scispace - formally typeset
Search or ask a question

Showing papers in "Parasitology in 2006"


Journal ArticleDOI
TL;DR: Host-parasite co-evolution comparisons suggest that the ancestral homeland of Echinococcus was North America or Asia, depending on whether the ancestral definitive hosts were canids or felids.
Abstract: Taxonomic revision by molecular phylogeny is needed to categorize members of the genus Echinococcus (Cestoda: Taeniidae). We have reconstructed the phylogenetic relationships of E. oligarthrus, E. vogeli, E. multilocularis, E. shiquicus, E. equinus, E. ortleppi, E. granulosus sensu stricto and 3 genotypes of E. granulosus sensu lato (G6, G7 and G8) from their complete mitochondrial genomes. Maximum likelihood and partitioned Bayesian analyses using concatenated data sets of nucleotide and amino acid sequences depicted phylogenetic trees with the same topology. The 3 E. granulosus genotypes corresponding to the camel, pig, and cervid strains were monophyletic, and their high level of genetic similarity supported taxonomic species unification of these genotypes into E. canadensis. Sister species relationships were confirmed between E. ortleppi and E. canadensis, and between E. multilocularis and E. shiquicus, regardless of the analytical approach employed. The basal positions of the phylogenetic tree were occupied by the neotropical endemic species, E. oligarthrus and E. vogeli, whose definitive hosts are derived from carnivores that immigrated from North America after the formation of the Panamanian land bridge. Host-parasite co-evolution comparisons suggest that the ancestral homeland of Echinococcus was North America or Asia, depending on whether the ancestral definitive hosts were canids or felids.

423 citations


Journal ArticleDOI
TL;DR: The results suggest that the small increases in air and water temperature forecast by many climate models will not only influence the geographical distribution of some diseases, but may also promote the proliferation of their infective stages in many ecosystems.
Abstract: Global warming can affect the world's biota and the functioning of ecosystems in many indirect ways. Recent evidence indicates that climate change can alter the geographical distribution of parasitic diseases, with potentially drastic consequences for their hosts. It is also possible that warmer conditions could promote the transmission of parasites and raise their local abundance. Here I have compiled experimental data on the effect of temperature on the emergence of infective stages (cercariae) of trematode parasites from their snail intermediate hosts. Temperature-mediated changes in cercarial output varied widely among trematode species, from small reductions to 200-fold increases in response to a 10 degrees C rise in temperature, with a geometric mean suggesting an almost 8-fold increase. Overall, the observed temperature-mediated increases in cercarial output are much more substantial than those expected from basic physiological processes, for which 2- to 3-fold increases are normally seen. Some of the most extreme increases in cercarial output may be artefacts of the methods used in the original studies; however, exclusion of these extreme values has little impact on the preceding conclusion. Across both species values and phylogenetically independent contrasts, neither the magnitude of the initial cercarial output nor the shell size of the snail host correlated with the relative increase in cercarial production mediated by rising temperature. In contrast, the latitude from which the snail-trematode association originated correlated negatively with temperature-mediated increases in cercarial production: within the 20 degrees to 55 degrees latitude range, trematodes from lower latitudes showed more pronounced temperature-driven increases in cercarial output than those from higher latitudes. These results suggest that the small increases in air and water temperature forecast by many climate models will not only influence the geographical distribution of some diseases, but may also promote the proliferation of their infective stages in many ecosystems.

389 citations


Journal ArticleDOI
TL;DR: The known expression patterns of the GluCl explain most of the observed biological effects of treatment with the macrocyclic lactones, though the reason for the long-lasting inhibition of larval production in filarial species is still poorly understood.
Abstract: The macrocyclic lactones are the biggest selling and arguably most effective anthelmintics currently available. They are good substrates for the P-glycoproteins, which might explain their selective toxicity for parasites over their vertebrate hosts. Changes in the expression of these pumps have been implicated in resistance to the macrocyclic lactones, but it is clear that they exert their anthelmintic effects by binding to glutamate-gated chloride channels expressed on nematode neurones and pharyngeal muscle cells. This effect is quite distinct from the channel opening induced by glutamate, the endogenous transmitter acting at these receptors, which produces rapidly opening and desensitising channels. Ivermectin-activated channels open very slowly but essentially irreversibly, leading to a very long-lasting hyperpolarisation or depolarisation of the neurone or muscle cell and therefore blocking further function. Molecular and genetic studies have shown that there are multiple GluCl isoforms in both free-living and parasitic nematodes: the exact genetic make-up and functions of the GluCl may vary between species. The known expression patterns of the GluCl explain most of the observed biological effects of treatment with the macrocyclic lactones, though the reason for the long-lasting inhibition of larval production in filarial species is still poorly understood.

