scispace - formally typeset
Search or ask a question

Showing papers in "Philosophical Transactions of the Royal Society B in 2000"


Journal ArticleDOI
TL;DR: The location of the neural damage associated with these disorders suggests that representations of the current and predicted state of the motor system are in parietal cortex, while representations of intended actions are found in prefrontal and premotor cortex.
Abstract: Much of the functioning of the motor system occurs without awareness. Nevertheless, we are aware of some aspects of the current state of the system and we can prepare and make movements in the imagination. These mental representations of the actual and possible states of the system are based on two sources: sensory signals from skin and muscles, and the stream of motor commands that have been issued to the system. Damage to the neural substrates of the motor system can lead to abnormalities in the awareness of action as well as defects in the control of action. We provide a framework for understanding how these various abnormalities of awareness can arise. Patients with phantom limbs or with anosognosia experience the illusion that they can move their limbs. We suggest that these representations of movement are based on streams of motor commands rather than sensory signals. Patients with utilization behaviour or with delusions of control can no longer properly link their intentions to their actions. In these cases the impairment lies in the representation of intended movements. The location of the neural damage associated with these disorders suggests that representations of the current and predicted state of the motor system are in parietal cortex, while representations of intended actions are found in prefrontal and premotor cortex.

1,004 citations


Journal ArticleDOI
TL;DR: The results suggest that the effective population sizes of evolving Y or neo-Y chromosomes are severely reduced, as expected if some or all of the hypothesized processes leading to degeneration are operative.
Abstract: Y chromosomes are genetically degenerate, having lost most of the active genes that were present in their ancestors. The causes of this degeneration have attracted much attention from evolutionary theorists. Four major theories are reviewed here: Muller's ratchet, background selection, the Hill–Robertson effect with weak selection, and the ‘hitchhiking’ of deleterious alleles by favourable mutations. All of these involve a reduction in effective population size as a result of selective events occurring in a non–recombining genome, and the consequent weakening of the efficacy of selection. We review the consequences of these processes for patterns of molecular evolution and variation at loci on Y chromosomes, and discuss the results of empirical studies of these patterns for some evolving Y–chromosome and neo–Y–chromosome systems. These results suggest that the effective population sizes of evolving Y or neo–Y chromosomes are severely reduced, as expected if some or all of the hypothesized processes leading to degeneration are operative. It is, however, currently unclear which of the various processes is most important; some directions for future work to help to resolve this question are discussed.

862 citations


Journal ArticleDOI
TL;DR: The possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants, is discussed.
Abstract: Photorespiration results from the oxygenase reaction catalysed by ribulose–1,5–bisphosphate carboxylase/oxygenase. In this reaction glycollate–2–phosphate is produced and subsequently metabolized in the photorespiratory pathway to form the Calvin cycle intermediate glycerate–3–phosphate. During this metabolic process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus making photorespiration a wasteful process. However, precisely because of this inefficiency, photorespiration could serve as an energy sink preventing the overreduction of the photosynthetic electron transport chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g. glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways. In addition, we discuss the possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants.

701 citations


Journal ArticleDOI
TL;DR: Because B chromosomes interact with the standard chromosomes, they can play an important role in genome evolution and may be useful for studying molecular evolutionary processes.
Abstract: B chromosomes are extra chromosomes to the standard complement that occur in many organisms They can originate in a number of ways including derivation from autosomes and sex chromosomes in intraa

581 citations


Journal ArticleDOI
TL;DR: Computational analyses capable of showing whether clusters of strongly interconnected areas are aspects of the global organization of cortical systems in macaque and cat show that structure and function are closely linked at this gross, systems level.
Abstract: The number of different cortical structures in mammalian brains and the number of extrinsic fibres linking these regions are both large. As with any complex system, systematic analysis is required to draw reliable conclusions about the organization of the complex neural networks comprising these numerous elements. One aspect of organization that has long been suspected is that cortical networks are organized into ‘streams’ or ‘systems’. Here we report computational analyses capable of showing whether clusters of strongly interconnected areas are aspects of the global organization of cortical systems in macaque and cat. We used two different approaches to analyse compilations of corticocortical connection data from the macaque and the cat. The first approach, optimal set analysis, employed an explicit definition of a neural ‘system’ or ‘stream’, which was based on differential connectivity. We defined a two–component cost function that described the cost of the global cluster arrangement of areas in terms of the areas‘ connectivity within and between candidate clusters. Optimal cluster arrangements of cortical areas were then selected computationally from the very many possible arrangements, using an evolutionary optimization algorithm. The second approach, non–parametric cluster analysis (NPCA), grouped cortical areas on the basis of their proximity in multidimensional scaling representations. We used non–metric multidimensional scaling to represent the cortical connectivity structures metrically in two and five dimensions. NPCA then analysed these representations to determine the nature of the clusters for a wide range of different cluster shape parameters. The results from both approaches largely agreed. They showed that macaque and cat cortices are organized into densely intra–connected clusters of areas, and identified the constituent members of the clusters. These clusters reflected functionally specialized sets of cortical areas, suggesting that structure and function are closely linked at this gross, systems level.

