albopictus fourth instar larvae (with LC50 values ranging from 142.28 to 209.73 ppm), while little toxicity was exerted by BU fractions. A significant effect of the production site and dosage was also found and is probably linked to differences in abundance of constituents among samples, as highlighted by HPTLC analyses. NSOs and EAs were also able to deter A. albopictus oviposition in the field (effective repellence values ranging from 98.55 to 70.10 %), while little effectiveness of BU fractions was found. Concerning ovideterrent activity, no difference due to the production site was found. This is the first report concerning larvicidal toxicity of NSO against A. albopictus and ovideterrence against Culicidae in the field. The chance to use chemicals from the NSO EA fraction seems promising, since they are effective at lower doses, if compared to synthetic products currently marketed, and could be an advantageous alternative to build newer and safer mosquito control tools.

Journal ArticleDOI
TL;DR: A novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent is proposed to develop newer and safer agents for malaria control.
Abstract: Malaria, the most widespread mosquito-borne disease, affects 350–500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41 %, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.

Journal ArticleDOI
TL;DR: This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles and the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larVicidal agents.
Abstract: Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis The continued use of synthetic insecticides has resulted in resistance in mosquitoes Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment Botanical origin may serve as suitable alternative biocontrol techniques in the future The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h The results were recorded from UV–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs The maximum efficacy was observed in synthesized AgNPs against the larvae of An stephensi (lethal dose (LC50) = 2244 μg/mL; LC90 4065 μg/mL), Ae aegypti (LC50 = 2577 μg/mL; LC90 4598 μg/mL), and C quinquefasciatus (LC50 = 2783 μg/mL; LC90 4892 μg/mL), respectively No mortality was observed in the control This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles Thus, the use of G asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents

Journal ArticleDOI
TL;DR: The results showed that the schistosome responsible for the emergence ofschistosomiasis in Corsica was due to S. haematobium introgressed by genes from S. bovis.
Abstract: This study concerns the first urinary schistosomiasis case observed in Corsica (France, Europe) occurring in a 12-year-old German boy. The aim was to identify the relationship between this Schistosoma haematobium infection and other schistosomes of the Schistosoma group with terminal-spined ova. Morphological and molecular analyses were conducted on the ova. The results showed that the schistosome responsible for the emergence of schistosomiasis in Corsica was due to S. haematobium introgressed by genes from S. bovis.

Journal ArticleDOI
TL;DR: The results suggest that the leaf aqueous extracts of C. asiatica and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of An.
Abstract: Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV–Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90 values: An. stephensi had LC50 and LC90 values of 17.95 and 33.03 μg/mL; Ae. aegypti had LC50 and LC90 values of 19.32 and 34.87 μg/mL; and Cx. quinquefasciatus had LC50 and LC90 values of 20.92 and 37.41 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of C. asiatica and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized AgNPs.

Journal ArticleDOI
TL;DR: It is shown that Dirofilaria species are endemic in the southern and southeastern areas of Romania, and an epidemiological picture of the distribution of A. reconditum in Romania is provided for the first time.
Abstract: During the last decades, Dirofilaria spp. infection in European dogs has rapidly spread from historically endemic areas towards eastern and northeastern countries, but little or no information is available from these geographical regions. The present study provides a picture of filarial infections in dogs from Romania and compares two tests for the diagnosis of Dirofilaria immitis. From July 2010 to March 2011, blood samples were collected from 390 dogs from nine counties of Romania and serological SNAP tests were performed for the detection of D. immitis antigen. The remaining blood clots were subsequently used for DNA extraction followed by multiplex PCR for assessing filarioid species diversity (i.e. D. immitis, Dirofilaria repens and Acanthocheilonema reconditum). Based on molecular detection, an overall prevalence of 6.92 % (n = 27; 95 % confidence interval (CI) 4.70-10.03 %) for D. repens, 6.15 % (n = 24; 95 % CI 4.07-9.14 %) for D. immitis and 2.05 % (n = 8; 95 % CI 0.96-4.16 %) for A. reconditum was recorded, with significant variations according to sampling areas. Coinfections of D. immitis and D. repens were recorded in 23.91 % (n = 11) positive dogs. A slightly higher prevalence for D. immitis was detected at the SNAP test (n = 28, 7.17 %; 95 % CI 4.91-10.33 %), but this difference was not statistically significant (p = 0.66). However, only 53.57 % (n = 15) of antigen-positive dogs were confirmed by PCR, while other dogs (n = 9) PCR positive for D. immitis were negative at the serology. The present study shows that Dirofilaria species are endemic in the southern and southeastern areas of Romania, This article also provides, for the first time, an epidemiological picture of the distribution of A. reconditum in Romania.