340 citations


Journal ArticleDOI
TL;DR: This review focuses on advances in anti-leishmania vaccine development over the recent years and examines current problems hampering vaccine development and implementation.
Abstract: Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world resulting in an estimated 12 million new cases each year. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. Leishmaniasis is considered one of a few parasitic diseases likely to be controllable by vaccination. The relatively uncomplicated leishmanial life cycle and the fact that recovery from infection renders the host resistant to subsequent infection indicate that a successful vaccine is feasible. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunisation with protein or DNA vaccines. However, to date no such vaccine is available despite substantial efforts by many laboratories. Advances in our understanding of Leishmania pathogenesis and generation of host protective immunity, together with the completed Leishmania genome sequence open new avenues for vaccine research. The major remaining challenges are the translation of data from animal models to human disease and the transition from the laboratory to the field. This review focuses on advances in anti-leishmania vaccine development over the recent years and examines current problems hampering vaccine development and implementation.

198 citations


Journal ArticleDOI
TL;DR: Vaccines targeted at animals could play an important role in controlling these three diseases in animals and, by blocking transmission of infection, have a concurrent beneficial effect on disease in humans.
Abstract: Schistosoma japonicum, Fasciola hepatica and F. gigantica are digenetic trematodes and, therefore, possess similar life cycles. While schistosomiasis japonica has for a long time been recognised as a major disease of both humans and animals, infection with fasciolids has only been considered of relevance to animals. However, a number of recent reports indicate that fasciolosis is becoming a serious public health problem, especially in South America, Egypt and Iran (sporadic cases are also on the increase throughout Europe). Vaccines targeted at animals could play an important role in controlling these three diseases in animals and, by blocking transmission of infection, have a concurrent beneficial effect on disease in humans. Approaches towards identifying and producing vaccines against these parasites are similar and are discussed in this reveiw.

195 citations


Journal ArticleDOI
TL;DR: Results suggest an association between Toxoplasma gondii infection and changes in the dopaminergic neuromodulatory system.
Abstract: Toxoplasma gondii, a cosmopolitan protozoan parasite, is known to induce behavioural alterations in rodents and may exert an effect on human personality and behaviour. The mechanism of parasite-induced alterations in host behaviour has not been described, but it was hypothesized that development of Toxoplasma tissue cysts in the brain could affect the dopaminergic neuromodulatory system. In this study, we tested the effect of latent Toxoplasma infection on mouse behaviour associated with activity of the dopaminergic system, i.e. locomotion in a novel environment and exploration test. Additionally, we examined the behavioural response of Toxoplasma-infected mice to a selective dopamine uptake inhibitor, GBR 12909. In both genders, Toxoplasma infection decreased locomotion in the open field. Infected females displayed an increased level of exploration in the holeboard test. GBR 12909 induced suppression in holeboard-exploration in the infected males, but had an opposite effect on the controls. These results suggest an association between Toxoplasma gondii infection and changes in the dopaminergic neuromodulatory system.

160 citations


Journal ArticleDOI
TL;DR: The future application of RNAi in parasite functional genomics will greatly depend on how the current utility of this technology in parasite research is questionable and Optimization of the dsRNA delivery methods and in vitro culture conditions will be the major challenges.
Abstract: RNA interference (RNAi) has become an invaluable tool for the functional analysis of genes in a wide variety of organisms including the free-living nematode Caenorhabditis elegans. Recently, attempts have been made to apply this technology to parasitic helminths of animals and plants with variable success. Gene knockdown has been reported for Schistosoma mansoni by soaking or electroporating different life-stages in dsRNA. Similar approaches have been tested on parasitic nematodes which clearly showed that, under certain conditions, it was possible to interfere with gene expression. However, despite these successes, the current utility of this technology in parasite research is questionable. First, problems have arisen with the specificity of RNAi. Treatment of the parasites with dsRNA resulted, in many cases, in non-specific effects. Second, the current RNAi methods have a limited efficiency and effects are sometimes difficult to reproduce. This was especially the case in strongylid parasites where only a small number of genes were susceptible to RNAi-mediated gene knockdown. The future application of RNAi in parasite functional genomics will greatly depend on how we can overcome these difficulties. Optimization of the dsRNA delivery methods and in vitro culture conditions will be the major challenges.