554 citations


Journal ArticleDOI
Kozi Asada1
TL;DR: The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photoystem II (PS II) from water.
Abstract: The waterwater cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the waterwater cycle, the...

547 citations


Journal ArticleDOI
TL;DR: Work in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton.
Abstract: The actin cytoskeleton plays a fundamental role in all eukaryotic cells it is a major determinant of cell morphology and polarity and the assembly and disassembly of filamentous actin structures provides a driving force for dynamic processes such as cell motility, phagocytosis, growth cone guidance and cytokinesis. The ability to reorganize actin filaments is a fundamental property of embryonic cells during development; the shape changes accompanying gastrulation and dorsal closure, for example, are dependent on the plasticity of the actin cytoskeleton, while the ability of cells or cell extensions, such as axons, to migrate within the developing embryo requires rapid and spatially organized changes to the actin cytoskeleton in response to the external environment. Work in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton.

526 citations


Journal ArticleDOI
TL;DR: Based on the evidence thus far, a cell-cell traction model of intercalation is described and the implications of this model for cell adhesion, regulation of cell motility and cell polarity, and cell and tissue biomechanics are discussed.
Abstract: The cells of many embryonic tissues actively narrow in one dimension (convergence) and lengthen in the perpendicular dimension (extension). Convergence and extension are ubiquitous and important tissue movements in metazoan morphogenesis. In vertebrates, the dorsal axial and paraxial mesodermal tissues, the notochordal and somitic mesoderm, converge and extend. In amphibians as well as a number of other organisms where these movements appear, they occur by mediolateral cell intercalation, the rearrangement of cells along the mediolateral axis to produce an array that is narrower in this axis and longer in the anteroposterior axis. In amphibians, mesodermal cell intercalation is driven by bipolar, mediolaterally directed protrusive activity, which appears to exert traction on adjacent cells and pulls the cells between one another. In addition, the notochordal-somitic boundary functions in convergence and extension by 'capturing' notochordal cells as they contact the boundary, thus elongating the boundary. The prospective neural tissue also actively converges and extends parallel with the mesoderm. In contrast to the mesoderm, cell intercalation in the neural plate normally occurs by monopolar protrusive activity directed medially, towards the midline notoplate-floor-plate region. In contrast, the notoplate-floor-plate region appears to converge and extend by adhering to and being towed by or perhaps migrating on the underlying notochord. Converging and extending mesoderm stiffens by a factor of three or four and exerts up to 0.6 microN force. Therefore, active, force-producing convergent extension, the mechanism of cell intercalation, requires a mechanism to actively pull cells between one another while maintaining a tissue stiffness sufficient to push with a substantial force. Based on the evidence thus far, a cell-cell traction model of intercalation is described. The essential elements of such a morphogenic machine appear to be (i) bipolar, mediolaterally orientated or monopolar, medially directed protrusive activity; (ii) this protrusive activity results in mediolaterally orientated or medially directed traction of cells on one another; (iii) tractive protrusions are confined to the ends of the cells; (iv) a mechanically stable cell cortex over the bulk of the cell body which serves as a movable substratum for the orientated or directed cell traction. The implications of this model for cell adhesion, regulation of cell motility and cell polarity, and cell and tissue biomechanics are discussed.

