scispace - formally typeset
Search or ask a question

Showing papers in "Pharmacognosy Magazine in 2019"


Journal ArticleDOI
TL;DR: A potential use of CRE for anticancer purposes in food and nutraceutical applications is indicated and has more advantages than pure curcuminoids for industrial applications in terms of using simple, low-cost, and environmentally friendly processes.
Abstract: Background: Curcuminoids, i.e., curcumin, demethoxycurcumin, and bisdemethoxycurcumin are a major active constituent of Curcuma longa L., which possess antioxidant, anti-inflammatory, antitumor, anticancer, and various other biological activities. Objective: To establish a green method for preparation of curcuminoid-rich C. longa extracts (CRE) using microwave-assisted extraction (MAE) together with a simple one-step fractionation and to investigate the anticancer activity of CRE compared with the three marker curcuminoids. Materials and Methods: MAE was used as a green extraction method, and a macroporous resin (Diaion® HP-20) column was used for fractionation of C. longa extract to produce CRE. The sulforhodamine B assay was used to evaluate in vitro anticancer activity of the curcuminoids. Results: The optimal conditions of MAE for extraction of curcuminoids are employing ethanol as the solvent and using three irradiation cycles in a microwave powered at 900 W (one cycle is 3 min power-on and 30 s power-off). The curcuminoid extract was subsequently fractionated on a Diaion® HP-20 column eluted with 55% and 60% v/v ethanol, respectively, to obtain CRE that contained total curcuminoids of 88% w/w. CRE exhibited good anticancer activities against A549, MCF-7, HeLa, and HT-29 cells, with 50% inhibitory concentration values of 5.2, 4.5, 7.5, and 8.3 μg/mL, respectively, which almost equals those of the marker curcuminoids. Conclusion: This study indicated a potential use of CRE for anticancer purposes in food and nutraceutical applications. CRE has more advantages than pure curcuminoids for industrial applications in terms of using simple, low-cost, and environmentally friendly processes.

20 citations


Journal ArticleDOI
TL;DR: In this article, the antioxidant chemical components from A. maurorum root extracts were studied to determine their in vitro antiproliferative and hepatoprotective activities, and the structures of the isolated compounds were identified through the extensive use of nuclear magnetic resonance and mass spectroscopy coupled with correlation to known compounds.
Abstract: Background: Alhagi maurorum, commonly used in folk medicine, has been reported to have several biological activities. Objective: We have studied the antioxidant chemical components from A. maurorum to determine their in vitro antiproliferative and hepatoprotective activities. Materials and Methods: The alcoholic extract of A. maurorum root was subjected to a successive solvent fractionation and various chromatographic techniques guided by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay to isolate their antioxidant active compounds. The structures of the isolated compounds were identified through the extensive use of nuclear magnetic resonance and mass spectroscopy coupled with correlation to known compounds. The antioxidant and cytotoxic activities of the isolated compounds were quantified using DPPH and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. The hepatoprotective activity of each extract and the total flavonoid fraction were assessed quantitatively on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Results: Fourteen flavonoids, including four aglycones (1–4) and ten glycosides (5–14), were isolated. The flavonoid glycosides (6–14) are being reported for the first time to our knowledge. The free aglycones, those of the flavonol type, exhibited strong antioxidant and antiproliferative activities. The flavonoid glycosides exhibited weak cytotoxic activity against the hepatocellular carcinoma cell line. The total flavonoid fraction showed the strongest hepatoprotective activity against CCl4-induced hepatotoxicity. Conclusion: A total of 14 flavonoids were identified from A. maurorum; nine of them were isolated for the first time. Flavonoids were the main chemical group identified from the A. maurorum root extracts, and they are responsible for the hepatoprotective activity. The findings set up a scientific explanation for the folkloric administration of A. maurorum in the treatment of hepatic disorders.

19 citations


Journal ArticleDOI
TL;DR: The molecular determinates of activity of these new scaffolds as anti-MRSA are reported, which would be of great importance to developing new anti- MRSA candidates.
Abstract: Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a resistant staph bacterium to several antibiotics causing several lives-threating diseases such as pneumonia and sepsis. Meswak, Salvadora persica, exhibited promising antimicrobial properties before. Objective: Exploring the anti-MRSA activity of S. persica L. metabolites and its mechanism of action on a molecular level. Materials and Methods: Structure elucidation of the isolated metabolites was carried out by spectroscopic data (one-dimensional and two-dimensional nuclear magnetic resonance). The biological activities of the isolated metabolites against MRSA were evaluated and the molecular mode of action against the dehydrosqualene synthase enzyme have been done. Results: Four compounds have been isolated and identifies to be; apigenin (1), luteolin (2), astragalin (3), and kaempferol-3-O-rhamnoside (4). Compounds 1–4 showed good anti-MRSA activities with IC50 values of 10.3, 11.5, 3.5, and 4.5 μg/mL, respectively. In consistent, astragalin and kaempferol-3 rhamnoside showed close high docking scores. Herein, we are reporting the molecular determinates of activity of these new scaffolds as anti-MRSA, which would be of great importance to developing new anti-MRSA candidates. Abbreviations Used: 1D: One-dimensional; 2D: Two-dimensional; CC: Column chromatography; COSY: Correlations spectroscopy; DMSO: Dimethyl sulfoxide; HMBC: Heteronuclear multiple-bond correlation experiment; HRESIMS: High-resolution electrospray ionization mass spectrometry; HSQC: Heteronuclear single-quantum correlation; IR: Infrared; MRSA: Methicillin-resistant Staphylococcus aureus; NMR: Nuclear magnetic resonance; RP: Reversed phase; TLC: Thin-layer chromatography; UV: Ultraviolet; VLC: Vacuum liquid chromatography.

18 citations


Journal ArticleDOI
TL;DR: In this article, a green approach for the synthesis of silver nanoparticles (DRAgNPs) using D. zibethinus rind aqueous extract and determination of its antimicrobial and cytotoxic effect against brine shrimp was developed.
Abstract: Background: Silver nanoparticles play a profound role in the field of biology and medicine due to its attractive physiochemical properties. Objective: The present work was aimed to develop green approach for the synthesis of silver nanoparticles (DRAgNPs) using D. zibethinus rind aqueous extract and determination of its antimicrobial and cytotoxic effect against brine shrimp. Materials and Methods: Aqueous extract of D. zibethinus rind was used to reduce silver nitrate to silver nanoparticles. The various reaction parameters were optimized, and DRAgNPs were characterized for size, shape, and nature. Results: Surface plasmon resonance confirmed the formation of DRAgNP's with maximum absorbance at λmaxof 418 nm. Scanning transmission electron microscopy and transmission electron microscope images revealed the morphology of the DRAgNPs were spherical with size range of 20 and 60 nm. Atomic force microscopy images confirmed the average particles size of DRAgNPs was to be 55 nm. The stability of the nanoparticles was also confirmed by the zeta potential which was found to be −15.82 mV. X-ray powder diffraction and energy-dispersive X-ray spectroscopy analysis confirmed the nature and the presence of Ag. DRAgNPs showed considerable antimicrobial activity against Salmonella typhimurium, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Staphylococcus haemolyticus, and Bacillus subtilis, and exhibited better cytotoxicity against brine shrimp (LC50 =2.55 mg/mL). Conclusion: Based on the present study, it can be concluded that the green synthesis of silver nanoparticles using D. zibethinus rind is an eco-friendly and inexpensive method, and DRAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor, and nanotechnology in the near future. Abbreviation used: SEM: Scanning transmission electron microscopy; TEM: Transmission electron microscope; AFM: Atomic force microscopy; XRD: X-ray powder diffraction; EDX: Energy-dispersive X-ray spectroscopy.