154 citations


Journal ArticleDOI
TL;DR: Current vaccination strategies to help combat infections with Eimeria, Toxoplasma and Neospora are discussed and recent research looking towards developing new vaccine targets and approaches are discussed.
Abstract: The protozoan parasites Eimeria spp. Toxoplasma gondii and Neospora caninum are significant causes of disease in livestock worldwide and T. gondii is also an important human pathogen. Drugs have been used with varying success to help control aspects of these diseases and commercial vaccines are available for all three groups of parasites. However, there are issues with increasing development of resistance to many of the anti-coccidial drugs used to help control avian eimeriosis and public concerns about the use of drugs in food animals. In addition there are no drugs available that can act against the tissue cyst stage of either T. gondii or N. caninum and thus cure animals or people of infection. All three groups of parasites multiply within the cells of their host species and therefore cell mediated immune mechanisms are thought to be an important component of host protective immunity. Successful vaccination strategies for both Eimeria and Toxoplasma have relied on using a live vaccination approach using attenuated parasites which allows correct processing and presentation of antigen to the host immune system to stimulate appropriate cell mediated immune responses. However, live vaccines can have problems with safety, short shelf-life and large-scale production; therefore there is continued interest in devising new vaccines using defined recombinant antigens. The major challenges in devising novel vaccines are to select relevant antigens and then present them to the immune system in an appropriate manner to enable the induction of protective immune responses. With all three groups of parasites, vaccine preparations comprising antigens from the different life cycle stages may also be advantageous. In the case of Eimeria parasites there are also problems with strain-specific immunity therefore a cocktail of antigens from different parasite strains may be required. Improving our knowledge of the different parasite transmission routes, host-parasite relationships, disease pathogenesis and determining the various roles of the host immune response being at times host-protective, parasite protective and in causing immunopathology will help to tailor a vaccination strategy against a particular disease target. This paper discusses current vaccination strategies to help combat infections with Eimeria, Toxoplasma and Neospora and recent research looking towards developing new vaccine targets and approaches.

139 citations


Journal ArticleDOI
TL;DR: Except for H. belopolskyi, parasites identified to species by morphology were supported by both the genetic and phylogenetic species concepts, and were monophyletic for all phylogenetic analyses.
Abstract: More than 200 species of avian Haemosporidia (genera Plasmodium, Haemoproteus, and Leucocytozoon) have been described based primarily on morphological characters seen in blood smears. Recent molecular studies, however, suggest that such methods may mask a substantial cryptic diversity of avian haemosporidians. We surveyed the haemosporidians of birds sampled at 1 site in Israel. Parasites were identified to species based on morphology, and a segment of the parasite's cytochrome b gene was sequenced. We compared 3 species concepts: morphological, genetic, and phylogenetic. Fifteen morphological species were present. Morphological species that occurred once within our dataset were associated with a unique gene sequence, displayed large genetic divergence from other morphological species, and were not contained within clades of morphological species that occurred more than once. With only 1 exception, morphological species that were identified from multiple bird hosts presented identical sequences for all infections, or differed by few synonymous substitutions, and were monophyletic for all phylogenetic analyses. Only the morphological species Haemoproteus belopolskyi did not follow this trend, falling instead into at least 2 genetically distant clades. Thus, except for H. belopolskyi, parasites identified to species by morphology were supported by both the genetic and phylogenetic species concepts.

135 citations


Journal ArticleDOI
TL;DR: A new, high sensitive PCR approach is developed that allows the genus- and species-specific amplification of the main 4 Schistosoma species causing disease in man plus S. bovis.
Abstract: Currently available methods for the diagnosis of human schistosomiasis often lack enough sensitivity and specificity. Recently, several authors have developed more specific and sensitive diagnostic methods, mainly based on the polymerase chain reaction (PCR) technique. Nevertheless, these have been only applied for the diagnosis of 1 out of 4 Schistosoma species affecting man (S. mansoni). Additionally, application of specific PCR has been exclusively used for blood or faecal patients' samples. Here, we develop a new, high sensitive PCR approach that allows the genus- and species-specific amplification of the main 4 Schistosoma species causing disease in man plus S. bovis. We further successfully apply this technique for the detection of parasite DNA in easy-to-handle urine samples from patients with schistosomiasis. With these samples, we have found 94.4% sensitivity and 99.9% specificity when applying a genus-specific (Schistosoma spp.) primer pair, and 100% sensitivity and 98.9% specificity in a species-specific (S. mansoni) PCR.