508 citations


Journal ArticleDOI
TL;DR: A novel antioxidant function for the taxonomically widespread phenylpropanoid metabolite chlorogenic acid (CGA; 5-O-caffeoylquinic acid) is highlighted and its possible role in abiotic stress tolerance is assessed.
Abstract: Environmental stresses such as high light, low temperatures, pathogen infection and nutrient deficiency can lead to increased production of free radicals and other oxidative species in plants. A growing body of evidence suggests that plants respond to these biotic and abiotic stress factors by increasing their capacity to scavenge reactive oxygen species. Efforts to understand this acclimatory process have focused on the components of the 'classical' antioxidant system, i.e. superoxide dismutase, ascorbate peroxidase, catalase, monodehydroascorbate reductase, glutathione reductase and the low molecular weight antioxidants ascorbate and glutathione. However, relatively few studies have explored the role of secondary metabolic pathways in plant response to oxidative stress. A case in point is the phenylpropanoid pathway which is responsible for the synthesis of a diverse array of phenolic metabolites such as flavonoids, tannins, hydroxycinnamate esters and the structural polymer lignin. These compounds are often induced by stress and serve specific roles in plant protection, i.e. pathogen defence, ultraviolet screening, antiherbivory, or structural components of the cell wall. This review will highlight a novel antioxidant function for the taxonomically widespread phenylpropanoid metabolite chlorogenic acid (CGA; 5-O-caffeoylquinic acid) and assess its possible role in abiotic stress tolerance. The relationship between CGA biosynthesis and photosynthetic carbon metabolism will also be discussed. Based on the properties of this model phenolic metabolite, we propose that under stress conditions phenylpropanoid biosynthesis may represent an alternative pathway for photochemical energy dissipation that has the added benefit of enhancing the antioxidant capacity of the cell.

430 citations


Journal ArticleDOI
TL;DR: Chemical cues are widely used by aquatic prey for risk assessment and this has resulted in the evolution of specialized structures among some taxa, including specialized epidermal alarm substance cells in fishes in the superorder Ostariophysi.
Abstract: The aquatic environment is well suited for the transmission of chemical information. Aquatic animals have evolved highly sensitive receptors for detecting these cues. Here, I review behavioural evi...

372 citations


Journal ArticleDOI
TL;DR: A number of recent and past studies with higher plants, algae and cyanobacteria that have attempted to quantify O2 fluxes under various conditions and their contributions to a number of roles, including photon energy dissipation are reviewed.
Abstract: Linear electron transport in chloroplasts produces a number of reduced components associated with photosystem I (PS I) that may subsequently participate in reactions that reduce O2. The two primary reactions that have been extensively studied are: first, the direct reduction of O2 to superoxide by reduced donors associated with PS I (the Mehler reaction), and second, the rubisco oxygenase (ribulose 1,5-bisphosphate carboxylase oxygenase EC 4.1.1.39) reaction and associated peroxisomal and mitochondrial reactions of the photorespiratory pathway. This paper reviews a number of recent and past studies with higher plants, algae and cyanobacteria that have attempted to quantify O2 fluxes under various conditions and their contributions to a number of roles, including photon energy dissipation. In C3 and Crassulacean acid metabolism (CAM) plants, a Mehler O2 uptake reaction is unlikely to support a significant flow of electron transport (probably less than 10%). In addition, if it were present it would appear to scale with photosynthetic carbon oxidation cycle (PCO) and photosynthetic carbon reduction cycle (PCR) activity This is supported by studies with antisense tobacco plants with reduced rubisco at low and high temperatures and high light, as well as studies with potatoes, grapes and madrone during water stress. The lack of significant Mehler in these plants directly argues for a strong control of Mehler reaction in the absence of ATP consumption by the PCR and PCO cycles. The difference between C3 and C4 plants is primarily that the level of light-dependent O2 uptake is generally much lower in C4 plants and is relatively insensitive to the external CO2 concentration. Such a major difference is readily attributed to the operation of the C4 CO2 concentrating mechanism. Algae show a range of light-dependent O2 uptake rates, similar to C4 plants. As in C4 plants, the O2 uptake appears to be largely insensitive to CO2, even in species that lack a CO2 concentrating mechanism and under conditions that are clearly limiting with respect to inorganic carbon supply. A part explanation for this could be that many algal rubsicos have considerably different oxygenase kinetic properties and exhibit far less oxygenase activity in air. This would lead to the conclusion that perhaps a greater proportion of the observed O2 uptake may be due to a Mehler reaction and less to rubisco, compared with C3 plants. In contrast to algae and higher plants, cyanobacteria appear to have a high capacity for Mehler O2 uptake, which appears to be not well coupled or limited by ATP consumption. It is likely that in all higher plants and algae, which have a well-developed non-photochemical quenching mechanism, non-radiative energy dissipation is the major mechanism for dissipating excess photons absorbed by the light-harvesting complexes under stressful conditions. However, for cyanobacteria, with a lack of significant non-photochemical quenching, the situation may well be different.