17 citations


Journal ArticleDOI
TL;DR: It was concluded that DS and IG could serve as a promising source for further investigation to discover new antimicrobial leads and also demonstrated the positive correlation with the carotenoid content.
Abstract: Background: Although there are about 18,500 compounds have been isolated and reported from marine resources, the prominence of drug discovery research on marine microalgae is still very less while comparing to other natural resources. Hence, this investigation was designed, especially on some carotenoid-producing marine microalgae to evaluate their chemotherapeutic efficacies including antibacterial, antifungal, antioxidant, hemolytic, and anthelmintic activities. Objective: The objective of this research is to evaluate the suitability of the selected marine microalgae for biological activities and to perform the identification and quantification of fucoxanthin in their methanol extracts using high-performance liquid chromatography (HPLC)–diode-array detector technique. Materials and Methods: The methanolic extracts of all 10 marine microalgae were screened for antibacterial, antifungal, antioxidant, hemolytic, and anthelmintic activities. The fucoxanthin was identified and quantified by thin-layer chromatography and HPLC techniques, respectively. Results: Among the test microalgae, Isochrysis galbana (IG) showed the presence of the highest concentration of fucoxanthin (5.93 mg/g dry weight) and also exhibited notable antioxidant activities (86%) at 80 mg/mL. In antimicrobial activities, Dunaliella salina (DS) demonstrated the promising antimicrobial activities (minimum inhibitory concentration [MIC]: 40 mg/mL) against Gram-negative bacteria and fungi while Thalassiosira species showed activity (MIC: 40 mg/mL) against Staphylococcus aureus and fungi. It was also noted that all test extracts were resistant to Escherichia coli. In anthelmintic activity against Pheretima posthuma, there are two microalgae, namely IG and Chaetoceros gracilis, exhibited considerable anthelmintic potential (with P

17 citations


Journal ArticleDOI
TL;DR: High-performance liquid chromatography analysis revealed that FDY003 contained various active ingredients known to possess antioxidant activities and represents a potential complementary therapy for cancer due to its antioxidative effects and anticancer activity.
Abstract: Background: FDY003 is a traditional Korean medicine that has been developed as a complementary therapy for cancer. FDY003 contains various herbs such as Lonicera japonica, Artemisia capillaris Thunb., and Cordyceps militaris known to exhibit antioxidant and anticancer activities. Objective: The objective of this is to determine whether FDY003 represents a complementary therapy for colon cancer when it is injected using a syringe. Materials and Methods: High-performance liquid chromatography (HPLC) analysis was performed to determine the active ingredients of FDY003. The effect of FDY003 on the proliferation of Colo205 cells was investigated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antioxidant effects of FDY003 on Colo205 cells were ascertained using oxidative markers such as lipid peroxidation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Markers of apoptosis in Colo205 cells after treatment with FDY003 were also measured. Based on the in vitro results, in vivo experiments were performed using Colo205 cell-induced xenograft mouse cancer model treated with FDY003. Results: HPLC analysis revealed that FDY003 contained various active ingredients known to possess antioxidant activities. The viability of Colo205 cells was decreased by FDY003 in a concentration-dependent manner. Cancer size and weight were significantly decreased in the group treated with FDY003, similar to those in the group treated with anticancer drug irinotecan. The expression of Bcl-2-associated X protein and caspase-3 was increased in cancer tissues derived from the FDY003-treated group. Serum levels of lipid peroxidation and DPPH were also significantly increased in the FDY003-treated group. Conclusion: FDY003 represents a potential complementary therapy for cancer due to its antioxidative effects and anticancer activity.

17 citations


Journal ArticleDOI
TL;DR: The n- butanol fraction from S. nigrum berries showed in vitro and in vivo hepatoprotective activity and can be explored after further investigations as a potent phytopharmaceuticals for the management of liver disorders.
Abstract: Objective: A traditional herb Solanum nigrum L. is well known for the management of different ailments including hepatic disorders. The objective of our study is to identify antioxidant metabolites and bioactive fraction of S. nigrum and to explore their hepatoprotective potential. Materials and Methods: The aerial parts (leaves and berries) of S. nigrum were extracted with hydroethanol- and polarity-based fractionations were performed. Total phenolic (TP), flavonoid content, and thin-layer chromatography (TLC) fingerprints of different extracts were carried out for their quality control and determination of compounds present in them. TLC-based bioautographic assay was carried out to identify the antioxidant metabolites. The hepatoprotective activity of a steroidal glycoalkaloid-enriched fraction of S. nigrum berries was investigated in D-galactosamine (D-GalN)-induced hepatic fibrosis. Hepatic damage was evaluated by assessing enzymatic activities of oxidative markers in serum and liver homogenate and histological study of the liver. Results: The n-butanol fraction of S. nigrum (berries) was found to have the highest value of TP and flavonoids. The treatment of rats with 250 mg/kg crude extract as well as 16 and 25 mg/kg of n- butanol fraction for 10 days was able to normalize the biochemical markers along with liver antioxidative markers in D-GalN treated hepatotoxic rats. The histopathological studies revealed that n- butanol fraction treatment also restored the markers of fibrosis toward a normal level. Conclusion: The n- butanol fraction from S. nigrum berries showed in vitro and in vivo hepatoprotective activity and can be explored after further investigations as a potent phytopharmaceuticals for the management of liver disorders.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the contents of total anthocyanin and cyanidin-3-O-glucoside and their contribution to the antioxidant activities in commonly consumed pigmented plants.
Abstract: Background: Anthocyanin, a subcategory of flavonoid, is a natural water-soluble pigment. There are many plants rich in anthocyanins, and a high intake of anthocyanin food has been shown to have potential beneficial effects on various chronic diseases. Objective: The objective was to evaluate the contents of total anthocyanin and cyanidin-3-O-glucoside (C-3-G) and their contribution to the antioxidant activities in commonly consumed pigmented plants. Materials and Methods: The total anthocyanin in Lonicera caerulea L., Rubus fruticosus L., Ribes nigrum L., Morus alba L., Zea mays L. seed, Z. mays L. cob, Brassica oleracea L., and Dioscorea alata L. was extracted by tissue-smashing extraction method, and then the contents of total anthocyanin (TAC) and C-3-G contents (C-3-GC) in the purified extracts were determined by pH differential method and high-performance liquid chromatography, respectively. Antioxidant activities were assessed by 2,2-diphenyl-1-picrylhydrazyl, ferric-reducing antioxidant power, and total reducing power (TRP) assays. Results: TAC ranged from 97.11 to 320.27 milligrams cyanidin-3-glucoside equivalents per Gram of dry weight. TAC, C-3-GC, and antioxidant activities in most berry extracts were higher than that in vegetables. Z. mays cob showed the similar TAC, C-3-GC, and antioxidant activities to L. caerulea, and the two vegetables were the lowest. The major anthocyanin in the berries and grains was identified as C-3-G. There was a significant positive correlation between antioxidant activity and TAC. Conclusions: The closer the plant color is to black, the higher TAC is, and the stronger its antioxidant activity is. Z. mays cob will be a promising source of anthocyanin. This study provides a theoretical basis for the use of anthocyanin in functional food and further pharmacological research. Abbreviations used: C-3-G: cyanidin-3-O-glucoside; C3GC: cyanidin-3-O-glucoside contents; DPPH: 2, 2-diphenyl-1-picrylhydrazyl; FRAP: Ferric-reducing antioxidant power; HPLC: High-performance liquid chromatography; TAC: Total anthocyanin content; TAE: Total anthocyanin extract; TE: Trolox equivalent; TRP: Total reducing power; TPTZ: 1,3,5-tri (2-pyridyl)-2,4,6-triazine; TSE: Tissue-smashing extraction.