131 citations


Journal ArticleDOI
TL;DR: It is suggested that sticklebacks from lakes are better adapted to cope with higher parasite abundance in this habitat, and are in a better energy status than river fish, as indicated by a higher hepatosomatic index and haematocrit value.
Abstract: We investigated population differences in immunological adaptation of three-spined sticklebacks (Gasterosteus aculeatus) to one of their most abundant macroparasites, the eye fluke Diplostomum pseudospathaceum. We compared infection success in lab-bred fish of 2 populations in northern Germany, from a lake, where eye flukes are prevalent, and a river, where these parasites do not occur. In order to discriminate between protection through innate and acquired immunity, we exposed fish either only once or repeatedly. Lake fish were significantly less susceptible than river sticklebacks already after a single exposure, indicating that in sympatric hosts innate immunity plays the major role in the defence against this helminth infection. In both habitat types, previous exposures only marginally decreased infection rates within 12 weeks. Lake fish showed higher immunocompentence by means of respiratory burst activity and spleen size, regardless of the infection status. Furthermore, they were in a better energy status than river fish, as indicated by a higher hepatosomatic index and haematocrit value. Interestingly, F1 hybrid fish of both populations ranged between the pure habitat types in parasite susceptibility as well as in immunological and condition parameters. Our results suggest that sticklebacks from lakes are better adapted to cope with higher parasite abundance in this habitat.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the effect of tannins on the exsheathment of Haemonchus contortus and Trichostrongylus colubriformis.
Abstract: The anthelmintic properties of tanniferous plants and of their secondary metabolites represent one possible alternative to chemotherapy that is currently being explored as a means of achieving sustainable control of gastrointestinal nematodes in ruminants. Previous in vivo and in vitro results suggest that tanniferous plants can have direct anti-parasitic effect against different stages of nematodes. However, the mode of action of the bioactive plant compounds remains obscure. The objectives of the current study were (1) to examine the hypothesis that extracts of tanniferous plants might interfere with the exsheathment of third-stage infective larvae (L3); (2) to assess the role of tannins in the process by examining the consequence of adding an inhibitor of tannins (polyethylene glycol: PEG) to extracts. The effects of 4 tanniferous plant extracts on exsheathment have been examined on L3 of Haemonchus contortus and Trichostrongylus colubriformis. Artificial exsheathment was induced in vitro by adding hypochloride solution to larval suspension. The evolution of exsheathment with time was measured by repeated observations at 10-min interval for 60 min. The selected plants were: genista (Sarothamnus scoparius), heather (Erica erigena), pine tree (Pinus sylvestris), and chestnut tree (Castanea sativa), with tannin contents ranging from 1.5 to 24.7% of DM. Extracts of a non-tanniferous plant (rye grass, tannin content: 0.3% of DM) were included in the assay as negative controls. The extracts were tested at the concentration of 600 microg/ml and the effects were compared to the rate of exsheathment of control larvae in PBS. No statistical differences in the pattern of exsheathment was observed after addition of rye grass or genista extracts for both nematode species and with heather extracts for T. colubriformis. In contrast, pine tree extracts on larvae of both species and heather extracts with H. contortus induced a significant delay in exsheathment. Last, contact with chest nut extracts led to a total inhibition of the process for both nematodes. These results suggest that extracts of tanniferous plants might affect a key process in the very early stages of larval invasion of the host. In most cases, the addition of PEG led to a total or partial restoration towards control values. This suggests that tannins are largely involved in the inhibitory process. However, other secondary metabolites may also interfere with the process that would help to explain some of the differences in response observed between the two nematode species.

Journal ArticleDOI
TL;DR: Current achievements related to host cell and parasite cell biology are summarized, and potential applications for prevention of infection and/or disease are discussed by reviewing corresponding work performed in murine laboratory infection models and in cattle.
Abstract: Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals However, in contrast to T gondii, N caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N caninum Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa) Thirdly, by analogy with T gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell In order to elucidate the molecular and cellular bases of these important features of N caninum, cell culture-based approaches and laboratory animal models are being exploited In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle

Journal ArticleDOI
TL;DR: All larval instars for the first time are described, and infection intensity and impacts of parasitism on nestling survival of Darwin's finches are discussed, highlighting the extremely serious threat this parasite poses for the endemic passerine fauna of the Galápagos Islands.
Abstract: The fly, Philornis downsi Dodge & Aitken, was first collected in 1964 on the Galapagos Islands and is now widespread across the archipelago. Virtually nothing is known about the behaviour and ecology of the fly as well as for the genus in general. Here, we describe all larval instars for the first time, and discuss infection intensity and impacts of parasitism on nestling survival of Darwin's finches. Adult P. downsi are non-parasitic free-living flies, whereas the larvae are obligate blood-feeding parasites on nestling birds. The larvae show a marked shift in their host site specificity--a novel finding for the genus Philornis: the first and early second larval instars live as agents of myiasis in finch nostrils and other tissues, while the older second and third instar larvae reside in the nest material and feed externally on the blood of nestlings, leading to blood losses in nestlings of 18-55%. Pupation occurs in the bottom layer of the nest. The combined effects of tissue damage by the endoparasitic instar larvae and anaemia by nest-dwelling haematophagous instar larvae account for the high nestling mortality (76%) due to Philornis parasitism. This represents the highest mortality by Philornis reported in the literature and emphasizes the extremely serious threat this parasite poses for the endemic passerine fauna of the Galapagos Islands.

