scispace - formally typeset
Search or ask a question

Showing papers in "Pharmacological Reviews in 2003"


Journal ArticleDOI
TL;DR: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined.
Abstract: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined in this

7,389 citations


Journal ArticleDOI
TL;DR: The intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
Abstract: Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.

2,687 citations


Journal ArticleDOI
TL;DR: Evidence for the occurrence of MDMA-induced neurotoxic damage in human users remains equivocal, although some biochemical and functional data suggest that damage may occur in the brains of heavy users.
Abstract: The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a popular recreational drug among young people, particularly those involved in the dance culture. MDMA produces an acute, rapid enhancement in the release of both serotonin (5-HT) and dopamine from nerve endings in the brains of experimental animals. It produces increased locomotor activity and the serotonin behavioral syndrome in rats. Crucially, it produces dose-dependent hyperthermia that is potentially fatal in rodents, primates, and humans. Some recovery of 5-HT stores can be seen within 24 h of MDMA administration. However, cerebral 5-HT concentrations then decline due to specific neurotoxic damage to 5-HT nerve endings in the forebrain. This neurodegeneration, which has been demonstrated both biochemically and histologically, lasts for months in rats and years in primates. In general, other neurotransmitters appear unaffected. In contrast, MDMA produces a selective long-term loss of dopamine nerve endings in mice. Studies on the mechanisms involved in the neurotoxicity in both rats and mice implicate the formation of tissue-damaging free radicals. Increased free radical formation may result from the further breakdown of MDMA metabolic products. Evidence for the occurrence of MDMA-induced neurotoxic damage in human users remains equivocal, although some biochemical and functional data suggest that damage may occur in the brains of heavy users. There is also some evidence for long-term physiological and psychological changes occurring in human recreational users. However, such evidence is complicated by the lack of knowledge of doses ingested and the fact that many subjects studied are or have been poly-drug users.

1,170 citations


Journal ArticleDOI
TL;DR: New insight is given into the immunobiology of IL-10 and it is suggested that the IL- 10/IL-10 receptor system may become a new therapeutic target.
Abstract: Interleukin (IL)-10 is an important immunoregulatory cytokine produced by many cell populations. Its main biological function seems to be the limitation and termination of inflammatory responses and the regulation of differentiation and proliferation of several immune cells such as T cells, B cells, natural killer cells, antigen-presenting cells, mast cells, and granulocytes. However, very recent data suggest IL-10 also mediates immunostimulatory properties that help to eliminate infectious and noninfectious particles with limited inflammation. Numerous investigations, including expression analyses in patients, in vitro and animal experiments suggest a major impact of IL-10 in inflammatory, malignant, and autoimmune diseases. So IL-10 overexpression was found in certain tumors as melanoma and several lymphomas and is considered to promote further tumor development. Systemic IL-10 release is a powerful tool of the central nervous system to prevent hyperinflammatory processes by activation of the neuro-endocrine axis following acute stress reactions. In contrast, a relative IL-10 deficiency has been observed and is regarded to be of pathophysiological relevance in certain inflammatory disorders characterized by a type 1 cytokine pattern such as psoriasis. Recombinant human IL-10 has been produced and is currently being tested in clinical trials. This includes rheumatoid arthritis, inflammatory bowel disease, psoriasis, organ transplantation, and chronic hepatitis C. The results are heterogeneous. They give new insight into the immunobiology of IL-10 and suggest that the IL-10/IL-10 receptor system may become a new therapeutic target.

999 citations


Journal ArticleDOI
TL;DR: The aim of this review is to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis, which reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism.
Abstract: Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.

672 citations


Journal ArticleDOI
TL;DR: An overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels as mentioned in this paper.
Abstract: This summary article presents an overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.1 The complete Compendium, including data tables for each member of the potassium channel family can be found at http://www.iuphar-db.org/iuphar-ic/.

