scispace - formally typeset
Search or ask a question
JournalISSN: 1539-1604

Pharmaceutical Statistics 

Wiley-Blackwell
About: Pharmaceutical Statistics is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Sample size determination & Medicine. It has an ISSN identifier of 1539-1604. Over the lifetime, 1105 publications have been published receiving 18867 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An extensive series of Monte Carlo simulations were conducted to determine the optimal caliper width for estimating differences in means (for continuous outcomes) and risk differences (for binary outcomes).
Abstract: In a study comparing the effects of two treatments, the propensity score is the probability of assignment to one treatment conditional on a subject's measured baseline covariates. Propensity-score matching is increasingly being used to estimate the effects of exposures using observational data. In the most common implementation of propensity-score matching, pairs of treated and untreated subjects are formed whose propensity scores differ by at most a pre-specified amount (the caliper width). There has been a little research into the optimal caliper width. We conducted an extensive series of Monte Carlo simulations to determine the optimal caliper width for estimating differences in means (for continuous outcomes) and risk differences (for binary outcomes). When estimating differences in means or risk differences, we recommend that researchers match on the logit of the propensity score using calipers of width equal to 0.2 of the standard deviation of the logit of the propensity score. When at least some of the covariates were continuous, then either this value, or one close to it, minimized the mean square error of the resultant estimated treatment effect. It also eliminated at least 98% of the bias in the crude estimator, and it resulted in confidence intervals with approximately the correct coverage rates. Furthermore, the empirical type I error rate was approximately correct. When all of the covariates were binary, then the choice of caliper width had a much smaller impact on the performance of estimation of risk differences and differences in means. Copyright © 2010 John Wiley & Sons, Ltd.

2,538 citations

Journal ArticleDOI
TL;DR: When designing a clinical trial an appropriate justification for the sample size should be provided in the protocol, but there are a number of settings when undertaking a pilot trial when there is no prior information to base a sample size on.
Abstract: When designing a clinical trial an appropriate justification for the sample size should be provided in the protocol. However, there are a number of settings when undertaking a pilot trial when there is no prior information to base a sample size on. For such pilot studies the recommendation is a sample size of 12 per group. The justifications for this sample size are based on rationale about feasibility; precision about the mean and variance; and regulatory considerations. The context of the justifications are that future studies will use the information from the pilot in their design. Copyright © 2005 John Wiley & Sons, Ltd.

1,624 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide minimum requirements for having confidence in the accuracy of EC50/IC50 estimates and provide guidelines for deciding when the EC50 and IC50 estimates are reportable.
Abstract: This article provides minimum requirements for having confidence in the accuracy of EC50/IC50 estimates. Two definitions of EC50/IC50s are considered: relative and absolute. The relative EC50/IC50 is the parameter c in the 4-parameter logistic model and is the concentration corresponding to a response midway between the estimates of the lower and upper plateaus. The absolute EC50/IC50 is the response corresponding to the 50% control (the mean of the 0% and 100% assay controls). The guidelines first describe how to decide whether to use the relative EC50/IC50 or the absolute EC50/IC50. Assays for which there is no stable 100% control must use the relative EC50/IC50. Assays having a stable 100% control but for which there may be more than 5% error in the estimate of the 50% control mean should use the relative EC50/IC50. Assays that can be demonstrated to produce an accurate and stable 100% control and less than 5% error in the estimate of the 50% control mean may gain efficiency as well as accuracy by using the absolute EC50/IC50. Next, the guidelines provide rules for deciding when the EC50/IC50 estimates are reportable. The relative EC50/IC50 should only be used if there are at least two assay concentrations beyond the lower and upper bend points. The absolute EC50/IC50 should only be used if there are at least two assay concentrations whose predicted response is less than 50% and two whose predicted response is greater than 50%. A wide range of typical assay conditions are considered in the development of the guidelines.

593 citations

Journal ArticleDOI
TL;DR: This manuscript reviews several methods for historical borrowing, illustrating how key parameters in each method affect borrowing behavior, and then, compares these methods on the basis of mean square error, power and type I error.
Abstract: Clinical trials rarely, if ever, occur in a vacuum. Generally, large amounts of clinical data are available prior to the start of a study, particularly on the current study's control arm. There is obvious appeal in using (i.e., 'borrowing') this information. With historical data providing information on the control arm, more trial resources can be devoted to the novel treatment while retaining accurate estimates of the current control arm parameters. This can result in more accurate point estimates, increased power, and reduced type I error in clinical trials, provided the historical information is sufficiently similar to the current control data. If this assumption of similarity is not satisfied, however, one can acquire increased mean square error of point estimates due to bias and either reduced power or increased type I error depending on the direction of the bias. In this manuscript, we review several methods for historical borrowing, illustrating how key parameters in each method affect borrowing behavior, and then, we compare these methods on the basis of mean square error, power and type I error. We emphasize two main themes. First, we discuss the idea of 'dynamic' (versus 'static') borrowing. Second, we emphasize the decision process involved in determining whether or not to include historical borrowing in terms of the perceived likelihood that the current control arm is sufficiently similar to the historical data. Our goal is to provide a clear review of the key issues involved in historical borrowing and provide a comparison of several methods useful for practitioners.

333 citations

Journal ArticleDOI
Peter W. Lane1
TL;DR: Neither method is capable of dealing on its own with trials involving MNAR drop-out mechanisms, for which sensitivity analysis is needed using more complex methods.
Abstract: This study compares two methods for handling missing data in longitudinal trials: one using the last-observation-carried-forward (LOCF) method and one based on a multivariate or mixed model for repeated measurements (MMRM). Using data sets simulated to match six actual trials, I imposed several drop-out mechanisms, and compared the methods in terms of bias in the treatment difference and power of the treatment comparison. With equal drop-out in Active and Placebo arms, LOCF generally underestimated the treatment effect; but with unequal drop-out, bias could be much larger and in either direction. In contrast, bias with the MMRM method was much smaller; and whereas MMRM rarely caused a difference in power of greater than 20%, LOCF caused a difference in power of greater than 20% in nearly half the simulations. Use of the LOCF method is therefore likely to misrepresent the results of a trial seriously, and so is not a good choice for primary analysis. In contrast, the MMRM method is unlikely to result in serious misinterpretation, unless the drop-out mechanism is missing not at random (MNAR) and there is substantially unequal drop-out. Moreover, MMRM is clearly more reliable and better grounded statistically. Neither method is capable of dealing on its own with trials involving MNAR drop-out mechanisms, for which sensitivity analysis is needed using more complex methods.

252 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202337
202298
2021119
202075
201954
201863