Journal ArticleDOI
TL;DR: Identifying partners and support in this endeavour is now of prime importance in efforts to achieve the potential of these vaccines as new tools for the control of cystic hydatid disease and neurocysticercosis.
Abstract: Recombinant vaccines have been developed which are highly effective in preventing infection with Taenia ovis in sheep, Taenia saginata in cattle, Taenia solium in pigs and Echinococcus granulosus in livestock animals. T. ovis and T. saginata are economically significant parasites and the commercial success or otherwise of vaccines against them will rely on their economic value. E. granulosus and T. solium are zoonotic parasites that cause cystic hydatid disease and neurocysticercosis, respectively, in humans. Vaccines against these parasites have been developed to assist with the control of transmission of the human diseases rather than for prevention of infections in livestock per se. Regions of high prevalence for cystic hydatid disease and neurocysticercosis occur primarily in the developing world. As a consequence, vaccines against them are of little or no commercially interest - they are Orphan Vaccines. Lack of commercial interest in these vaccines has made public sector support for their development necessary well beyond the research phase trough into completion of commercial scale-up and other more commercially-related assessments. Practical use of the vaccines will require commercial-scale production according to international manufacturing standards. Identifying partners and support in this endeavour is now of prime importance in efforts to achieve the potential of these vaccines as new tools for the control of cystic hydatid disease and neurocysticercosis.

Journal ArticleDOI
TL;DR: Evidence shows that flatworms have multiple neurotransmitter receptors, many with unusual pharmacological features, which make them particularly attractive as drug targets, and understanding the molecular basis of these distinctive properties will undoubtedly become a major challenge in future research.
Abstract: The flatworm nervous system employs a wide repertoire of neuroactive substances, including small chemical messengers, the so called classical transmitters, and several types of neuropeptides A large body of research accumulated over four decades has provided a wealth of information on the tissue localization and effects of these substances, their biochemistry and, recently, their molecular modes of action in all major classes of flatworms This evidence will be reviewed, with particular emphasis on the small (classical) transmitters and the receptors that mediate their effects One of the themes that will emerge from this discussion is that classical transmitters regulate core activities such as movement, metabolism and transport, and thus are essential for survival of the organism In addition, the evidence shows that flatworms have multiple neurotransmitter receptors, many with unusual pharmacological features, which make them particularly attractive as drug targets Understanding the molecular basis of these distinctive properties, and developing new, more specific receptor agonists and antagonists will undoubtedly become a major challenge in future research

Journal ArticleDOI
TL;DR: Wolbachia density is temperature-specific and highest at 26 °C; the order of the abundance of the 3 Wolbachia strains does not vary with temperature changes; and in this species, temperature-related changes in WolbachIA density do not influence cytoplasmic incompatibility.
Abstract: The outcome and the evolution of host-symbiont associations depend on environmental constraints, but responses are difficult to predict since they arise from a complex interaction between the host, the parasite and the environment. The situation can be even more complex when multiple parasite genotypes, with potentially different responses to environmental changes, coexist within a single host. In this paper, we investigated the effect of the temperature (from 14 to 26 degrees C) during the host development on the density of 3 strains of the intracellular bacterium Wolbachia that coexist within the wasp Leptopilina heterotoma. In this species, Wolbachia induces cytoplasmic incompatibility, a sperm-egg incompatibility that allows it to spread and persist in host populations. Using real-time quantitative PCR we found that (i) Wolbachia density is temperature-specific and highest at 26 degrees C; (ii) the order of the abundance of the 3 Wolbachia strains does not vary with temperature changes; (iii) the response of bacterial density to temperature occurs within a single insect generation, during the egg-to-adult developmental period; (iv) in this species, temperature-related changes in Wolbachia density do not influence cytoplasmic incompatibility.

Journal ArticleDOI
TL;DR: There is much to be learned from careful analysis of immuno-regulation in helminth-infected rodents and from an understanding of the immune status of acutely and chronically infected humans.
Abstract: There is unequivocal evidence that parasites influence the immune activity of their hosts, and many of the classical examples of this are drawn from assessment of helminth infections of their mammalian hosts. Thus, helminth infections can impact on the induction or course of other diseases that the host might be subjected to. Epidemiological studies demonstrate that world regions with high rates of helminth infections consistently have reduced incidences of autoimmune and other allergic/inflammatory-type conditions. Here I review and assess the possible ways by which helminth infections can block or modulate concomitant disease processes. There is much to be learned from careful analysis of immuno-regulation in helminth-infected rodents and from an understanding of the immune status of acutely and chronically infected humans. The ultimate reward from this type of investigation will likely be a more comprehensive knowledge of immunity, novel ways to intervene in the immune response to alleviate autoimmune and allergic diseases (growing concerns in economically developed areas), and perhaps the development of helminth therapy for patients suffering from specific inflammatory, autoimmune or allergic disorders.

Journal ArticleDOI
TL;DR: Investigation of the tissue distribution of Neospora, in aborted lambs, showed thatNeospora could not be detected in tissues other than brain and this was in contrast to Toxoplasma where the parasite could be frequently detected in a range of tissues.
Abstract: Neospora caninum and Toxoplasma gondii are closely related intracellular protozoan parasites associated with bovine and ovine abortion respectively. Little is known about the extent of Neospora/Toxoplasma co-infection in naturally infected populations of animals. Using nested PCR techniques, based on primers from the Nc5 region of N. caninum and SAG1 for T. gondii, the prevalence of N. caninum and its co-infection with T. gondii were investigated in populations of Mus domesticus, Rattus norvegicus and aborted lambs (Ovis aries). A low frequency of infection with N. caninum was detected in the Mus domesticus (3%) and Rattus norvegicus (4·4%) populations. A relatively high frequency of infection with N. caninum was detected in the brains of aborted lambs (18·9%). There was no significant relationship between N. caninum and T. gondii co-infection. Investigation of the tissue distribution of Neospora, in aborted lambs, showed that Neospora could not be detected in tissues other than brain and this was in contrast to Toxoplasma where the parasite could be frequently detected in a range of tissues.