16 citations


Journal ArticleDOI
TL;DR: This study has documented important information on medicinal plants used by people, traditional healers, and herbalists of Seymour region in the Eastern Cape Province of South Africa to treat various ailments.
Abstract: Introduction: Medicinal plants have been used for the treatment of both infectious and noninfectious diseases by the majority of the world's population for many years. The low socioeconomic standing of Eastern Cape population suggests that the majority of people use traditional methods of health care. Many of the rural communities in this province have no access to Western medical health care and rely on traditional medicine for their primary health-care needs. Materials and Methods: An ethnobotanical survey was conducted from February 2013 to December 2015 to investigate the use of medicinal plants by the people of Seymour in the Eastern Cape Province of South Africa. Information was gathered from nine traditional healers, seven herbalists, and 18 elderly villagers. Results: The information collected revealed six ailment categories that were treated with a wide range of medicinal plants. A total of 50 plant species belonging to 29 families were reported to be used in the treatment of various ailments. Members of the family Asteraceae, Euphorbiaceae, Fabaceae, and Rutaceae had the highest number of species used in traditional healing. Leaves were reported to be the most frequently used plant part, followed by roots, bark, stem, and then corms and rhizomes. The survey indicated that the most prominent method of herbal administration used is orally via extracts that were obtained by boiling, either as a decoction or concoction. Conclusions: This study has documented important information on medicinal plants used by people, traditional healers, and herbalists of Seymour region in the Eastern Cape Province of South Africa to treat various ailments. Abbreviations used: ACE: Angiotensin-converting enzyme; CNS: Central nervous system; ENT: Ear, nose and throat; HIV: Human Immunodeficiency virus; ICF: Informant consensus factor; Nur: Total number of use report; Nt: Number of taxa; TB: Tuberculosis

15 citations


Journal ArticleDOI
TL;DR: In this paper, a chamuangone-enriched Garcinia cowa leaf extract with rice bran oil was obtained using microwave assisted extraction and high-performance liquid chromatography.
Abstract: Background: Chamuangone has been isolated from Garcinia cowa leaves and exhibited various biological activities, i.e., antibacterial, anti-Leishmania major, and cytotoxic activity against cancer cells. n-Hexane has been reported to be the most suitable solvent for extraction of chamuangone. Objectives: Some vegetable oils were determined as an alternative green solvent for extraction of an anticancer compound, chamuangone from G. cowa leaf. The chamuangone-enriched extract was standardized and evaluated for cytotoxic activity against human cancer cell lines. Materials and Methods: Microwave-assisted extraction and high-performance liquid chromatography were used for extraction and standardization. The cytotoxic activity was determined using a sulforhodamine B assay. Results: The chamuangone-enriched extract was obtained using rice bran oil as the alternative green solvent and standardized to contain 1.97 mg/mL chamuangone. The extract exhibited cytotoxic activity against human lung adenocarcinoma, human breast adenocarcinoma, and human colorectal adenocarcinoma cell lines, with IC50 values of 15.3, 15.9, and 12.8 μg/mL, respectively, but was nontoxic to human gingival fibroblasts, a normal cell line, at a concentration of 50 μg/mL. Moreover, the extract contained several natural antioxidants, including α-tocopherol (76.7 mg/100 g), γ-oryzanol (cycloartenol ferulate: 67.1 μg/mL and 24-methylenecycloartanol ferulate: 85.6 μg/mL), and antioxidant capacity determined as ascorbic acid (258.7-mM ascorbic acid equivalent per gram). Conclusion: Based on these findings, the chamuangone-enriched extract may be considered as a novel functional food in cancer chemopreventive action. Abbreviations used: AAE/g: Ascorbic acid equivalent per gram; CEO: Chamuangone-enriched Garcinia cowa leaf extract with rice bran oil; DMEM: Dulbecco's Modified Eagle Medium; FBS: Fetal bovine serum; HGF: Human gingival fibroblasts; HPLC: High-performance liquid chromatography; IC50:50% Inhibitory concentration; MAE: Microwave-assisted extraction; MHz: Megahertz; MUFAs: Monounsaturated fatty acids; NMR: Nuclear magnetic resonance; ODS: Octadecylsilane; PUFAs Polyunsaturated fatty acids; SD: Standard deviation; SFAs: Saturated fatty acids; SRB: Sulforhodamine B; TCA: Trichloroacetic acid; UFAs: Unsaturated fatty acids; UV: Ultraviolet; W: Watt.

13 citations


Journal ArticleDOI
TL;DR: The optimized IR-AE technique has shown to be a rapid and efficient extraction method with SL-IR showing superiority in controlling gestational diabetes for pregnant groups coupled with high safety profile on the offspring.
Abstract: Background: Saussurea lappa (S. lappa, Asteraceae) have immunomodulatory effects and used in the management of many metabolic disorders. Gestational diabetes is one of the metabolic disorders affecting globally one in seven pregnant women. Objectives: The aim of the current study is to optimize an infrared-assisted extraction (IR-AE) method for S. lappa bioactive constituents, phytochemically investigate its content, isolate its most active constituent, and to assess their biological effects against gestational diabetes. Materials and Methods: To optimize IR-AE conditions, four main factors were studied including solvent concentration, extraction time, powder size, and IR power in the yielded extract (SL-IR). Reversed-phase high-performance liquid chromatography coupled with bio-guided fractionation and isolation procedures using 1H and 13C NMR method were utilized. Solid–liquid (SL-SLE) and ultrasound (SL-US) extraction methods were also done. Results: The optimal IR-AE extraction conditions were found to be 20% aqueous phase concentration, 60-min extraction time, 70 mesh powder size, and 70 W IR power. Phytochemically, four major lactones were identified, including costunolide, dehydrocostuslactone, isoalantolactone, and alantolactone (ATL). ATL was the most active lactone. SL-IR, SL-US, SL-SLE, or ATL showed a significant (P Abbreviations used: IR-AE: Infrared-assisted extraction; SL: Saussurea lappa, S. lappa; SL-IR: Saussurea lappa infrared extract; SL-US: Saussurea lappa ultrasound extract; SL-SLE: Saussurea lappa solid–liquid extract; ATL: Alantolactone; NDC: Nondiabetic control; DC: Diabetic control; MTF: Metformin; TBARS: Thiobarbituric acid; GSH: Reduced glutathione; CAT: Catalase; APA: Adequate for pregnancy age; LPA: Large for pregnancy age; SPA: Small for pregnancy age.