Journal ArticleDOI
TL;DR: The evidence required to attribute changes in disease and vectors to the early effects of anthropogenic climate change is discussed, including the appropriate levels of evidence, including dealing with the uncertainties attached to detecting the health impacts of global change.
Abstract: The world's climate appears now to be changing at an unprecedented rate. Shifts in the distribution and behaviour of insect and bird species indicate that biological systems are already responding to this change. It is well established that climate is an important determinant of the spatial and temporal distribution of vectors and pathogens. In theory, a change in climate would be expected to cause changes in the geographical range, seasonality (intra-annual variability), and in the incidence rate (with or without changes in geographical or seasonal patterns). The detection and then attribution of such changes to climate change is an emerging task for scientists. We discuss the evidence required to attribute changes in disease and vectors to the early effects of anthropogenic climate change. The literature to date indicates that there is a lack of strong evidence of the impact of climate change on vector-borne diseases (i.e. malaria, dengue, leishmaniasis, tick-borne diseases). New approaches to monitoring, such as frequent and long-term sampling along transects to monitor the full latitudinal and altitudinal range of specific vector species, are necessary in order to provide convincing direct evidence of climate change effects. There is a need to reassess the appropriate levels of evidence, including dealing with the uncertainties attached to detecting the health impacts of global change.

Journal ArticleDOI
TL;DR: A new perspective on how the central nervous system represents and solves some of the most fundamental computational problems of motor control is discussed, including the task of transforming a planned limb movement into an adequate set of motor commands.
Abstract: In this paper we discuss a new perspective on how the central nervous system (CNS) represents and solves some of the most fundamental computational problems of motor control. In particular, we consider the task of transforming a planned limb movement into an adequate set of motor commands. To carry out this task the CNS must solve a complex inverse dynamic problem. This problem involves the transformation from a desired motion to the forces that are needed to drive the limb. The inverse dynamic problem is a hard computational challenge because of the need to coordinate multiple limb segments and because of the continuous changes in the mechanical properties of the limbs and of the environment with which they come in contact. A number of studies of motor learning have provided support for the idea that the CNS creates, updates and exploits internal representations of limb dynamics in order to deal with the complexity of inverse dynamics. Here we discuss how such internal representations are likely to be built by combining the modular primitives in the spinal cord as well as other building blocks found in higher brain structures. Experimental studies on spinalized frogs and rats have led to the conclusion that the premotor circuits within the spinal cord are organized into a set of discrete modules. Each module, when activated, induces a specific force field and the simultaneous activation of multiple modules leads to the vectorial combination of the corresponding fields. We regard these force fields as computational primitives that are used by the CNS for generating a rich grammar of motor behaviours.

Journal ArticleDOI
TL;DR: Investigation of ascorbate-deficient Arabidopsis thaliana vtc mutants shows that they have reduced zeaxanthin-dependent non-photochemical quenching, confirming that asCorbate is the cofactor for violaxanth in de-epoxidase and that availability of thylakoid lumen ascorBate could limit this reaction.
Abstract: Ascorbate (vitamin C) can reach very high concentrations in chloroplasts (20-300 mM). The pool size in leaves and chloroplasts increases during acclimation to high light intensity and the highest concentrations recorded are in high alpine plants. Multiple functions for ascorbate in photosynthesis have been proposed, including scavenging of active oxygen species generated by oxygen photoreduction and photorespiration, regeneration of alpha-tocopherol from alpha-tocopheryl radicals, cofactor for violaxanthin de-epoxidase and donation of electrons to photosystem II. Hydrogen peroxide scavenging is catalysed by ascorbate peroxidase (Mehler peroxidase reaction) and the subsequent regeneration of ascorbate by reductant derived from photosystem I allows electron flow in addition to that used for CO2 assimilation. Ascorbate is synthesized from guanosine diphosphate-mannose via L-galactose and L-galactono-1,4-lactone. The last step, catalysed by L-galactono-1,4-lactone dehydrogenase, is located on the inner mitochondrial membrane and uses cytochrome c as electron acceptor. L-galactono-1,4-lactone oxidation to ascorbate by intact leaves is faster in high-light acclimated leaves and is also enhanced by high light, suggesting that this step contributes to the control of pool size by light. Ascorbate-deficient Arabidopsis thaliana vtc mutants are hypersensitive to a number of oxidative stresses including ozone and ultraviolet B radiation. Further investigation of these mutants shows that they have reduced zeaxanthin-dependent non-photochemical quenching, confirming that ascorbate is the cofactor for violaxanthin de-epoxidase and that availability of thylakoid lumen ascorbate could limit this reaction. The vtc mutants are also more sensitive to photo-oxidation imposed by combined high light and salt treatments.