566 citations


Journal ArticleDOI
TL;DR: The recommendations that follow have been updated from the proposals of a Technical Subcommittee set up by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification.
Abstract: The recommendations that follow have been updated from the proposals of a Technical Subcommittee set up by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (Jenkinson DH, Barnard EA, Hoyer D, Humphrey PPA, Leff P, and Shankley NP (1995) International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. IX. Recommendations on terms and symbols in quantitative pharmacology. Pharmacol Rev 47:255-266).

562 citations


Journal ArticleDOI
TL;DR: Pre-induction of HO activity has been demonstrated to ameliorate inflammation and mediate potent resistance to oxidative injury and a better understanding of the complex heme-heme.
Abstract: The heme-heme oxygenase system has recently been recognized to possess important regulatory properties. It is tightly involved in both physiological as well as pathophysiological processes, such as cytoprotection, apoptosis, and inflammation. Heme functions as a double-edged sword. In moderate quantities and bound to protein, it forms an essential element for various biological processes, but when unleashed in large amounts, it can become toxic by mediating oxidative stress and inflammation. The effect of this free heme on the vascular system is determined by extracellular factors, such as hemoglobin/heme-binding proteins, haptoglobin, albumin, and hemopexin, and intracellular factors, including heme oxygenases and ferritin. Heme oxygenase (HO) enzyme activity results in the degradation of heme and the production of iron, carbon monoxide, and biliverdin. All these heme-degradation products are potentially toxic, but may also provide strong cytoprotection, depending on the generated amounts and the microenvironment. Pre-induction of HO activity has been demonstrated to ameliorate inflammation and mediate potent resistance to oxidative injury. A better understanding of the complex heme-heme

551 citations


Journal ArticleDOI
TL;DR: The significant role played by drug transporters in drug disposition is summarized, focusing particularly on their potential use during the drug discovery and development process.
Abstract: Drug transporters are expressed in many tissues such as the intestine, liver, kidney, and brain, and play key roles in drug absorption, distribution, and excretion. The information on the functional characteristics of drug transporters provides important information to allow improvements in drug delivery or drug design by targeting specific transporter proteins. In this article we summarize the significant role played by drug transporters in drug disposition, focusing particularly on their potential use during the drug discovery and development process. The use of transporter function offers the possibility of delivering a drug to the target organ, avoiding distribution to other organs (thereby reducing the chance of toxic side effects), controlling the elimination process, and/or improving oral bioavailability. It is useful to select a lead compound that may or may not interact with transporters, depending on whether such an interaction is desirable. The expression system of transporters is an efficient tool for screening the activity of individual transport processes. The changes in pharmacokinetics due to genetic polymorphisms and drug-drug interactions involving transporters can often have a direct and adverse effect on the therapeutic safety and efficacy of many important drugs. To obtain detailed information about these interindividual differences, the contribution made by transporters to drug absorption, distribution, and excretion needs to be taken into account throughout the drug discovery and development process.

487 citations


Journal ArticleDOI
TL;DR: Advances in the understanding of how these peptides exert their biological activities are discussed, with a focus on the biological actions and structural features of the cognate receptors.
Abstract: Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).

464 citations


Journal ArticleDOI
TL;DR: In this review, recent findings regarding xenosensors and their target genes are summarized and are put into an evolutionary perspective in regard to how a living organism has derived a system that is able to deal with potentially toxic compounds it has not encountered before.
Abstract: Induction of drug metabolism was described more than 40 years ago. Progress in understanding the molecular mechanism of induction of drug-metabolizing enzymes was made recently when the important roles of the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), two members of the nuclear receptor superfamily of transcription factors, were discovered to act as sensors for lipophilic xenobiotics, including drugs. CAR and PXR bind as heterodimeric complexes with the retinoid X receptor to response elements in the regulatory regions of the induced genes. PXR is directly activated by xenobiotic ligands, whereas CAR is involved in a more complex and less well understood mechanism of signal transduction triggered by drugs. Most recently, analysis of these xenobiotic-sensing nuclear receptors and their nonmammalian precursors such as the chicken xenobiotic receptor suggests an important role of PXR and CAR also in endogenous pathways, such as cholesterol and bile acid biosynthesis and metabolism. In this review, recent findings regarding xenosensors and their target genes are summarized and are put into an evolutionary perspective in regard to how a living organism has derived a system that is able to deal with potentially toxic compounds it has not encountered before.