Journal ArticleDOI
TL;DR: Scientific evidence is provided for the anti-inflammatory, anti-hyperuricemic and antioxidant effects of L. strychnifolium leaves extract in vitro and in vivo, suggesting the possibility of this plant to treat gout.
Abstract: Background: There have been anecdotal reports from Thai hyperuricemic patients that the leaves of Lysiphyllum strychnifolium could reduce plasma uric acid level and relieve inflammation of gout. However, no research to support these effects has been conducted. Objectives: This study was aimed to evaluate the anti-inflammatory and hypouricemic effects of L. strychnifolium leaves extract and to investigate the pharmacological mechanisms of these effects. Materials and Methods: The anti-inflammatory effect of L. strychnifolium was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Effects of L. strychnifolium on xanthine oxidase (XO) were examined in vitro and in vivo using potassium oxonate (PO)-induced hyperuricemic mice. In addition, the antioxidant activity of L. strychnifolium was determined. Results: L. strychnifolium significantly reduced the mRNA expression of cyclooxygenase-II, inducible nitric oxide synthase, transforming growth factor-β, and tumor necrosis factor-α in LPS-stimulated RAW 264.7 cells (P Abbreviations used: ABTS: 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); COX-II: Cyclooxygenase-II; DMEM: Dulbecco's modified Eagle medium; DPPH: 2,2-Diphenyl-1-picrylhydrazyl; FBS: Fetal bovine serum; FRAP: Ferric reducing antioxidant power; GAE: Gallic acid equivalence; GLUT9: Glucose transporter 9; iNOS: Inducible nitric oxide synthase; LPS: Lipopolysaccharide; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; PO: Potassium oxonate; P/S: Penicillin/streptomycin; QE: Quercetin equivalent; SLC22A12: Solute carrier family 22 member 12; TNF-α: Tumor necrosis factor-α; TGF-β: Transforming growth factor-β; URAT: Urate-anion transporter 1; XO: Xanthine oxidase.

Journal ArticleDOI
TL;DR: In this article, a new aminobenzamide derivative, namely fusaribenzamide A (2), and four known metabolites: (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (1), adenosine (3), p-hydroxyacetophenone (4), and tyrosol (5) were isolated.
Abstract: Background: Endophytic fungi attracted attention as a prolific source of bioactive natural products with a potent pharmaceutical activity and unique structure. Objective: The main goal of the study is to separate and identify the bioactive constituents from the endophytic fungus Fusarium sp. as well as to evaluate the antimicrobial of the new metabolites. Materials and Methods: The fungus was cultured on a rice medium, and then, the cultures were extracted with ethyl acetate (EtOAc). The EtOAc extract was chromatographed utilizing different chromatographic methods to give five metabolites. The structural determination of these metabolites was carried out by the analyses of various spectroscopic data, in addition to comparison with the formerly reported data. The antifungal and antibacterial potentials were evaluated toward various microbial strains using disc diffusion assay. Results: A new aminobenzamide derivative, namely fusaribenzamide A (2), and four known metabolites: (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (1), adenosine (3), p-hydroxyacetophenone (4), and tyrosol (5) were isolated. Fusaribenzamide A (2) possessed significant antifungal activity toward Candida albicans with minimum inhibitory concentration (MIC) value 11.9 μg/disc compared to nystatin (MIC 4.9 μg/disc). Conclusion: The endophytic fungus Fusarium sp. could be considered as a wealthy pool for the isolation of aminobenzamide derivatives. Fusaribenzamide A may be a candidate for the discovery of a promising antifungal agent. Abbreviations Used: CC: Column chromatography; CHCl3: Chloroform; COSY: Correlations spectroscopy; DBE: double bond equivalent; EtOAc: Ethyl acetate; DMSO: Dimethyl sulfoxide; H2SO4: Sulfuric acid; HMBC: Heteronuclear multiple bond correlation experiment; HRMS: High-resolution mass spectrometry; HRESIMS: High-resolution electrospray ionization mass spectrometry; HSQC: Heteronuclear single quantum correlation; IR: Infrared; IZD: Inhibition zone diameter; KBr: Potassium bromide; LTQ: Linear trap quadrupole; MeOH; Methanol; MIC: Minimum inhibitory concentration; NMR: Nuclear magnetic resonance; RP: Reversed phase; SiO2: Silica gel; TLC: Thin-layer chromatography; UV: Ultraviolet; VLC: Vacuum liquid chromatography.

Journal ArticleDOI
TL;DR: The study showed that native species to the Caatinga used by the local population to treat inflammatory disorders have good photoprotective potential and could be used for pharmaceutical preparations to this end.
Abstract: Background: Exposure to ultraviolet (UV) radiation may cause photoaging, unsightly marks, or dangerous lesions, such as carcinomas and/or melanomas. Sun filters are substances capable of absorbing, reflecting, or refracting UV radiation and thus protect the skin from direct exposure to sunlight. The current trend in the cosmetics industry, in Brazil, is to rationally explore local biodiversity as a way of developing products of natural origin, especially derived from plants. Objective: The present study aims to determine the in vitro sun protection factor (SPF) of 15 species from the Caatinga region used in popular medicine as anti-inflammatories. Materials and Methods: Samples of duly identified plant species were dried and ground and hydroethanolic extracts were obtained (80:20). Spectrophotometric analyses were carried out to determine the SPF, antioxidant activity, and quantification of secondary metabolites. In vitro calculation of SPF was based on the method developed by Mansur. Results: Erythrina velutina Willd. had the best SPF of 9.71 ± 1.29 at a concentration of 100 mg/L. Conclusion: The study showed that native species to the Caatinga used by the local population to treat inflammatory disorders have good photoprotective potential and could be used for pharmaceutical preparations to this end. Abbreviations used: ANOVA: Analysis of variance; AOA: Antioxidant activity; CC: Coumarin content; CE: Coumarin equivalent; DNA: Deoxyribonucleic acid; DPPH: 2,2-diphenyl-1-picrylhydrazyl; IC50: Inhibitory concentration 50%; LEA-UFPE: Laboratory of Ecology and Evolution of Social-ecological Systems-Federal University of Pernambuco; RE: Rutin equivalent; SPF: Sun protection factor; TAE: Tannic acid equivalent; TFC: Total flavonoid content; TPC: Total phenolic content; TTC: Total tannin content; UFPE: Federal University of Pernambuco; UFRPE: Federal Rural University of Pernambuco; UV: Ultraviolet; UVA: Ultraviolet type A; UVB: Ultraviolet type B; UV-VIS: Ultraviolet-visible

Journal ArticleDOI
TL;DR: Spirulina significantly reduced the effect of STZ on the liver and kidney at the organ level and on antioxidant enzymes at the cellular level and therefore is a potential supplement for diabetic patients.
Abstract: Objective: This study aims to evaluate the effect of spirulina, a biomass produced by cyanobacteria, on the level of plasma glucose, oxidative stress, and other biochemical parameters in diabetes in streptozocin (STZ) 50 mg/kg-induced diabetic-induced rat model. Materials and Methods: The in vitro antioxidant property of spirulina was assessed by measuring its ability to scavenge free radicals and reactive oxygen species (ROS) such as superoxide anion, nitric oxide, and hydroxyl and lipid peroxyl radicals. The inhibition of diabetic link enzymes alpha-glucosidase, alpha-amylase, and dipeptidyl peptidase-4 inhibitor (DPP-IV) were tested in vitro. Thirty female Sprague-Dawley rats weighing 150–250 g were divided into five groups: normal, diabetes (negative control), metformin in single dose of 300 mg/kg, spirulina in a single dose of 300 mg/kg and spirulina combined with metformin at dose of 150 mg/kg, and spirulina at dose of 150 mg/kg (spirulina + metformin 300 mg/kg) (n = 6). After an acclimation period of 2 weeks, diabetes was induced in the rats through STZ intraperitoneal injection. Spirulina (300 mg/kg) was dissolved in water and was administered orally for 12 weeks, and the rats' that plasma glucose level reached ≥11 mmol/L after 12 weeks treatment was selected for the study. After the treatment, the blood and liver were used for the evaluation of antioxidant enzyme activities, lipid, liver, kidney, and hematology profile. Results: Spirulina was able to reduce hyperglycemia-induced oxidative stress by reducing plasma glucose levels and scavenging or reducing the production of ROS and free radicals. It was also able to inhibit the activities of the alpha-glucosidase, alpha-amylase, and DPP-IV. With this, it significantly reduced the effect of STZ on the liver and kidney at the organ level and on antioxidant enzymes at the cellular level. Conclusion: Spirulina is able to reduce the lipid, liver, and kidney disease markers in STZ-induced rats and therefore is a potential supplement for diabetic patients. The antidiabetic effect of spirulina may be based on the antioxidant effect of the biomass as a whole, or it is based on specific bioactive components present in spirulina.