Journal ArticleDOI
TL;DR: The nature of, and motivation for, neuronal transients is described in relation to characterizing brain dynamics, and it is shown that nonlinear (asynchronous) coupling is, in fact, more abundant and can be more significant than synchronous coupling.
Abstract: In this, the first of three papers, the nature of, and motivation for, neuronal transients is described in relation to characterizing brain dynamics. This paper deals with some basic aspects of neuronal dynamics, interactions, coupling and implicit neuronal codes. The second paper develops neuronal transients and nonlinear coupling in the context of dynamic instability and complexity, and suggests that instability or lability is necessary for adaptive self–organization. The final paper addresses the role of neuronal transients through information theory and the emergence of spatio–temporal receptive fields and functional specialization. By considering the brain as an ensemble of connected dynamic systems one can show that a sufficient description of neuronal dynamics comprises neuronal activity at a particular time and its recent history. This history constitutes a neuronal transient. As such, transients represent a fundamental metric of neuronal interactions and, implicitly, a code employed in the functional integration of brain systems. The nature of transients, expressed conjointly in distinct neuronal populations, reflects the underlying coupling among populations. This coupling may be synchronous (and possibly oscillatory) or asynchronous. A critical distinction between synchronous and asynchronous coupling is that the former is essentially linear and the latter is nonlinear. The nonlinear nature of asynchronous coupling enables the rich, context–sensitive interactions that characterize real brain dynamics, suggesting that it plays a role in functional integration that may be as important as synchronous interactions. The distinction between linear and nonlinear coupling has fundamental implications for the analysis and characterization of neuronal interactions, most of which are predicated on linear (synchronous) coupling (e.g. crosscorrelograms and coherence). Using neuromagnetic data it is shown that nonlinear (asynchronous) coupling is, in fact, more abundant and can be more significant than synchronous coupling.

Journal ArticleDOI
TL;DR: An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided and it is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant can colonize a thalloid liverwort, producing arbuscules and vesicles in the hepatic.
Abstract: An analysis of the current state of knowledge of symbiotic fungal associations in ‘lower’ plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well–defined groups of ‘lower’ plants. Among the ‘lower’ plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in ‘higher’ plants are discussed. Particular consideration is given to the question of the extent to which root–fungus associations in ‘lower’ plants are analogous to ‘mycorrhizas’ of ‘higher’ plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular–arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeobotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant ( Plantago lanceolata ) can colonize a thalloid liverwort ( Pellia epiphylla ), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of these plants are similar to those seen in mycorrhizal associations of ericaceous plants like Vaccinium . Cross inoculation experiments have confirmed that a typical mycorrhizal endophyte of ericaceous plants, Hymenoscyphus ericae , will form associations in liverworts which are structurally identical to those seen in nature. Again, the functional significance of these associations remains to be examined. Some members of the Jungermanniales and Metzgeriales form associations with basidiomycetous fungi. These produce intracellular coils of hyphae, which are similar to the pelotons seen in orchid mycorrhizas, which also involve basidiomycetes. The fungal associates of the autotrophic Aneura and of its heterotrophic relative Cryptothallus mirabilis have been isolated. In the latter case it has been shown that the fungal symbiont is an ectomycorrhizal associate of Betula , suggesting that the apparently obligate nature of the association between the hepatic and Betula in nature is based upon requirement for this particular heterotroph.

Journal ArticleDOI
TL;DR: This work focuses its attention principally on theoretical studies of a classical metapopulation with a 'finite-island' model of population structure, rather than on 'continent- island' models or 'source-sink' models.
Abstract: Many species persist as a metapopulation under a balance between the local extinction of subpopulations or demes and their recolonization through dispersal from occupied patches. Here we review the...

Journal ArticleDOI
David C. Queller1
TL;DR: The role of kinship is examined, focusing on the transitions to multicellularity in animals and to coloniality in insects, to show that kin selection based on high relatedness permitted cooperation and a reproductive division of labour.
Abstract: Many of the major transitions in evolution involved the coalescence of independent lower-level units into a higher organismal level. This paper examines the role of kinship, focusing on the transitions to multicellularity in animals and to coloniality in insects. In both, kin selection based on high relatedness permitted cooperation and a reproductive division of labour. The higher relatedness of haplodiploid females to their sisters than to their offspring might not have been crucial in the origin of insect societies, and the transition to multicellularity shows that such special relationships are not required. When multicellular forms develop from a single cell, selfish conflict is minimal because each selfish mutant obtains only one generation of within-individual advantage in a chimaera. Conditionally expressed traits are particularly immune to within-individual selfishness because such mutations are rarely expressed in chimaeras. Such conditionally expressed altruism genes lead easily to the evolution of the soma, and the germ line might simply be what is left over. In most social insects, differences in relatedness ensure that there will be potential conflicts. Power asymmetries sometimes lead to such decisive settlements of conflicts that social insect colonies can be considered to be fully organismal.