Journal ArticleDOI
TL;DR: Within populations, different Drosophila genotypes show wide-ranging variation in their ability to survive infection with the entomopathogenic fungus Beauveria bassiana, and striking divergence in susceptibility has occurred between genotypes from temperate and tropical African locations.
Abstract: Genetic variation in susceptibility to pathogens is a central concern both to evolutionary and medical biologists, and for the implementation of biological control programmes. We have investigated the extent of such variation in Drosophila melanogaster, a major model organism for immunological research. We found that within populations, different Drosophila genotypes show wide-ranging variation in their ability to survive infection with the entomopathogenic fungus Beauveria bassiana. Furthermore, striking divergence in susceptibility has occurred between genotypes from temperate and tropical African locations. We hypothesize that this may have been driven by adaptation to local differences in pathogen exposure or host ecology. Genetic variation within populations may be maintained by temporal or spatial variation in the costs and benefits of pathogen defence. Insect pathogens are employed widely as biological control agents and entomopathogenic fungi are currently being developed for reducing malaria transmission by mosquitoes. Our data highlight the need for concern about resistance evolution to these novel biopesticides in vector populations.

Journal ArticleDOI
TL;DR: Many of the C. elegans peptides are identical or highly similar to those isolated or predicted in parasitic nematodes, suggesting that the function of these peptides is similar across species.
Abstract: Neuropeptides act as chemical signals in the nervous system to modulate behaviour. With the ongoing EST projects and DNA sequence determination of different genomes, the identification of neuropeptide genes has been made easier. Despite the relatively ‘simple’ repertoire of behaviours in the nematode Caenorhabditis elegans, this worm contains a surprisingly large and diverse set of neuropeptide genes. At least 109 genes encoding over 250 potential neuropeptides have been identified in C. elegans; all genes are likely to be expressed and many, if not all, of the predicted peptides are produced. The predicted peptides include: 38 insulin-like peptides, several of which are involved in development and reproductive growth, and over 70 FMRFamide-related peptides, some of which are involved in locomotion, reproduction, and social behaviour. Many of the C. elegans peptides are identical or highly similar to those isolated or predicted in parasitic nematodes, such as Ascaris suum, Haemonchus contortus, Ancylostoma caninum, Heterodera glycines and Meloidogyne arenaria, suggesting that the function of these peptides is similar across species. The challenge for the future is to determine the function of all the genes and individual peptides and to identify the receptors through which the peptides signal.

Journal ArticleDOI
TL;DR: It is demonstrated that similar in vitro efficacy also occurs against a rodent nematode of the large intestine, Trichuris muris, and confirmed that the cysteine proteinases present in the plant extracts are the active principles.
Abstract: Extracts of plants, such as papaya, pineapple and fig, are known to be effective at killing intestinal nematodes that inhabit anterior sites in the small intestine, such as Heligmosomoides polygyrus. In this paper, we demonstrate that similar in vitro efficacy also occurs against a rodent nematode of the large intestine, Trichuris muris, and confirm that the cysteine proteinases present in the plant extracts are the active principles. The mechanism of action of these enzymes involved an attack on the structural proteins of the nematode cuticle, which was similar to that observed with H. polygyrus. However, not all plant cysteine proteinases were equally efficacious because actinidain, from the juice of kiwi fruit, had no detrimental effect on either the motility of the worms or the nematode cuticle. Papaya latex was also shown to significantly reduce both worm burden and egg output of mice infected with adult T. muris, demonstrating that enzyme activity survived passage to the caecum and was not completely inactivated by the acidity of the host's stomach or destroyed by the gastric or pancreatic proteinases. Thus, the cysteine proteinases from plants may be a much-needed alternative to currently available anthelmintic drugs due to their efficacy and novel mode of action against different gastrointestinal nematode species.