Journal ArticleDOI
TL;DR: The reduction of intracellular ROS level by N-acetylcysteine showed that the apoptosis and autophagy induced by CNEAF is ROS dependent, suggesting involvement of intrinsic and extrinsic pathways.
Abstract: Background: Clinacanthus nutans (Burm.f.) Lindau is a medicinal herb that is conventionally used for the treatment of skin rashes, insect bites, snake bites, diabetes, and cancer. Objective: Our study aims to investigate the apoptosis- and autophagy-inducing effects of C. nutans in HCT116 human colorectal cancer cells. Materials and Methods: Cytotoxicity of ethanol extract, hexane, ethyl acetate, and aqueous fractions of C. nutans against various cancer cell lines was determined via MTT assay. Apoptosis assays including annexin V, mito-ID, and Hoechst 33342/propidium iodide staining were carried out. The level of intracellular reactive oxidative species was determined using flow cytometry. Western blot analysis was carried out to assess the protein expression in C. nutans ethyl acetate fraction (CNEAF)-treated HCT116 cells. Results: CNEAF was found to exert the strongest cytotoxic effect against HCT116 cells (IC50 =48.81 ± 1.44 μg/mL). CNEAF-induced apoptosis was evidenced by nuclear morphological alterations, phosphatidylserine externalization, dissipation of mitochondrial membrane potential, and elevation of intracellular reactive oxygen species (ROS) level. Dissipation of mitochondrial membrane potential was attributed to the upregulation of Bax and Bak accompanied by downregulation of Bcl-2 and Bcl-xL, leading to caspase-3, -9, -8, and -10 activation. Interestingly, an upregulation of death receptor 5 was detected, suggesting involvement of intrinsic and extrinsic pathways. In addition, the occurrence of autophagy by CNEAF was supported by LC-3 accumulation and p62 degradation. The reduction of intracellular ROS level by N-acetylcysteine showed that the apoptosis and autophagy induced by CNEAF is ROS dependent. Conclusions: CNEAF induced ROS-dependent apoptosis and autophagy on HCT116 cells. Abbreviations used: CNEAF: Clinacanthus nutans ethyl acetate fraction; ROS: Reactive oxygen species; PS: Phosphatidylserine; NAC:N-Acetyl Cysteine; Bax: Bcl-2-associated X; Bcl-2: B-cell lymphoma 2; DR-5: Death receptor 5 Bak: Bcl-2-antagonist/killer 1; Bcl-xL: B-cell lymphoma-extra large.

Journal ArticleDOI
TL;DR: The results suggest that the control of postprandial hyperglycemia may be mediated by the regulation of absorption of glucose and inhibition of disaccharide digestion such as sucrose and lactose.
Abstract: Background: Diabetes mellitus (DM) is a chronic disease characterized by high blood glucose levels resulting from insulin resistance or inadequate insulin secretion. In the world, DM is one of the most frequent non-contagious diseases that affect more than 371 million people. Objective: This study aimed to evaluate the antihyperglycemic properties of the ethanol extract, subsequent fractions, and farnesol obtained from the leaves of Annona diversifolia on alloxan-induced diabetic and normal mice. Materials and Methods: Bioassay-guided fractionation of the ethanol extract of the leaves of A. diversifolia (EELAd) was performed on alloxan-induced Type 2 diabetic and normoglycemic (NM) mice. Oral glucose tolerance test (OGTT), oral sucrose tolerance test (OSTT), and oral lactose tolerance test (OLTT) were performed in fast NM mice (FNM). Results: The EELAd, CHCl3 fraction, and farnesol induced a significant reduction of postprandial hyperglycemia in acute and subchronic tests using AITD mice. When EELAd, CHCl3 fraction, and farnesol were tested on NM in subchronic assays, these did not affect glycemic levels. In the case of acute test on NM, only CHCl3 fraction induced a hypoglycemic effect at 2 h after the treatment. OLTT and OSTT showed that the EELAd, CHCl3 fraction, and farnesol induced a significant reduction of hyperglycemia levels in FNM at 2 h after a lactose or sucrose load comparable to acarbose. In the case of OGTT was observed a significant reduction of hyperglycemia levels in FNM mice at 2 h after a glucose load comparable to canagliflozin. Conclusion: The EELAd and farnesol induced a significant reduction of postprandial hyperglycemia on AITD mice in acute and subchronic assays. Our results suggest that the control of postprandial hyperglycemia may be mediated by the regulation of absorption of glucose and inhibition of disaccharide digestion such as sucrose and lactose. Finally, the results explained the use of A. diversifolia in Mexican traditional medicine as an antihyperglycemic agent.

Journal ArticleDOI
TL;DR: Results suggest that P. dactylifera extract has promising anticancer potential and OA could be the compound contributing to cytotoxicity.
Abstract: Background: Phoenix dactylifera (Palmacea), known as date palm is a widespread economical plant in the Middle Eastern. The dietary fiber in P. dactylifera seeds has important therapeutic use in medical condition such as diabetes, obesity, hypertension, colorectal, and prostate cancers. Objectives: The objective is to isolate, characterize the major bioactive components and evaluate the cytotoxic activity of extract and isolated pure compound of P. dactylifera. Materials and Methods: P. dactylifera extract (DE) was obtained by maceration. The pure compound, identified as oleic acid (OA) was isolated by column chromatography. Cytotoxicity assessment was done by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and morphological alterations in HepG2, A-549, and MCF-7 cells and bioactive compounds were evaluated by gas chromatography/mass spectrometry. Results: The DE showed a dose-dependent cytotoxicity in all the testes cell lines. The cell viability at doses of 250, 500, and 1000 μg/ml of DE was found as 87%, 75%, and 48% in HepG2; 95%, 85%, and 78% in A-549; and 77%, 51%, and 35% in MCF-7 cells, respectively. The GCMS analysis indicated the presence of 37 compounds. The fatty acids and esters, fatty alcohols, and steroid ester were predominant in the DE. The IC50 value of isolated pure compound (OA) was determined at 735.2 μg/ml in HepG2, 909.1 μg/ml in A549, and 675.6 μg/ml in MCF-7 cells. Conclusion: These results suggest that DE has promising anticancer potential and OA could be the compound contributing to cytotoxicity.