Journal ArticleDOI
TL;DR: A novel, simple, and eco-friendly approach has been suggested to control blood-feeding parasites in synthesized TiO2 NPs utilizing leaf aqueous extract of Mangifera indica L. (Anacardiaceae) against hematophagous parasites.
Abstract: Titanium dioxide nanoparticles (TiO2 NPs) are considered to be among the best photocatalytic materials due to their long-term thermodynamic stability, strong oxidizing power, and relative non-toxicity. Nano-preparations with TiO2 NPs are currently under investigation as novel treatments for acne vulgaris, recurrent condyloma acuminata, atopic dermatitis, hyperpigmented skin lesions, and other non-dermatologic diseases. The present study was to investigate the acaricidal and larvicidal activity of synthesized TiO2 NPs utilizing leaf aqueous extract of Mangifera indica L. (Anacardiaceae) against hematophagous parasites. The anti-parasitic activity of TiO2 NPs against the larvae of Rhipicephalus (Boophilus) microplus, Hyalomma anatolicum anatolicum and Haemaphysalis bispinosa (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, and Culex quinquefasciatus (Diptera: Culicidae) were assessed. The green synthesized TiO2 NPs were analyzed by UV–Vis, FTIR, X-ray diffraction (XRD), AFM, SEM, and TEM. The XRD analysis of synthesized TiO2 NPs revealed the dominant peak at 2θ value of 27.81 which matched the 110 crystallographic plane of the rutile structure indicating the crystal structure. The FTIR spectra exhibited a prominent peak at 3,448 cm−1 and showed OH stretching due to the alcoholic group, and the OH group may act as a capping agent. The SEM images of TiO2 NPs displayed spherical, oval in shape, individual, and some in aggregates. Characterization of the synthesized TiO2 NPs using AFM offered three-dimensional visualization and uneven surface morphology. The TEM micrograph showed agglomerates, round and slight elongation with an average size of 30 ± 5 nm. The maximum efficacy was observed in synthesized TiO2 NPs against the larvae of R. microplus, Hyalomma anatolicum anatolicum, Haemaphysalis bispinosa, A. subpictus, and Culex quinquefasciatus with LC50 value of 28.56, 33.17, 23.81, 5.84, and 4.34 mg/L, respectively. In the present study, a novel, simple, and eco-friendly approach has been suggested to control blood-feeding parasites.

Journal ArticleDOI
TL;DR: A high-quality key to the adults of all species of forensically relevant blowflies of the Middle East has been prepared and can be easily applied by investigators inexperienced in the taxonomy of blowflies.
Abstract: The lack of reliable tools for species identification of necrophagous blowflies of the Middle East is a serious obstacle to the development of forensic entomology in the majority of countries of this region. Adding to the complexity of diagnosing the regional fauna is that species representing three different zoogeographical elements exist in sympatry. In response to this situation, a high-quality key to the adults of all species of forensically relevant blowflies of the Middle East has been prepared. Thanks to the modern technique of image-stack stereomicroscopy and high-quality entomological materials, this new key can be easily applied by investigators inexperienced in the taxonomy of blowflies. The major technical problems relating to the species identification of necrophagous blowflies of the Middle East are also discussed.