Journal ArticleDOI
TL;DR: The pathogenesis of CML, its clinical features, and the development of imatinib as a specific molecularly targeted therapy are highlighted, as well as resistance to imatin ib and strategies to overcome resistance, such as alternative signal transduction inhibitors and drug combinations.
Abstract: Chronic myeloid leukemia (CML) is characterized by the Philadelphia translocation that fuses BCR sequences from chromosome 22 upstream of the ABL gene on chromosome 9. The chimerical Bcr-Abl protein expressed by CML cells has constitutive tyrosine kinase activity, which is essential for the pathogenesis of the disease. Imatinib, an ATP-competitive selective inhibitor of Bcr-Abl, has unprecedented efficacy for the treatment of CML. Most patients with early stage disease achieve durable complete hematological and complete cytogenetic remissions, with minimal toxicity. In contrast, responses are less stable in patients with advanced CML. This review highlights the pathogenesis of CML, its clinical features, and the development of imatinib as a specific molecularly targeted therapy. Aspects of disease monitoring and side effects are covered as well as resistance to imatinib and strategies to overcome resistance, such as alternative signal transduction inhibitors and drug combinations. Perspectives for further development are also discussed.

Journal ArticleDOI
TL;DR: The localized peripheral administration of drugs, such as by topical application, can potentially optimize drug concentrations at the site of origin of the pain, while leading to lower systemic levels and fewer adverse systemic effects, fewer drug interactions, and no need to titrate doses into a therapeutic range compared with systemic administration.
Abstract: Acute nociceptive, inflammatory, and neuropathic pain all depend to some degree on the peripheral activation of primary sensory afferent neurons. The localized peripheral administration of drugs, such as by topical application, can potentially optimize drug concentrations at the site of origin of the pain, while leading to lower systemic levels and fewer adverse systemic effects, fewer drug interactions, and no need to titrate doses into a therapeutic range compared with systemic administration. Primary sensory afferent neurons can be activated by a range of inflammatory mediators such as prostanoids, bradykinin, ATP, histamine, and serotonin, and inhibiting their actions represents a strategy for the development of analgesics. Peripheral nerve endings also express a variety of inhibitory neuroreceptors such as opioid, alpha-adrenergic, cholinergic, adenosine and cannabinoid receptors, and agonists for these receptors also represent viable targets for drug development. At present, topical and other forms of peripheral administration of nonsteroidal anti-inflammatory drugs, opioids, capsaicin, local anesthetics, and alpha-adrenoceptor agonists are being used in a variety of clinical states. There also are some clinical data on the use of topical antidepressants and glutamate receptor antagonists. There are preclinical data supporting the potential for development of local formulations of adenosine agonists, cannabinoid agonists, cholinergic ligands, cytokine antagonists, bradykinin antagonists, ATP antagonists, biogenic amine antagonists, neuropeptide antagonists, and agents that alter the availability of nerve growth factor. Given that activation of sensory neurons involves multiple mediators, combinations of agents targeting different mechanisms may be particularly useful. Topical analgesics represent a promising area for future drug development.

Journal ArticleDOI
TL;DR: This report was prepared by the International Union of Pharmacology Subcommittee on CRF Receptors, to summarize the current state of CRF receptor biology and to propose changes in the classification and nomenclature ofCRF ligands and receptors.
Abstract: Receptors for corticotropin-releasing factor (CRF) are members of a family of G protein-coupled receptors ("Family B") that respond to a variety of structurally dissimilar releasing factors, neuropeptides, and hormones (including secretin, growth hormone-releasing factor, calcitonin, parathyroid hormone, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal polypeptide) and signal through the cyclic AMP and/or calcium pathways. To date, three genes encoding additional CRF-like peptides (urocortins) have been identified in mammals. The urocortins and CRF bind with differential ligand selectivity at the two mammalian CRF receptors. This report was prepared by the International Union of Pharmacology Subcommittee on CRF Receptors, to summarize the current state of CRF receptor biology and to propose changes in the classification and nomenclature of CRF ligands and receptors.