Journal ArticleDOI
TL;DR: A relational database is built up by systematically collating published data on the spread of activity after strychnine-induced disinhibition in the macaque cerebral cortex in vivo to demonstrate that the cortical network of functional interactions is not homogeneous, but shows a clear segregation into functional assemblies of mutually interacting areas.
Abstract: Recent analyses of association fibre networks in the primate cerebral cortex have revealed a small number of densely intra–connected and hierarchically organized structural systems. Corresponding analyses of data on functional connectivity are required to establish the significance of these structural systems. W e therefore built up a relational database by systematically collating published data on the spread of activity after strychnine–induced disinhibition in the macaque cerebral cortex in vivo . After mapping these data to two different parcellation schemes, we used three independent methods of analysis which demonstrate that the cortical network of functional interactions is not homogeneous, but shows a clear segregation into functional assemblies of mutually interacting areas. The assemblies suggest a principal division of the cortex into visual, somatomotor and orbito–temporo–insular systems, while motor and somatosensory areas are inseparably interrelated. These results are largely compatible with corresponding analyses of structural data of mammalian cerebral cortex, and deliver the first functional evidence for ‘small–world’ architecture of primate cerebral cortex.

Journal ArticleDOI
TL;DR: Quorum sensing constitutes a novel therapeutic target for the design of small molecular antagonists capable of attenuating virulence through the blockade of bacterial cell-cell communication.
Abstract: One crucial feature of almost all bacterial infections is the need for the invading pathogen to reach a critical cell population density sufficient to overcome host defences and establish the infection. Controlling the expression of virulence determinants in concert with cell population density may therefore confer a significant survival advantage on the pathogen such that the host is overwhelmed before a defence response can be fully initiated. Many different bacterial pathogens are now known to regulate diverse physiological processes including virulence in a cell-density-dependent manner through cell-cell communication. This phenomenon, which relies on the interaction of a diffusible signal molecule (e.g. an N-acylhomoserine lactone) with a sensor or transcriptional activator to couple gene expression with cell population density, has become known as 'quorum sensing'. Although the size of the 'quorum' is likely to be highly variable and influenced by the diffusibility of the signal molecule within infected tissues, nevertheless quorum-sensing signal molecules can be detected in vivo in both experimental animal model and human infections. Furthermore, certain quorum-sensing molecules have been shown to possess pharmacological and immunomodulatory activity such that they may function as virulence determinants per se. As a consequence, quorum sensing constitutes a novel therapeutic target for the design of small molecular antagonists capable of attenuating virulence through the blockade of bacterial cell-cell communication.

Journal ArticleDOI
TL;DR: This review focuses on compartment-specific differences in the stringency of redox coupling between ascorbate and glutathione, and the significance this may have for the flexibility of the control of gene expression that is linked to photosynthetic H2O2 production.
Abstract: Photosynthesis has a high capacity for production of hydrogen peroxide (H2O2), but the intracellular levels of this relatively weak oxidant are controlled by the antioxidant system, comprising a network of enzymatic and non-enzymatic components that notably includes reactions linked to the intracellular ascorbate and glutathione pools. Mutants and transformed plants with specific decreases in key components offer the opportunity to dissect the complex system that maintains redox homeostasis. Since H2O2 is a signal-transducing molecule relaying information on intracellular redox state, the pool size must be rigorously controlled within each compartment of the cell. This review focuses on compartment-specific differences in the stringency of redox coupling between ascorbate and glutathione, and the significance this may have for the flexibility of the control of gene expression that is linked to photosynthetic H2O2 production.

Journal ArticleDOI
TL;DR: Development and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation, and phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes.
Abstract: As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage-filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non-synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophvtes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http: //www.science.siu.edu/ landplants/index.html.

Journal ArticleDOI
TL;DR: The spectra of colours in high spatial frequency patterns are often well designed to be very conspicuous to a colour vision system at close range but well camouflaged at a distance, and reef fishes use a combination of colour and behaviour to regulate their conspicuousness and crypsis.
Abstract: Reef fishes present the observer with the most diverse and stunning assemblage of animal colours anywhere on earth. The functions of some of these colours and their combinations are examined using new non-subjective spectrophotometric measurements of the colours of fishes and their habitat. Conclusions reached are as follows: (i) the spectra of colours in high spatial frequency patterns are often well designed to be very conspicuous to a colour vision system at close range but well camouflaged at a distance; (ii) blue and yellow, the most frequently used colours in reef fishes, may be good for camouflage or communication depending on the background they are viewed against; and (iii) reef fishes use a combination of colour and behaviour to regulate their conspicuousness and crypsis.