Journal ArticleDOI
TL;DR: In this article, life history traits were established for imidacloprid-resistant, susceptible counterpart, and reciprocal cross M. domestica strains based on laboratory observations, which provided useful information for making potential management strategies to overcome development of resistance.
Abstract: Imidacloprid, a neonicotinoid insecticide, has been used frequently for the management of Musca domestica L., (Diptera: Muscidae) worldwide. To design the strategy for resistance management, life history traits were established for imidacloprid-resistant, susceptible counterpart, and reciprocal crosses M. domestica strains based on laboratory observations. Bioassay results showed that the imidacloprid-selected strain developed a resistance ratio of 106-fold to imidacloprid, 19-fold to nitenpyram, 29-fold to chlorpyrifos, and 3.8-fold to cypermethrin compared to that of the susceptible counterpart strain. The imidacloprid-selected strain showed very low cross-resistance against nitenpyram and cypermethrin and a lack of cross-resistance to chlorpyrifos. Resistance to imidacloprid, nitenpyram, and chlorpyrifos was unstable, while resistance to cypermethrin was stable in Imida-SEL strain of M. domestica. The imidacloprid-selected strain had a relative fitness of 0.61 and lower fecundity, hatchability, number of next-generation larvae, and net reproductive rate compared with the susceptible counterpart strain. Mean population growth rates, such as intrinsic rate of population increase and biotic potential, were lower for the imidacloprid-selected strain compared with the susceptible counterpart strain. Development of resistance can cost considerable fitness for the imidacloprid-selected strain. The present study provided useful information for making potential management strategies to overcome development of resistance.

Journal ArticleDOI
TL;DR: In this paper, the authors performed a systematic review and meta-analysis study to evaluate the overall prevalence of Toxoplasma gondii infection among sheep and goats in Iran.
Abstract: Toxoplasmosis, a cosmopolitan parasitic infection caused by Toxoplasma gondii, is frequently found in meat-producing animals and human beings. This review and meta-analysis study was performed to evaluate the overall prevalence of T. gondii infection among sheep and goats in Iran. Data were systematically collected from 1977 to 2012 in Iran on the following electronic databases: PubMed, Google Scholar, Science Direct, Scopus, Web of Science, Magiran, Irandoc, IranMedex, and Scientific Information Database (SID). Additionally, abstracts of national scientific congresses and dissertations were included. A total of 34 articles in field of sheep and 18 articles about goat toxoplasmosis, totalizing to the examination of 14,372 sheep and 3,120 goats, reporting prevalence of toxoplasmosis from different regions of Iran fulfilled our eligibility criteria. The overall prevalence rate of toxoplasmosis in Iran was estimated to be 31 % (95 % confidence interval (CI) = 0.259825 to 0.352382) in sheep and 27 % (95 % CI = 0.140097 to 0.424782) in goats, respectively. There was no significant difference in infection rate between males and females among sheep (odds ratio (OR) = 1.002, 95 % CI = 0.59 to 1.696) and goats (OR = 1.027, 95 % CI = 0.685 to 1.541). Analysis revealed that infection rate in sheep over than 1 year old was 2.4 times more than that in less than 1 year old (OR = 2.396, 95 % CI = 1.050 to 5.467). This systematic review and meta-analysis study revealed that infection is widespread in Iran. Further studies are required to improve strategies for controlling infection among flocks and consequently in human population.

Journal ArticleDOI
TL;DR: Findings indicate that the cuticle proteins are associated with deltamethrin resistance in Cx.
Abstract: Insecticide resistance has been a major public health challenge. It is impendent to study the mechanism on insecticide resistance. In our previous study, 14 differentially accumulated insect cuticle proteins (ICPs) based on insecticide resistance proteomes and transcriptomes were found in the deltamethrin-resistant (DR) and -susceptible (DS) strains of Culex pipiens pallens. To investigate if these ICPs are associated with deltamethrin resistance, different transcriptional levels of the 14 ICPs were detected in the DS and DR strains from laboratory and field populations by using quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of the 14 ICPs were also measured after short-term exposure of the DS strain to deltamethrin. The full-length complementary DNA (cDNA) of CpCPLCG5 gene, which encodes one of the 14 ICPs, was cloned from Cx. pipiens pallens. Homology analysis and phylogenetic analysis were carried out with some other insects. Furthermore, small interfering RNA (siRNA) was used to knockdown the expression level of CpCPLCG5 gene for characterizing its contribution to deltamethrin resistance. The results showed that the expression level of CpCPLCG5 gene was higher in DR strain than in DS strain both in laboratory and field populations while the other 13 ICPs were downregulated. The full-length cDNA of CpCPLCG5 gene was 732 bp, with the ORF of 390 bp and deduced 129 amino acids (GenBank/KF723314,2013). Knockdown of CpCPLCG5 gene increased the susceptibility of the DR strain while the expression level of the other 13 ICPs elevated. Our findings indicate that the cuticle proteins are associated with deltamethrin resistance in Cx. pipiens pallens.