Journal ArticleDOI
TL;DR: The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers, and the discovery of GABAB heterodimers started this field rapidly.
Abstract: The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as delta/kappa opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinson's disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.

Journal ArticleDOI
TL;DR: By establishing functional roles of nitrergic, cholinergic, adrenergic, and other autonomic efferent nerves in the regulation of vascular tone and the interactions of these nerves in vivo, especially in humans, progress in the understanding of cardiovascular dysfunctions and the development of pharmacotherapeutic strategies would be expected in the future.
Abstract: Unanticipated, novel hypothesis on nitric oxide (NO) radical, an inorganic, labile, gaseous molecule, as a neurotransmitter first appeared in late 1989 and into the early 1990s, and solid evidences supporting this idea have been accumulated during the last decade of the 20th century. The discovery of nitrergic innervation of vascular smooth muscle has led to a new understanding of the neurogenic control of vascular function. Physiological roles of the nitrergic nerve in vascular smooth muscle include the dominant vasodilator control of cerebral and ocular arteries, the reciprocal regulation with the adrenergic vasoconstrictor nerve in other arteries and veins, and in the initiation and maintenance of penile erection in association with smooth muscle relaxation of the corpus cavernosum. The discovery of autonomic efferent nerves in which NO plays key roles as a neurotransmitter in blood vessels, the physiological roles of this nerve in the control of smooth muscle tone of the artery, vein, and corpus cavernosum, and pharmacological and pathological implications of neurogenic NO have been reviewed. This nerve is a postganglionic parasympathetic nerve. Mechanical responses to stimulation of the nerve, mainly mediated by NO, clearly differ from those to cholinergic nerve stimulation. The naming "nitrergic or nitroxidergic" is therefore proposed to avoid confusion of the term "cholinergic nerve", from which acetylcholine is released as a major neurotransmitter. By establishing functional roles of nitrergic, cholinergic, adrenergic, and other autonomic efferent nerves in the regulation of vascular tone and the interactions of these nerves in vivo, especially in humans, progress in the understanding of cardiovascular dysfunctions and the development of pharmacotherapeutic strategies would be expected in the future.

Journal ArticleDOI
TL;DR: Evidence suggests a key role for the β subunits of calcium channels in the process of Gprotein modulation, and the role of a class of proteins termed “regulators of G protein signaling” will also be described.
Abstract: Calcium influx into any cell requires fine tuning to guarantee the correct balance between activation of calcium-dependent processes, such as muscle contraction and neurotransmitter release, and calcium-induced cell damage. G protein-coupled receptors play a critical role in negative feedback to modulate the activity of the CaV2 subfamily of the voltage-dependent calcium channels, which are largely situated on neuronal and neuro-endocrine cells. The basis for the specificity of the relationships among membrane receptors, G proteins, and effector calcium channels will be discussed, as well as the mechanism by which G protein-mediated inhibition is thought to occur. The inhibition requires free G beta gamma dimers, and the cytoplasmic linker between domains I and II of the CaV2 alpha 1 subunits binds G beta gamma dimers, whereas the intracellular N terminus of CaV2 alpha 1 subunits provides essential determinants for G protein modulation. Evidence suggests a key role for the beta subunits of calcium channels in the process of G protein modulation, and the role of a class of proteins termed "regulators of G protein signaling" will also be described.

Journal ArticleDOI
TL;DR: The aim of this review is to provide the molecular evidence as well as the properties and significance of the leukotriene and lipoxin receptors, which has lead to the present nomenclature.
Abstract: The leukotrienes and lipoxins are biologically active metabolites derived from arachidonic acid. Their diverse and potent actions are associated with specific receptors. Recent molecular techniques have established the nucleotide and amino acid sequences and confirmed the evidence that suggested the existence of different G-protein-coupled receptors for these lipid mediators. The nomenclature for these receptors has now been established for the leukotrienes. BLT receptors are activated by leukotriene B(4) and related hydroxyacids and this class of receptors can be subdivided into BLT(1) and BLT(2). The cysteinyl-leukotrienes (LT) activate another group called CysLT receptors, which are referred to as CysLT(1) and CysLT(2). A provisional nomenclature for the lipoxin receptor has also been proposed. LXA(4) and LXB(4) activate the ALX receptor and LXB(4) may also activate another putative receptor. However this latter receptor has not been cloned. The aim of this review is to provide the molecular evidence as well as the properties and significance of the leukotriene and lipoxin receptors, which has lead to the present nomenclature.