Journal ArticleDOI
TL;DR: In vitro, it is confirmed in vitro that F1 indeed does ca.
Abstract: A single molecule of F 1 –ATPase is by itself a rotary motor in which a central γ–subunit rotates against a surrounding cylinder made of α 3 β 3 –subunits. Driven by the three βs that sequentially hydrolyse ATP, the motor rotates in discrete 120° steps, as demonstrated in video images of the movement of an actin filament bound, as a marker, to the central γ–subunit. Over a broad range of load (hydrodynamic friction against the rotating actin filament) and speed, the F motor produces a constant torque of ca . 40 pN nm. The work done in a 120° step, or the work per ATP molecule, is thus ca . 80 pN nm. In cells, the free energy of ATP hydrolysis is ca . 90 pN nm per ATP molecule, suggesting that the F 1 motor can work at near 100% efficiency. We confirmed in vitro that F 1 indeed does ca . 80 pN nm of work under the condition where the free energy per ATP is 90 pN nm. The high efficiency may be related to the fully reversible nature of the F 1 motor: the ATP synthase, of which F 1 is a part, is considered to synthesize ATP from ADP and phosphate by reverse rotation of the F motor. Possible mechanisms of F 1 rotation are discussed.

Journal ArticleDOI
TL;DR: It is only from the Late Silurian onwards that the microfossil/ megafossil record can be integrated and utilized in interpretation of the flora.
Abstract: Dispersed microfossils (spores and phytodebris) provide the earliest evidence for land plants. They are first reported from the Llanvirn (Mid-Ordovician). More or less identical assemblages occur from the Llanvirn (Mid-Ordovician) to the late Llandovery (Early Silurian), suggesting a period of relative stasis some 40 Myr in duration. Various lines of evidence suggest that these early dispersed microfossils derive from parent plants that were bryophyte-like if not in fact bryophytes. In the late Llandovery (late Early Silurian) there was a major change in the nature of dispersed spore assemblages as the separated products of dyads (hilate monads) and tetrads (trilete spores) became relatively abundant. The inception of trilete spores probably represents the appearance of vascular plants or their immediate progenitors. A little later in time, in the Wenlock (early Late Silurian), the earliest unequivocal land plant megafossils occur. They are represented by rhyniophytoids. It is only from the Late Silurian onwards that the microfossil/ megafossil record can be integrated and utilized in interpretation of the flora. Dispersed microfossils are preserved in vast numbers, in a variety of environments, and have a reasonable spatial and temporal fossil record. The fossil record of plant megafossils by comparison is poor and biased, with only a dozen or so known pre-Devonian assemblages. In this paper, the early land plant microfossil record, and its interpretation, are reviewed. New discoveries, novel techniques and fresh lines of inquiry are outlined and discussed.

Journal ArticleDOI
TL;DR: Current understanding of the mechanism for the nitrite-dependent NO production in plants is focused on and impacts of NO produced by NR on photosynthesis are discussed in association with photo-oxidative stress in leaves.
Abstract: Air pollution studies have shown that nitric oxide (NO), a gaseous free radical, is a potent photosynthetic inhibitor that reduces CO 2 uptake activity in leaves. It is now recognized that NO is not only an air pollutant but also an endogenously produced metabolite, which may play a role in regulating plant cell functions. Although many studies have suggested the presence of mammalian–type NO synthase (NOS) in plants, the source of NO is still not clear. There has been a number of studies indicating that plant cells possess a nitrite–dependent NO production pathway which can be distinguished from the NOS–mediated reaction. Nitrate reductase (NR) has been recently found to be capable of producing NO through oneelectron reduction of nitrite using NAD(P)H as an electron donor. This review focuses on current understanding of the mechanism for the nitrite–dependent NO production in plants. Impacts of NO produced by NR on photosynthesis are discussed in association with photo–oxidative stress in leaves.

Journal ArticleDOI
TL;DR: A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics, suggesting that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit.
Abstract: Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid delta pH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonation-dependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.

Journal ArticleDOI
TL;DR: Cryoelectron microscopy has revealed other angles of the lever arm induced by ADP binding to a smooth muscle actin-myosin complex.
Abstract: The myosin crossbridge exists in two conformations, which differ in the orientation of a long lever arm. Since the lever arm undergoes a 60 rotation between the two conformations, which would lead ...

