scispace - formally typeset
Search or ask a question
JournalISSN: 2167-8359

PeerJ 

PeerJ, Inc.
About: PeerJ is an academic journal published by PeerJ, Inc.. The journal publishes majorly in the area(s): Population & Gene. It has an ISSN identifier of 2167-8359. It is also open access. Over the lifetime, 13545 publications have been published receiving 239030 citations. The journal is also known as: PeerJ Life & Environment.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
18 Oct 2016-PeerJ
TL;DR: VSEARCH is here shown to be more accurate than USEARCH when performing searching, clustering, chimera detection and subsampling, while on a par with US EARCH for paired-ends read merging and dereplication.
Abstract: Background: VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing and preparing metagenomics, genomics and population genomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar, 2010) for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-bit version is freely available for academic use. Methods: When searching nucleotide sequences, VSEARCH uses a fast heuristic based on words shared by the query and target sequences in order to quickly identify similar sequences, a similar strategy is probably used in USEARCH. VSEARCH then performs optimal global sequence alignment of the query against potential target sequences, using full dynamic programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments are computed in parallel using vectorisation and multiple threads. Results: VSEARCH includes most commands for analysing nucleotide sequences available in USEARCH version 7 and several of those available in USEARCH version 8, including searching (exact or based on global alignment), clustering by similarity (using length pre-sorting, abundance pre-sorting or a user-defined order), chimera detection (reference-based or de novo), dereplication (full length or prefix), pairwise alignment, reverse complementation, sorting, and subsampling. VSEARCH also includes commands for FASTQ file processing, i.e., format detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH extends functionality with several new commands and improvements, including shuffling, rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is here shown to be more accurate than USEARCH when performing searching, clustering, chimera detection and subsampling, while on a par with USEARCH for paired-ends read merging. VSEARCH is slower than USEARCH when performing clustering and chimera detection, but significantly faster when performing paired-end reads merging and dereplication. VSEARCH is available at https://github.com/torognes/vsearch under either the BSD 2-clause license or the GNU General Public License version 3.0. Discussion: VSEARCH has been shown to be a fast, accurate and full-fledged alternative to USEARCH. A free and open-source versatile tool for sequence analysis is now available to the metagenomics community.

5,850 citations

Journal ArticleDOI
19 Jun 2014-PeerJ
TL;DR: The advantages of open source to achieve the goals of the scikit-image library are highlighted, and several real-world image processing applications that use scik it-image are showcased.
Abstract: scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

3,903 citations

Journal ArticleDOI
06 Apr 2016-PeerJ
TL;DR: This paper is a tutorial-style introduction to PyMC3, a new open source Probabilistic Programming framework written in Python that uses Theano to compute gradients via automatic dierentiation as well as compile probabilistic programs on-the-fly to C for increased speed.
Abstract: Probabilistic Programming allows for automatic Bayesian inference on user-defined probabilistic models. Recent advances in Markov chain Monte Carlo (MCMC) sampling allow inference on increasingly complex models. This class of MCMC, known as Hamiltonian Monte Carlo, requires gradient information which is often not readily available. PyMC3 is a new open source Probabilistic Programming framework written in Python that uses Theano to compute gradients via automatic dierentiation as well as compile probabilistic programs on-the-fly to C for increased speed. Contrary to other Probabilistic Programming languages, PyMC3 allows model specification directly in Python code. The lack of a domain specific language allows for great flexibility and direct interaction with the model. This paper is a tutorial-style introduction to this software package.

1,969 citations

Journal ArticleDOI
04 Mar 2014-PeerJ
TL;DR: The R package poppr is developed providing unique tools for analysis of data from admixed, clonal, mixed, and/or sexual populations, and functions for genotypic diversity and clone censoring are specific for clonal populations.
Abstract: Many microbial, fungal, or oomcyete populations violate assumptions for population genetic analysis because these populations are clonal, admixed, partially clonal, and/or sexual. Furthermore, few tools exist that are specifically designed for analyzing data from clonal populations, making analysis difficult and haphazard. We developed the R package poppr providing unique tools for analysis of data from admixed, clonal, mixed, and/or sexual populations. Currently, poppr can be used for dominant/codominant and haploid/diploid genetic data. Data can be imported from several formats including GenAlEx formatted text files and can be analyzed on a user-defined hierarchy that includes unlimited levels of subpopulation structure and clone censoring. New functions include calculation of Bruvo’s distance for microsatellites, batch-analysis of the index of association with several indices of genotypic diversity, and graphing including dendrograms with bootstrap support and minimum spanning networks. While functions for genotypic diversity and clone censoring are specific for clonal populations, several functions found in poppr are also valuable to analysis of any populations. A manual with documentation and examples is provided. Poppr is open source and major releases are available on CRAN: http://cran.r-project.org/package=poppr. More supporting documentation and tutorials can be found under ‘resources’ at: http://grunwaldlab.cgrb.oregonstate.edu/.

1,942 citations

Journal ArticleDOI
27 Aug 2015-PeerJ
TL;DR: MetaBAT as mentioned in this paper integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency for accurate metagenome binning, and automatically forms hundreds of high quality genome bins on a very large assembly consisting millions of contigs.
Abstract: Grouping large genomic fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Because of the complex nature of these communities, existing metagenome binning methods often miss a large number of microbial species. In addition, most of the tools are not scalable to large datasets. Here we introduce automated software called MetaBAT that integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency for accurate metagenome binning. MetaBAT outperforms alternative methods in accuracy and computational efficiency on both synthetic and real metagenome datasets. It automatically forms hundreds of high quality genome bins on a very large assembly consisting millions of contigs in a matter of hours on a single node. MetaBAT is open source software and available at https://bitbucket.org/berkeleylab/metabat.

1,406 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202395
20226
20212,405
20202,408
20192,226
20181,967