Journal ArticleDOI
TL;DR: An overview of the molecular relationships among the TRP channels and a standard nomenclature for them is presented, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.
Abstract: The transient receptor potential (TRP) proteins are six transmembrane-containing subunits that combine to form cation-selective ion channels. TRP channels are present in yeast, Drosophila, Caenorhabditis elegans , and mammals. They are widely distributed and sense local changes in stimuli ranging from light to temperature and osmolarity. Mammals contain at least 22 distinct genes encoding these ion channels. This summary article presents an overview of the molecular relationships among the TRP channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels. 1 The complete Compendium, including data tables for each member of the TRP channel family, can be found at http://www.iuphar-db.org/iuphar-ic/.

Journal ArticleDOI
TL;DR: The β-cell, the insulin-secreting cell in the islet, can detect subtle increases in circulating glucose levels and a cascade of molecular events spanning the initial depolarization of the β- cell membrane culminates in exocytosis and optimal insulin secretion.
Abstract: Blood glucose levels are sensed and controlled by the release of hormones from the islets of Langerhans in the pancreas. The β-cell, the insulin-secreting cell in the islet, can detect subtle increases in circulating glucose levels and a cascade of molecular events spanning the initial depolarization of the β-cell membrane culminates in exocytosis and optimal insulin secretion. Here we review these processes in the context of pharmacological agents that have been shown to directly interact with any stage of insulin secretion. Drugs that modulate insulin secretion do so by opening the KATPchannels, by interacting with cell-surface receptors, by altering second-messenger responses, by disrupting the β-cell cytoskeletal framework, by influencing the molecular reactions at the stages of transcription and translation of insulin, and/or by perturbing exocytosis of the insulin secretory vesicles. Drugs acting primarily at the KATP channels are the sulfonylureas, the benzoic acid derivatives, the imidazolines, and the quinolines, which are channel openers, and finally diazoxide, which closes these channels. Methylxanthines also work at the cell membrane level by antagonizing the purinergic receptors and thus increase insulin secretion. Other drugs have effects at multiple levels, such as the calcineurin inhibitors and somatostatin. Some drugs used extensively in research, e.g., colchicine, which is used to study vesicular transport, have no effect at the pharmacological doses used in clinical practice. We also briefly discuss those drugs that have been shown to disrupt β-cell function in a clinical setting but for which there is scant information on their mechanism of action.

Journal ArticleDOI
TL;DR: The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments.
Abstract: Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.

Journal ArticleDOI
TL;DR: First discovered in plants the nematode Caenorhabditis elegans, the production of small interfering RNAs that bind to and induce the degradation of specific endogenous mRNAs is now recognized as a mechanism that is widely employed by eukaryotic cells to inhibit protein production at a post-transcriptional level.
Abstract: First discovered in plants the nematode Caenorhabditis elegans, the production of small interfering RNAs (siRNAs) that bind to and induce the degradation of specific endogenous mRNAs is now recognized as a mechanism that is widely employed by eukaryotic cells to inhibit protein production at a post-transcriptional level. The endogenous siRNAs are typically 19- to 23-base double-stranded RNA oligonucleotides, produced from much larger RNAs that upon binding to target mRNAs recruit RNases to a protein complex that degrades the targeted mRNA. Methods for expressing siRNAs in cells in culture and in vivo using viral vectors, and for transfecting cells with synthetic siRNAs, have been developed and are being used to establish the functions of specific proteins in various cell types and organisms. RNA interference methods provide several major advantages over prior methods (antisense DNA or antibody-based techniques) for suppressing gene expression. Recent preclinical studies suggest that RNA interference technology holds promise for the treatment of various diseases. Pharmacologists have long dreamed of the ability to selectively antagonize or eliminate the function of individual proteins--RNAi technology may eventually make that dream a reality.