Journal ArticleDOI
TL;DR: It is demonstrated that G. foliifera induced apoptosis in HepG2 cells through activation of p53 and hoechst nuclear staining further confirms the nuclear chromatin condensation.
Abstract: Background: Hepatocellular carcinoma is one of the most common types of malignancy and causes significant morbidity and mortality worldwide. Gracilaria foliifera (Forssk.) Borgesen, a brown marine alga, is shown to have growth inhibitory potential against various cancer cell lines other than human hepatoma HepG2 cells. Objective: To investigate the cytotoxic potentials of G. foliifera in HepG2 cells. Materials and Methods: HepG2 cells were fed with culture medium supplemented with different concentrations of ethanolic extract of G. foliifera (20, 40, and 80 μg/mL). After 24 h of treatment, the cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Induction of early apoptosis was investigated by annexin V-fluorescein isothiocyanate immunofluorescence. Induction of late apoptosis and necroptosis was investigated by annexin V and propidium iodide (PI) staining. Nuclear chromatin condensation was evaluated by Hoechst staining. p53 protein expression was analyzed using Western blotting. Results: G. foliifera treatment in HepG2 cells caused a significant cytotoxic effect. Phosphatidylserine translocation confirms the induction of early apoptosis. Analysis of late apoptosis using annexin V/PI staining showed that the percentage of apoptotic cells was increased in a concentration-dependent manner. Hoechst nuclear staining further confirms the nuclear chromatin condensation. G. foliifera treatment also induced the tumor suppressor p53 protein expressions. Conclusion: The present study demonstrated that G. foliifera induced apoptosis in HepG2 cells through activation of p53. Abbreviations used: HCC: Hepatocellular carcinoma; DMEM: Dulbecco's minimum essential medium; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NCCS: The National Center for Cell Science; FBS: Fetal bovine serum; PI: Propidium iodide; PS: Phosphatidylserine.

Journal ArticleDOI
TL;DR: In this article, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) method coupled with statistical approach was developed.
Abstract: Background: In China, rhizome of Curcuma wenyujin (CW) is used to improve blood stasis syndrome-related diseases for many years. Nonsteamed, steamed, and boiled with vinegar rhizomes of CW can be used as three different traditional Chinese medicine s, named as Pian-Jiang-Huang (PJH), Sheng-E-Zhu (SEZ), and Cu-E-Zhu (CEZ), respectively. After processing, the therapeutic effects have changed. Objective: In order to illustrate the effective substance of the three kinds of rhizome of CW, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) method coupled with statistical approach was developed. Materials and Methods: Fresh rhizomes of CW were processed into PJH, SEZ, and CEZ according to Chinese pharmacopoeia 2015. UPLC-Q/TOF-MS coupled with chemometric analysis was applied to compare the differences in chemical profiles of the three kinds of rhizome of CW. Results: In this study, 21 compositions in the rhizome of CW were identified. The one-way ANOVA of relative intensities of the 21 compositions was processed by SPSS software version 20.0. The column superposed graph of the relative intensities of 21 components shows that the total relative intensities of the 21 components in SEZ are the topmost and that of PJH is about the same as CEZ, but the proportion of each component is quite differ from each sample. Principal component analysis and orthogonal partial least squares discrimination analysis were processed by Simca-p14.1 software. Finally, five ions including curcumenone, curcumol, curzerenone, furanodiene, and germacrone were discovered to be the Q-Makers of the three kinds of rhizome of CW. Conclusion: This study provides a reliable research basis for the clinical application of the three kinds of rhizome of CW. Abbreviations used: PJH: Pian-Jiang-Huang; SEZ: Sheng-Er-Zhu; CEZ: Cu-Er-Zhu; CW: Curcuma wenyujin; PCA: Principal component analysis; OPLS-DA: Orthogonal partial least squares discrimination analysis; RT: Retention time; TCM: Traditional Chinese medicine; TIC: Total ion chromatogram; QC: Quality control; RSD: Relative standard deviation.

Journal ArticleDOI
TL;DR: CAFE is an anti-adipogenic and anti-lipolytic agent which inhibits adipocyte differentiation by downregulating expression of key adipogenic genes.
Abstract: Background: Phytoextracts, due to its complex nature of formulations yet little or no side effects, have been pursued as alternative medicine for the treatment of complex metabolic disorders such as obesity. One of the appealing strategies to achieve this is the modulation of adipocyte development and function with the treatment of phytoextracts. The current study explored the activity of Terminalia chebula fruit, a component of Ayurveda formulation “Triphala” on these aspects of adipogenesis. Materials and Methods: The effect of T. chebula aqueous fruit extract (CAFE) on the process of adipocyte development and function was investigated. To test the effect of CAFE on adipocyte development, 3T3-L1 preadipocytes were differentiated in the presence and absence of CAFE followed by estimation of lipid content and expression of adipogenic genes. To test its effect on adipocyte function, mature 3T3-L1 adipocytes were treated with the extract followed by estimation of lipolysis. Results: Treatment of 3T3-L1 preadipocytes with this extract had efficiently inhibited differentiation and lipid accumulation in these cells. Gene expression of key adipogenic regulators, peroxisome proliferative-activated receptor γ and C/CAAT enhancer-binding protein α, was suppressed due to the treatment with CAFE. Preadipocytes exposed to CAFE also showed suppressed expression of important adipogenic effector genes such as perilipin 1 and fatty acid synthase. Treatment of differentiated adipocytes with CAFE did not affect total lipid contents of the cells. However, CAFE treatment reduced lipolysis to a small extent. Conclusion: CAFE is an anti-adipogenic and anti-lipolytic agent which inhibits adipocyte differentiation by downregulating expression of key adipogenic genes.

Journal ArticleDOI
TL;DR: In this article, the authors developed a robust optimized microwave-based extraction protocol for improved yield of phenolics, flavonoids, and triterpenoids in Centella asiatica leaves.
Abstract: Introduction: A novel green approach of microwave-based extraction of botanicals for improved yield of bioactives has been investigated. In this regard, leaves of Centella asiatica which has a rich history of ethomedicinal use were chosen. Objective: The aim of this study is to develop a robust optimized microwave-based extraction protocol for improved yield of phenolics, flavonoids, and triterpenoids principles. Materials and Methods: Microwave power and extraction time were critically optimized along with the effect of moisture content through sample pretreatment. Effect of optimized operating conditions on the biological integrity of the extract and on the extraction of other nutraceutical principles was also evaluated. Results were compared to traditional extraction methods. Results: The final optimum extraction conditions were 50% microwave power, 6-min irradiation time, and 54% moisture content for maximum yield of phenolics and triterpenoids, whereas for flavonoids, optimum microwave power was 40% with other conditions remaining same. The proposed method was found to be three-fold better than 36 h of Soxhlet extraction and produced 200 times lesser carbon load than Soxhlet. Improved yield of other nutraceutical principles with better anti-oxidant activity was recorded for the proposed method. Conclusion: Switching to such greener technology is now the need of the hour. This research is a sincere effort to showcase the potential of green chemistry in the herbal drug industry.