Journal ArticleDOI
TL;DR: This article sets out to present a fairly comprehensive review of knowledge about the functions of the receptors that have been found in the extraocular muscles--the six muscles that move each eye of vertebrates in its orbit--of all the animals in which they have been sought, including Man.
Abstract: This article sets out to present a fairly comprehensive review of our knowledge about the functions of the receptors that have been found in the extraocular muscles--the six muscles that move each eye of vertebrates in its orbit--of all the animals in which they have been sought, including Man. Since their discovery at the beginning of the 20th century these receptors have, at various times, been credited with important roles in the control of eye movement and the construction of extrapersonal space and have also been denied any function whatsoever. Experiments intended to study the actions of eye muscle receptors and, even more so, opinions (and indeed polemic) derived from these observations have been influenced by the changing fashions and beliefs about the more general question of how limb position and movement is detected by the brain and which signals contribute to those aspects of this that are perceived (kinaesthesis). But the conclusions drawn from studies on the eye have also influenced beliefs about the mechanisms of kinaesthesis and, arguably, this influence has been even larger than that in the converse direction. Experimental evidence accumulated over rather more than a century is set out and discussed. It supports the view that, at the beginning of the 21st century, there are excellent grounds for believing that the receptors in the extraocular muscles are indeed proprioceptors, that is to say that the signals that they send into the brain are used to provide information about the position and movement of the eye in the orbit. It seems that this information is important in the control of eye movements of at least some types, and in the determination by the brain of the direction of gaze and the relationship of the organism to its environment. In addition, signals from these receptors in the eye muscles are seen to be necessary for the development of normal mechanisms of visual analysis in the mammalian visual cortex and for both the development and maintenance of normal visuomotor behaviour. Man is among those vertebrates to whose brains eye muscle proprioceptive signals provide information apparently used in normal sensorimotor functions; these include various aspects of perception, and of the control of eye movement. It is possible that abnormalities of the eye muscle proprioceptors and their signals may play a part in the genesis of some types of human squint (strabismus); conversely studies of patients with squint in the course of their surgical or pharmacological treatment have yielded much interesting evidence about the central actions of the proprioceptive signals from the extraocular muscles. The results of experiments on the eye have played a large part in the historical controversy, now in at least its third century, about the origin of signals that inform the brain about movement of parts of the body. Some of these results, and more of the interpretations of them, now need to be critically re-examined. The re-examination in the light of recent experiments that is presented here does not support many of the conclusions confidently drawn in the past and leads to both new insights and fresh questions about the roles of information from motor signals flowing out of the brain and that from signals from the peripheral receptors flowing into it. There remain many lacunae in our knowledge and filling some of these will, it is contended, be essential to advance our understanding further. It is argued that such understanding of eye muscle proprioception is a necessary part of the understanding of the physiology and pathophysiology of eye movement control and that it is also essential to an account of how organisms, including Man, build and maintain knowledge of their relationship to the external visual world. The eye would seem to provide a uniquely favourable system in which to study the way in which information derived within the brain about motor actions may interact with signals flowing in from peripheral receptors. The review is constructed in relatively independent sections that deal with particular topics. It ends with a fairly brief piece in which the author sets out some personal views about what has been achieved recently and what most immediately needs to be done. It also suggests some lines of study that appear to the author to be important for the future.

Journal ArticleDOI
TL;DR: Findings suggest a mechanism for adjustment of photosystem stoichiometry in which initial events involve a sensor of the redox state of plastoquinone, and may be the same as the initial events of state transitions.
Abstract: Chloroplasts are cytoplasmic organelles whose primary function is photosynthesis, but which also contain small, specialized and quasi–autonomous genetic systems In photosynthesis, two energy converting photosystems are connected, electrochemically, in series The connecting electron carriers are oxidized by photosystem I (PS I) and reduced by photosystem II (PS II) It has recently been shown that the oxidation–reduction state of one connecting electron carrier, plastoquinone, controls transcription of chloroplast genes for reaction centre proteins of the two photosystems The control counteracts the imbalance in electron transport that causes it: oxidized plastoquinone induces PS II and represses PS I; reduced plastoquinone induces PS I and represses PS II This complementarity is observed both in vivo , using light favouring one or other photosystem, and in vitro , when site–specific electron transport inhibitors are added to transcriptionally and photosynthetically active chloroplasts There is thus a transcriptional level of control that has a regulatory function similar to that of purely post–translational ‘state transitions’ in which the redistribution of absorbed excitation energy between photosystems is mediated by thylakoid membrane protein phosphorylation The changes in rates of transcription that are induced by spectral changes in vivo can be detected even before the corresponding state transitions are complete, suggesting the operation of a branched pathway of redox signal transduction These findings suggest a mechanism for adjustment of photosystem stoichiometry in which initial events involve a sensor of the redox state of plastoquinone, and may thus be the same as the initial events of state transitions Redox control of chloroplast transcription is also consistent with the proposal that a direct regulatory coupling between electron transport and gene expression determines the function and composition of the chloroplast's extra–nuclear genetic system