Journal ArticleDOI
TL;DR: It was concluded that the prevalence of Toxocara egg-shedding household dogs is almost unchanged over recent years and that the knowledge of owners is insufficient to expect sound decisions on routine deworming.
Abstract: The prevalence of gastrointestinal parasites and risk factors for shedding of Toxocara eggs were determined for 916 Dutch household dogs older than 6 months. Additionally, the owners answered a questionnaire about their dogs and their attitude towards routine deworming was assessed. Faecal samples were examined using the centrifugal sedimentation flotation method. The overall prevalence of dogs shedding Toxocara eggs was 4.6 %. Multivariable logistic regression analysis revealed that the risk for 1–7-year-old dogs to shed Toxocara eggs was significantly lower (OR 0.38) than that of 6–12-month-old dogs. Compared to dogs walking ≤20 % of the time off-leash, those ranging freely 50–80 % and 80–100 % of the time had a significantly higher risk (OR 10.49 and 13.52, respectively) of shedding Toxocara eggs. Other risk factors were coprophagy (OR 2.44) and recently being kenneled (OR 2.76). Although the applied deworming frequency was not significantly associated with shedding Toxocara eggs, there was a trend towards no shedding in dogs under strict supervision that were dewormed 3–4 times a year. Most dog owners (68 %) recognized ‘dog’s health’ as the main reason for deworming. Only 16 % of dogs were dewormed four times a year. It was concluded that the prevalence of Toxocara egg-shedding household dogs is almost unchanged over recent years and that the knowledge of owners is insufficient to expect sound decisions on routine deworming.

Journal ArticleDOI
TL;DR: An identification key is presented for the third instar larvae of European flesh flies of forensic importance and is user-friendly and requires no dissections of larvae, as soaking the material in methyl salicylate will allow observation of all diagnostic details of the cephaloskeleton.
Abstract: Necrophagous Sarcophagidae are among the insects most frequently reported from human corpses. The broad forensic application of flesh flies is restricted by the lack of reliable tools for species identification of larval stages and mass breeding of collected flesh fly larvae to the adult stage, and more recently DNA-based methods are usually recommended for precise species identification. To overcome this situation, the following study was implemented: (1) original larval material was obtained of the European flesh flies of confirmed or potential forensic importance; (2) larval morphology was studied and documented using a combination of standard light microscopy, image-stacking stereomicroscopy and SEM; and (3) larval characters used in previously published keys were critically revised. The taxonomic value of the following characters was considered insignificant: (1) differences in level of sclerotisation of particular parts of the cephaloskeleton, (2) level of sclerotisation of the posterior spiracular peritreme and (3) the shape of posterior spiracular slits. A high taxonomic value was noticed for the general shape of anterior spiracles, pattern of arrangement of their lobes, and distribution and shape of spines/warts on the inter-band area of segments. Two character states—long window in the dorsal cornu of cephaloskeleton and deep spiracular cavity on anal division—are not found in the Miltogramminae and therefore cannot be considered as family-specific for the entire Sarcophagidae. As a comprehensive result of our studies, an identification key is presented for the third instar larvae of European flesh flies of forensic importance. The key is user-friendly and requires no dissections of larvae, as soaking the material in methyl salicylate will allow observation of all diagnostic details of the cephaloskeleton. A simple stereomicroscope (magnification about ×50) is sufficient for the observation of all characters presented in the key. This key may be systematically extended by the addition of species present in adjacent geographical regions.