Journal ArticleDOI
TL;DR: In this article, Nitzschia palea extracts showed antioxidant, macromolecular damage prevention, and antihemolytic properties, which can be used to isolate pharmacologically active metabolites using advanced chromatographic techniques.
Abstract: Background: Nitzschia palea is a freshwater diatom species (Bacillariophyceae), is easy to cultivate, and is a primary producer of organic matters in aquatic environments. Materials and Methods: In this study, proximate composition in axenic culture of N. palea was determined, phenolic content and volatile compounds were determined for methanol and ethyl acetate extracts. Both the extracts were evaluated for eight different in vitro antioxidant and free radical scavenging activities. Macromolecular damage prevention properties were determined by electrophoretic methods, and antihemolytic activity was validated by lactate dehydrogenase assay, atomic force microscope, and scanning electron microscope image analysis. Results: Both the extracts showed antioxidant, macromolecular damage prevention, and antihemolytic properties. Among the two extracts, ethyl acetate extract showed high activity compared to methanol extract. Based on this result, ethyl acetate extract was evaluated for in vitro anti-inflammatory properties using RAW 264.7 cells. The extract showed IC50 value of 50.73 μg/mL and inhibition of inflammatory cytokines such as nitric oxide, tumor necrosis factor-alpha, and prostaglandin E2. The observed activity was correlated with identified important metabolites such as butyl isobutyl phthalate, pristane, and squalene of methanol extracts. Similar co-relation was observed for 7,9-di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione, methyl palmitate, hentriacontane, and dibutyl phthalate were of ethyl acetate extract. Conclusion: The study concludes that N. palea has potentiality to isolate pharmacologically active metabolites using advanced chromatographic techniques, which can be useful in combating oxidative stress-related inflammatory diseases.

Journal ArticleDOI
Yu Xiaofeng1, Zhao Shuang1, Zhao Li1, Wang Dan1, Fan Xiaoman1, Ouyang Zhen1 
TL;DR: Wang et al. as mentioned in this paper investigated the effect of frost on the accumulation of flavonoids and antioxidant activities of mulberry leaves and found that there was a significantly and positively correlation between antioxidant activities and content of five flavonol glycosides.
Abstract: Background: Both Pharmacopoeia of the People's Republic of China and the ancient Chinese herbal formulas recorded that mulberry leaves collected after frost had good quality. However, the reason has not yet been fully elucidated. Objective: We investigated the effect of frost on the accumulation of flavonoids and antioxidant activities of mulberry leaves. Materials and Methods: Liquid chromatography-mass spectrometry and high-performance liquid chromatography were used to analyze chemical components and determine the content of five flavonol glycosides from mulberry leaves collected before and after frost, respectively. Antioxidant activities of the same mulberry leaves were evaluated by total antioxidant capacity (TAC), Fe2+ equivalent (FeE), reducing power (RP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging assay. Results: Ten compounds were identified as flavonol glycosides exception of chlorogenic acid. Quantitative analysis showed that content of isoquercitrin, astragalin, and kaempferol-3-O-(6''-acetyl)-β-D-glucopyranoside reached a maximum of 3.05 mg/g, 0.70 mg/g, and 0.69 mg/g after Frost's Descent, respectively. Moreover, the lowest value of flavonol glycosides appeared in August. The antioxidant activities were also found to have the same tendency. The maximum value of TAC, FeE, RP, DPPH and ABTS were 64.3 rutin equivalent (RE) mg/g, 46.2 RE mg/g, 31.3 RE mg/g, 22.5 RE mg/g and 26.7 RE mg/g, respectively, in November. They were 1.4 times, 1.4 times, 1.6 times, 1.6 times, and 1.9 times of the minimum values, respectively, in August. There was a significantly and positively correlation between antioxidant activities and content of flavonol glycosides (P

Journal ArticleDOI
TL;DR: A new triterpene fatty acid ester, undulaterpene A, and four known metabolites from P. undulata growing in Saudi Arabia were identified, and the new compound showed moderate cytotoxic potential against hormone-dependent breast carcinoma cell line (MCF7), colon carcinoma Cell line (HCT116), and lung carcinomacell line (A549) cancer cell lines.
Abstract: Background: Natural products display a remarkable role not only in the synthesis, design, and discovery of new drugs but also as the most prominent source of innovative drugs and bioactive substances. Genus Pulicaria (Asteraceae) includes about 100 species that are widely distributed in Europe, Asia, and Africa. Objective: In this work, the chemical investigation of Pulicaria undulata aerial parts was performed. In addition, the cytotoxic activity of the isolated metabolites was estimated toward various cell lines. Materials and Methods: Plant extract was subjected to fractionation and different column chromatography to isolate the biometabolites. Their structures were verified using nuclear magnetic resonance, infrared, ultraviolet, and high-resolution mass spectrometry, as well as compared with the literature. The cytotoxic effect was evaluated in vitro toward various cell lines: HCT-116 (colorectal adenocarcinoma), MCF-7 (human breast adenocarcinoma), and A549 (lung carcinoma). Results: A new triterpene fatty acid ester, undulaterpene A (1) (3β,16β-dihydroxylup-20 (29)-ene 3-decanoate) and four known metabolites: 3-O-acetyl-pseudotaraxasterol (2), pseudotaraxasterol (3), stigmasterol (4), and tomentosin (5) were separated. Compound 1 displayed cytotoxic potential toward hormone-dependent breast carcinoma cell line (MCF7), colon carcinoma cell line (HCT116), and lung carcinoma cell line (A549) cell lines with half maximal inhibitory concentrations (IC50s) 8.2, 6.9, and 12.4 μM, respectively in comparison to doxorubicin (IC50s 0.14, 0.39, and 1.15 μM, respectively). However, 2, 3, and 4 displayed activity toward HCT-116 with IC50s 13.2, 23.1, and 16.4 μM, respectively. Conclusion: This work led to the identification of a new triterpene fatty acid ester (1) and four known metabolites (2–5) from P. undulata growing in Saudi Arabia. The new compound showed moderate cytotoxic potential against hormone-dependent breast carcinoma cell line (MCF7), colon carcinoma cell line (HCT116), and lung carcinoma cell line (A549) cancer cell lines.

Journal ArticleDOI
TL;DR: Iphionoides dichloromethane (DCM) extract showed high ability in targeting growth and progression of breast cancer inoculated in diabetic and non-diabetic mice and is a promising therapeutic option to treat breast cancer in diabetic cases.
Abstract: Background: The relationship between cancer and type 2 diabetes is well documented. However, studies are very limited to test new therapies for both diseases in the same biological system. This study was conducted to test the potential of two antidiabetic plants from Jordan (Varthemia iphionoides and Pelargonium graveolens) to treat breast cancer implanted in diabetic mice. Materials and Methods: Different solvent extracts of both plants were prepared, and the in vitro antiproliferative activity was tested against MCF-7, T47D, and EMT6/P breast cancer cell lines in addition to Vero normal cell lines. Normal as well as diabetic Balb/C mice were transplanted with EMT6/P cell line, and in vivo antitumor activity was assessed for the most potent plant extract according to the in vitro results. Histological examination of tumors was performed using standard hematoxylin and eosin staining protocol. Apoptosis was detected using TUNEL colorimetric assay. Vascular endothelial growth factor expression of cancer cells was detected using ELISA. Aspartate aminotransferase, alanine aminotransferase, and creatinine were measured as well as interferon-gamma, interleukin-2 (IL-2), IL-4, and IL-10. Results: V. Iphionoides dichloromethane (DCM) extract was the most potent extract and could inhibit cell growth of breast cancer cell lines (EMT6, MCF-7, and T47D). It showed high ability in targeting growth and progression of breast cancer inoculated in diabetic and non-diabetic mice. Conclusion: V. iphionoids DCM extract is a promising therapeutic option to treat breast cancer in diabetic cases. However, further studies are essential to characterize the active ingredients in this extract.