Journal ArticleDOI
TL;DR: An overview of the molecular relationships among the voltage-gated sodium channels and a standard nomenclature for them is presented, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.
Abstract: This summary article presents an overview of the molecular relationships among the voltage-gated sodium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.1 The complete Compendium, including data tables for each member of the sodium channel family can be found at .

Journal ArticleDOI
TL;DR: Current knowledge of gender-associated differences in the transport of endogenous and exogenous compounds in a variety of body organs is focused on and the implications and the clinical significance of these observations are discussed.
Abstract: Gender differences have been well described in pharmacokinetics and contribute to the interindividual variation in drug disposition, therapeutic response, and drug toxicity. Sex-related differences in the membrane transport of endogenous substrates and xenobiotics have been reported in various organs of the body including kidney, liver, intestine, and brain. These gender-related differences in transport systems could also contribute to interindividual variability in pharmacokinetics and pharmacodynamics. This review will focus on current knowledge of gender-associated differences in the transport of endogenous and exogenous compounds in a variety of body organs and will discuss the implications and the clinical significance of these observations.

Journal ArticleDOI
TL;DR: Developing pharmacogenomics as a new field has accelerated the progress in drug discovery by the identification of novel therapeutic targets by expression profiling at the genomic or proteomic levels, and provides an important opportunity to select patients who may benefit from the administration of specific agents that best match the genetic profile of the disease, thus allowing maximum activity.
Abstract: In mammalian cells, the process of malignant transformation is characterized by the loss or down-regulation of tumor-suppressor genes and/or the mutation or overexpression of proto-oncogenes, whose products promote dysregulated proliferation of cells and extend their life span. Deregulation in intracellular transduction pathways generates mitogenic signals that promote abnormal cell growth and the acquisition of an undifferentiated phenotype. Genetic abnormalities in cancer have been widely studied to identify those factors predictive of tumor progression, survival, and response to chemotherapeutic agents. Pharmacogenetics has been founded as a science to examine the genetic basis of interindividual variation in drug metabolism, drug targets, and transporters, which result in differences in the efficacy and safety of many therapeutic agents. The traditional pharmacogenetic approach relies on studying sequence variations in candidate genes suspected of affecting drug response. However, these studies have yielded contradictory results because of the small number of molecular determinants of drug response examined, and in several cases this approach was revealed to be reductionistic. This limitation is now being overcome by the use of novel techniques, i.e., high-density DNA and protein arrays, which allow genome- and proteome-wide tumor profiling. Pharmacogenomics represents the natural evolution of pharmacogenetics since it addresses, on a genome-wide basis, the effect of the sum of genetic variants on drug responses of individuals. Development of pharmacogenomics as a new field has accelerated the progress in drug discovery by the identification of novel therapeutic targets by expression profiling at the genomic or proteomic levels. In addition to this, pharmacogenetics and pharmacogenomics provide an important opportunity to select patients who may benefit from the administration of specific agents that best match the genetic profile of the disease, thus allowing maximum activity.

Journal ArticleDOI
TL;DR: An overview of the molecular relationships among the voltage-gated cyclic nucleotide-modulated channels and a standard nomenclature for them is presented, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.
Abstract: This summary article presents an overview of the molecular relationships among the voltage-gated cyclic nucleotide-modulated channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels. The complete Compendium, including data tables for each member of the cyclic nucleotide-modulated channel family can be found at http://www.iuphar-db.org/iuphar-ic/.

Journal ArticleDOI
TL;DR: The genotype of SLC22A2 is known as HGNC and the name of the member of solute carrier family 22 (organic cation transporter), member 2 is also known as OCT2.
Abstract: Category: genotype PharmGKB Submission Number: PS202784 Project: Pharmacogenetics of Membrane Transporters HGNC Symbol: SLC22A2 HGNC Name: solute carrier family 22 (organic cation transporter), member 2 Synonyms: OCT2 Gene Ontology