Journal ArticleDOI
TL;DR: This research adds knowledge on plant-borne chemicals toxic against invertebrates of medical importance, allowing the tested oils as effective candidates to develop newer and safer vector control tools to be proposed.
Abstract: Mosquitoes (Diptera: Culicidae) represent a threat for millions of people worldwide, since they act as vectors for important pathogens, including malaria, yellow fever, dengue and West Nile. Second to malaria as the world's most widespread parasitic disease, infection by trematodes is a devastating public health problem. In this study, we proposed two essential oils from plants cultivated in Mediterranean regions as effective chemicals against mosquitoes and freshwater snails vectors of Echinostoma trematodes. Chemical composition of essential oils from Achillea millefolium (Asteraceae) and Haplophyllum tuberculatum (Rutaceae) was investigated. Acute toxicity was evaluated against larvae of the West Nile vector Culex pipiens (Diptera: Culicidae) and the invasive freshwater snail Physella acuta (Mollusca: Physidae), an important intermediate host of many parasites, including Echinostoma revolutum (Echinostomidae). Acute toxicity of essential oils was assessed also on a non-target aquatic organism, the mayfly Cloeon dipterum (Ephemeroptera: Baetidae). Achillea millefolium and H. tuberculatum essentials oils were mainly composed by oxygenated monoterpenes (59.3 and 71.0 % of the whole oil, respectively). Chrysanthenone and borneol were the two major constituents of Achillea millefolium essential oil (24.1 and 14.2 %, respectively). Major compounds of H. tuberculatum essential oil were cis-p-menth-2-en-1-ol and trans-p-menth-2-en-1-ol (22.9 and 16.1 %, respectively). In acute toxicity assays, C. pipiens LC50 was 154.190 and 175.268 ppm for Achillea millefolium and H. tuberculatum, respectively. P. acuta LC50 was 112.911 and 73.695 ppm for Achillea millefolium and H. tuberculatum, respectively, while the same values were 198.116 and 280.265 ppm for C. dipterum. Relative median potency analysis showed that both tested essential oils were more toxic to P. acuta over C. dipterum. This research adds knowledge on plant-borne chemicals toxic against invertebrates of medical importance, allowing us to propose the tested oils as effective candidates to develop newer and safer vector control tools.

Journal ArticleDOI
TL;DR: Review of literature revealed that 37 fly species belonging to ten families were responsible worldwide for the onset of human myiasis, and the aim of the present manuscript is to provide a database for the future reference of medical entomologists, medical practitioners and veterinarians.
Abstract: Myiasis, the infestation of tissues of live humans and other vertebrate animals with dipteran larvae (maggots), is a phenomenon of widespread occurrence throughout the tropical regions of the world. It is commonly seen in domestic and wild animals but occurs rarely in man also. The tissue invasion in man by maggots is generally a well-recognized complication of neglected wounds. The condition may be asymptomatic but occasionally results in more or less severe problems and even death when larvae invade body cavities or areas that forbid their direct visual examination. Many cases of myiasis, however, usually do not reach the attention of medical practitioners because of the tendency of the mature larvae to migrate out of the lesion for pupation. In the present study, the authors reviewed the past literature describing the cases of human myiasis, causative fly species and predisposing factors for the onset of the same. The aim of the present manuscript is to provide a database for the future reference of medical entomologists, medical practitioners and veterinarians. Review of literature revealed that 37 fly species belonging to ten families were responsible worldwide for the onset of human myiasis. The incidence of myiasis among humans can be correlated to increasing fly populations, poor hygienic conditions and presence of domestic animals in the close vicinity. Other factors responsible for myiasis include neglected open wounds and foul-smelling discharge from natural body openings. Moreover, ignorance plays a key role in its occurrence since people are generally unaware about the actual cause and often correlate the condition to their superstitious beliefs. It is emphasized that the patients should not neglect their wounds and should take proper medical care; otherwise, myiasis may supervene.

Journal ArticleDOI
TL;DR: Overall, these botanicals could be considered as potential sources of metabolites to build newer and safer malaria control tools.
Abstract: Each year, mosquito-borne diseases infect nearly 700 million people, resulting to more than 1 million deaths. In this study, we evaluated the larvicidal, pupicidal, and smoke toxicity of Senna occidentalis and Ocimum basilicum leaf extracts against the malaria vector Anopheles stephensi. Furthermore, the antiplasmodial activity of plant extracts was evaluated against chloroquine (CQ)-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. In larvicidal and pupicidal experiments, S. occidentalis LC50 ranged from 31.05 (I instar larvae) to 75.15 ppm (pupae), and O. basilicum LC50 ranged from 29.69 (I instar larvae) to 69 ppm (pupae). Smoke toxicity experiments conducted against adults showed that S. occidentalis and O. basilicum coils evoked mortality rates comparable to the pyrethrin-based positive control (38, 52, and 42%, respectively). In antiplasmodial assays, Senna occidentalis 50% inhibitory concentration (IC50) were 48.80 μg/ml (CQ-s) and 54.28 μg/ml (CQ-r), while O. basilicum IC50 were 68.14 μg/ml (CQ-s) and 67.27 μg/ml (CQ-r). Overall, these botanicals could be considered as potential sources of metabolites to build newer and safer malaria control tools.