Journal ArticleDOI
TL;DR: In this paper, the authors described the cytotoxic effect of extract and fractions obtained from the leaves of Cnidoscolus quercifolius and the identification of two flavonoids in this species.
Abstract: Background: Cnidoscolus quercifolius is a Brazilian medicinal plant often found in the Caatinga biome. Previous studies have described several pharmacological properties for this plant, including antiproliferative effect. However, there are still few pharmacological and phytochemical reports involving this plant. Objective: In this report, it was described the cytotoxic effect of extract and fractions obtained from the leaves of C. quercifolius. It was also reported for the first time the identification of two flavonoids in this species. Materials and Methods: Ethanol extract (EE) and fractions hexane, chloroform-Fr, ethyl acetate (AcOEt-Fr) and methanol (MeOH-Fr) were evaluated against prostate (PC3 and PC3-M) and breast (MCF-7) cancer cell lines. A preliminary phytochemical analysis was performed by thin layer chromatographic, while the content of total phenolic compounds and flavonoids was determined by colorimetric assays. EE and bioactive fraction (AcOEt-Fr) were selected for analysis by high-performance liquid chromatography-diode-array detector (HPLC-DAD). Results: Phytochemical analysis revealed that the samples were positive for the presence of several classes of secondary metabolites, mainly phenolic derivatives and flavonoids. EE and AcOEt-Fr presented the highest phenolic and flavonoid content. HPLC-DAD analysis of EE and AcOEt-Fr allowed the identification of two flavonoids (rutin and apigenin) not yet described for this species. Concerning the cytotoxicity evaluation, only AcOEt-Fr demonstrated a strong cytotoxic effect against all cell lines, presenting the half maximal inhibitory concentration values between 15.75 and 46.97 μg/ml. Conclusion: The results suggest that flavonoids may play an important role in the cytotoxic effect observed for this species. In addition, this report contributed to the phytochemical knowledge of the species through the identification and quantification of flavonoids. Abbreviations used: AcOEt-Fr: Ethyl acetate fraction; CHCl3-Fr: Chloroform fraction; EE: Ethanol extract; Hex-Fr: Hexane fraction; IC50: Half maximal inhibitory concentration; MeOH-Fr: Methanol fraction; TLC: Thin layer chromatography; UV: Ultraviolet.

Journal ArticleDOI
TL;DR: The protective effects of FCEA against diabetic neuropathy, hepatoprotective and nephroprotective effects might be due to strong antioxidant property of important flavonoids present which is confirmed in the study.
Abstract: Background: Flavonoids, a group of polyphenols responsible for protective role against many diseased conditions, provide antioxidant activity which is the reason for their medicinal properties. Tactile allodynia is a behavioral biomarker of neuropathy that is well estimated by von Frey filaments and Randall–Selitto test. Objective: Ficus carica Lam. leaves were studied for the conformation of flavonoids in ethyl acetate fraction of methanolic extract (FCEA) using GC-HRMS for the identification of flavonoids. It was analyzed for antioxidant activity by in vitro free radical scavenging activity, performed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) followed by blood glucose-level estimation, evaluation of neuropathic pain, and kidney and liver function tests in diabetic rats. Materials and Methods: The shade-dried leaves of F. carica Lam. were extracted with methanol and after that fractionated using ethyl acetate (FCEA). The characterization of FCEA was established using GC-HRMS. In vitro free radical scavenging activity was performed using DPPH assay. Diabetes was induced using streptozotocin (40 mg/kg/intraperitoneally), and effects of FCEA were studied on blood glucose level, neuropathy markers, and liver and kidney functions of diabetic rats. Results: GC-HRMS results highlighted the presence of quercetin, kaempferol, and chrysin in FCEA with free radical scavenging activity of 78.35% and IC50 value of 5.508 μM. FCEA reduces glucose levels and also shows protective effects in case of diabetic neuropathy as it increases the threshold of withdrawal latency in tactile allodynia and also decreases the serum glutamic-oxaloacetic transaminase, serum glutamic-pyruvic transaminase, blood urea nitrogen, and creatinine levels. Conclusion: The protective effects of FCEA against diabetic neuropathy, hepatoprotective and nephroprotective effects might be due to strong antioxidant property of important flavonoids present which is confirmed in the study.

Journal ArticleDOI
TL;DR: In this paper, the odor characteristics of Amomi fructus (AF Lour) from three different habitats were investigated and analyzed using gas chromatography-mass spectrometry (GC-MS) and an electronic nose (E-nose).
Abstract: Background: Amomi fructus (AF Lour.) has been used to treat digestive diseases in the context of Traditional Chinese Medicine. Its aroma characteristics have been attracted attention and are considered to be effective markers for determining AF from different habitats. Materials and Methods: In this article, the odor characteristics of AF from three different habitats were investigated and analyzed using gas chromatography-mass spectrometry (GC-MS) and an electronic nose (E-nose). Results: It was found that the E-nose in conjunction with principal component analysis as an analytic tool, showed good performance and achieved a total variance of 93.90% with the first two principal components. A total of 65 aroma constituents among three groups of AF were separated, identified, and calculated using GC-MS. It was observed that the components and the contents were clearly different among the three groups. To confirm the interrelation between aroma constituents and sensors, the contents of 12 aroma ingredients and the response values of six sensors were selected to be trained and tested using the partial least squares. A satisfied quantitative prediction was presented that the contents of selected constituents were accurately predicted by corresponding E-nose sensors with the most determination coefficient of calibration and determination coefficient of prediction of >90%. Conclusion: It was revealed that the E-nose is capable of discriminating AF from different habitats, presenting an accurate, easy-operating, and nondestructive reference approach.

Journal ArticleDOI
TL;DR: Ar inhibits the oxidative stress and autophagy and offers protection from the LPS-induced myocardial injury via the ER pathway and could be effectively reversed by Ar, which could be blocked by ER antagonist ICI182780.
Abstract: Background: Sepsis is a syndrome characterized by a systemic inflammatory response. Arbutin (Ar) is an active natural product known for its bactericidal and anti-inflammatory effects. Many studies have reported the diverse pharmacological actions of Ar, but there is no relevant research on the effect of Ar on lipopolysaccharide (LPS)-induced myocardial injury. Objective: The purpose of this study was to investigate the effect of Ar on LPS-induced myocardial injury and its underlying mechanisms. Materials and Methods: The levels of tumor necrosis factor alpha, interleukin 6, cardiac troponin-I, and procalcitonin were detected by ELISA. The levels of phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated extracellular regulated protein kinase (p-ERK), and phosphorylated p38 (p-p38) proteins were detected by flow cytometry using Cytometric Bead Array. Western blot was used to detect the expression of autophagy-related and estrogen receptor (ER)-associated proteins. Levels of the oxidative stress-related markers were detected by the cuvette assay. Results: The levels of the inflammatory factors, LC3B, malondialdehyde, p-JNK, and p-p38 were increased in LPS-treated rats, while the ERK, total superoxide dismutase, glutathione peroxidase, p62, and ER-associated proteins were decreased. These effects could be effectively reversed by Ar, which could be blocked by ER antagonist ICI182780. Our previous study found Ar to possess an estrogen-like activity. Conclusion: Ar inhibits the oxidative stress and autophagy and offers protection from the LPS-induced myocardial injury via the ER pathway.