Journal ArticleDOI
TL;DR: The Xinjiang Uygur Autonomous Region, multi-ethnic province in northwestern China, is one of the most important foci of human cystic echinococcosis (CE) in the world and two Echinococcus granulosus genotypes are known to infect the intermediate hosts in this area but, to date, the source of the human infection remains unclear.
Abstract: The Xinjiang Uygur Autonomous Region, multi-ethnic province in northwestern China, is one of the most important foci of human cystic echinococcosis (CE) in the world. Two Echinococcus granulosus genotypes (G1 and G6) are known to infect the intermediate hosts in this area but, to date, the source of the human infection remains unclear. The current study aimed to genetically analyse 67 hydatid cysts removed from 47 CE patients for which epidemiological, clinical and serological data were also recorded. Mitochondrial cox 1 gene sequencing suggested that the E. granulosus G1 genotype is the major source of infection (45/47 CE patients). Nevertheless, for the first time in China, 2 patients were found with hydatid cysts of the G6 genotype. In addition, 45 E. granulosus gravid tapeworms, isolated from 13 dogs, were genotyped. The majority of adult worms (42/45) exhibited the G1 genotype, whereas 3 adult tapeworms with the G6 genotype were found in one dog, that also harboured E. granulosus tapeworms of the G1 genotype. This sympatric occurrence of G1 and G6 genotypes of E. granulosus, not only in the same area but also in the same definitive host, raises the interesting question of putative genetic recombination between these E. granulosus genotypes.

Journal ArticleDOI
TL;DR: In this paper, single microbes were successfully isolated from a mixture of micro-organisms obtained from caecal contents of turkeys, using a micromanipulation approach, and cloned parasites were propagated in vitro and maintained through continuous passages multiplying to high numbers.
Abstract: Clonal cultures of Histomonas meleagridis, Tetratrichomonas gallinarum and a Blastocystis sp. were established for the first time. Single microbes were successfully isolated from a mixture of micro-organisms obtained from caecal contents of turkeys, using a micromanipulation approach. The cloned parasites were propagated in vitro and maintained through continuous passages multiplying to high numbers. Identification of the protists was done by morphological investigation identifying various forms of each parasite. PCR and partial sequencing of the small subunit rRNA were used to confirm clonality and to determine the relationship of the cloned parasites with known protozoan parasites. The clonal cultures established by this technique will be useful to gain more insight into the biological repertoire of the organisms. In addition, refined infection experiments in different poultry species can now be performed to elucidate the pathological pathways of the respective protozoa.

Journal ArticleDOI
TL;DR: Although parasite loads and genotypes had strong effects on virulence, inoculation dose, host sex and age at infection were also important, and the need for a detailed understanding of specific host-parasite systems for addressing theory is emphasized.
Abstract: Much evolutionary theory assumes that parasite virulence (i.e. parasite-induced host mortality) is determined by within-host parasite reproduction and by the specific parasite genotypes causing infection. However, many other factors could influence the level of virulence experienced by hosts. We studied the protozoan parasite Ophryocystis elektroscirrha in its host, the monarch butterfly, Danaus plexippus. We exposed monarch larvae to wild-isolated parasites and assessed the effects of within-host replication and parasite genotype on host fitness measures, including pre-adult development time and adult weight and longevity. Per capita replication rates of parasites were high, and infection resulted in high parasite loads. Of all host fitness traits, adult longevity showed the clearest relationship with infection status, and decreased continuously with increasing parasite loads. Parasite genotypes differed in their virulence, and these differences were maintained across ecologically relevant variables, including inoculation dose, host sex and host age at infection. Thus, virulence appears to be a robust genetic parasite trait in this system. Although parasite loads and genotypes had strong effects on virulence, inoculation dose, host sex and age at infection were also important. These results have implications for virulence evolution and emphasize the need for a detailed understanding of specific host-parasite systems for addressing theory.

Journal ArticleDOI
TL;DR: Evidence for parasite impacts in 285 red deer harvested during 1991 and 1992 on the Isle of Rum suggests that further studies of wild populations are justified, in particular where high local host densities exist or alternative ungulate hosts are present, and, where experimental treatments are tractable.
Abstract: Regulation of ungulate populations by parasites relies on establishing a density-dependent relationship between infection and vital demographic rates which may act through the effect of parasites on body condition. We examine evidence for parasite impacts in 285 red deer (Cervus elaphus) harvested during 1991 and 1992 on the Isle of Rum. In the abomasa, prevalence of nematodes was 100% and the most abundant genus observed were Ostertagia species, however, mean intensity of infection was low (less than 1000) relative to other studies. Additional species, also present in low numbers, included Nematodirus spp., Capillaria spp., Cooperia spp., Monieza expanza, Oesophagostomum venulosum and Trichuris ovis. Lungworm (Dictyocaulus spp.) and tissue worm (Elaphostronygylus cervi) larvae were also observed in faecal samples. There was no evidence for acquired immunity to abomasal nematodes. Despite low levels of infection, both adult male and female deer showed significant negative correlation between indices of condition (kidney fat index, dressed carcass weight and larder weight) and intensity of Ostertagia spp. infection. However, there was no evidence that pregnancy rate in females was related to intensity of infection. For calves, there was no relationship between body condition and intensity of infection. The apparent subclinical effects of low-level parasite infection on red deer performance could alternatively be due to animals in poorer nutritional state being more susceptible to infection. Either way the results suggest that further studies of wild populations are justified, in particular where high local host densities exist or alternative ungulate hosts are present, and, where experimental treatments are tractable.

Journal ArticleDOI
TL;DR: This study did not disclose significant polymorphism to separate West African and South American isolates into different species/subspecies and indicate that the complexity of T. vivax in Africa and of the whole subgenus Trypanosoma (Duttonella) might be higher than previously believed.
Abstract: The taxonomic and phylogenetic relationships of Trypanosoma vivax are controversial. It is generally suggested that South American, and East and West African isolates could be classified as subspecies or species allied to T. vivax. This is the first phylogenetic study to compare South American isolates (Brazil and Venezuela) with West/East African T. vivax isolates. Phylogeny using ribosomal sequences positioned all T. vivax isolates tightly together on the periphery of the clade containing all Salivarian trypanosomes. The same branching of isolates within T. vivax clade was observed in all inferred phylogenies using different data sets of sequences (SSU, SSU plus 5.8S or whole ITS rDNA). T. vivax from Brazil, Venezuela and West Africa (Nigeria) were closely related corroborating the West African origin of South American T. vivax, whereas a large genetic distance separated these isolates from the East African isolate (Kenya) analysed. Brazilian isolates from cattle asymptomatic or showing distinct pathology were highly homogeneous. This study did not disclose significant polymorphism to separate West African and South American isolates into different species/subspecies and indicate that the complexity of T. vivax in Africa and of the whole subgenus Trypanosoma (Duttonella) might be higher than previously believed.

Journal ArticleDOI
TL;DR: Questions are raised concerning the previous interpretation of the main nematode species contributing to strongyle egg count in the population, and the contrasting infection patterns of these nematodes species in unmanaged St Kilda Soay sheep compared with domestic sheep in mainland Britain.
Abstract: Every few years a large proportion of the feral sheep on Hirta, St Kilda die due to food shortage. The effects of malnutrition are exacerbated by gastrointestinal nematodes. As found in sheep flocks in mainland Britain, Teladorsagia circumcincta has long been considered the predominant and most pathogenic nematode species in all age classes of Soay sheep. Previous research indicated that intensity of this species showed a negative association with host age and comprised 75% of the entire gastrointestinal burden. Here we present new data that show Trichostrongylus axei and Trichostrongylus vitrinus to be the predominant worm pathogens in young Soay sheep. In the present study, Trichostrongylus spp. burdens declined with host age whereas T. circumcincta actually increased in burden over the first few age classes. Also, male hosts had significantly higher burdens of Trichostrongylus spp. than females, with this genus making up a higher proportion of the strongyle egg producing community in male hosts than female hosts. These new findings raise questions concerning our previous interpretation of the main nematode species contributing to strongyle egg count in the population, and the contrasting infection patterns of these nematode species in unmanaged St Kilda Soay sheep compared with domestic sheep in mainland Britain.

Journal ArticleDOI
TL;DR: Female females of the ladybird Anisosticta novemdecimpunctata produced highly female-biased offspring sex ratios associated with a 50% reduction in egg hatch rate, identified as a male-killing Spiroplasma bacterium.
Abstract: Whilst most animals invest equally in males and females when they reproduce, a variety of vertically transmitted parasites has evolved the ability to distort the offspring sex ratios of their hosts. One such group of parasites are male-killing bacteria. Here we report the discovery of females of the ladybird Anisosticta novemdecimpunctata that produced highly female-biased offspring sex ratios associated with a 50% reduction in egg hatch rate. This trait was maternally transmitted with high efficiency, was antibiotic sensitive and was infectious following experimental haemolymph injection. We identified the cause as a male-killing Spiroplasma bacterium and phylogenetic analysis of rDNA revealed that it belongs to the Spiroplasma ixodetis clade in which other sex ratio distorters lie. We tested the potential for interspecific horizontal transfer by injection from an infected A. novemdecimpunctata line into uninfected individuals of the two-spot ladybird Adalia bipunctata. In this novel host, the bacterium was able to establish infection, transmit vertically and kill male embryos.

Journal ArticleDOI
TL;DR: The role of environmental risk factors in explaining geographical heterogeneity in infection intensity and how these factors can be used to develop a predictive map have important implications for schisosomiasis control programmes in the region.
Abstract: A Bayesian geostatistical model was developed to predict the intensity of infection with Schistosoma mansoni in East Africa. Epidemiological data from purpose-designed and standardized surveys were available for 31,458 schoolchildren (90% aged between 6 and 16 years) from 459 locations across the region and used in combination with remote sensing environmental data to identify factors associated with spatial variation in infection patterns. The geostatistical model explicitly takes into account the highly aggregated distribution of parasite distributions by fitting a negative binomial distribution to the data and accounts for spatial correlation. Results identify the role of environmental risk factors in explaining geographical heterogeneity in infection intensity and show how these factors can be used to develop a predictive map. Such a map has important implications for schisosomiasis control programmes in the region.