scispace - formally typeset
Search or ask a question

Showing papers in "Philosophical Transactions of the Royal Society B in 2002"


Journal ArticleDOI
TL;DR: These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input and processing of neuronal information within a region and not the output signal transmitted to other brain regions.
Abstract: Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently...

882 citations


Journal ArticleDOI
TL;DR: This work provides verifiable criteria to distinguish host races from other biotypes, and discusses applications of an understanding of host races in conservation and in managing adaptation by pests to control strategies, including those involving biological control or transgenic parasite-resistant plants.
Abstract: The existence of a continuous array of sympatric biotypes - from polymorphisms, through ecological or host races with increasing reproductive isolation, to good species - can provide strong evidence for a continuous route to sympatric speciation via natural selection. Host races in plant-feeding insects, in particular, have often been used as evidence for the probability of sympatric speciation. Here, we provide verifiable criteria to distinguish host races from other biotypes: in brief, host races are genetically differentiated, sympatric populations of parasites that use different hosts and between which there is appreciable gene flow. We recognize host races as kinds of species that regularly exchange genes with other species at a rate of more than ca. 1% per generation, rather than as fundamentally distinct taxa. Host races provide a convenient, although admittedly somewhat arbitrary intermediate stage along the speciation continuum. They are a heuristic device to aid in evaluating the probability of speciation by natural selection, particularly in sympatry. Speciation is thereby envisaged as having two phases: (i) the evolution of host races from within polymorphic, panmictic populations; and (ii) further reduction of gene flow between host races until the diverging populations can become generally accepted as species. We apply this criterion to 21 putative host race systems. Of these, only three are unambiguously classified as host races, but a further eight are strong candidates that merely lack accurate information on rates of hybridization or gene flow. Thus, over one-half of the cases that we review are probably or certainly host races, under our definition. Our review of the data favours the idea of sympatric speciation via host shift for three major reasons: (i) the evolution of assortative mating as a pleiotropic by-product of adaptation to a new host seems likely, even in cases where mating occurs away from the host; (ii) stable genetic differences in half of the cases attest to the power of natural selection to maintain multilocus polymorphisms with substantial linkage disequilibrium, in spite of probable gene flow; and (iii) this linkage disequilibrium should permit additional host adaptation, leading to further reproductive isolation via pleiotropy, and also provides conditions suitable for adaptive evolution of mate choice (reinforcement) to cause still further reductions in gene flow. Current data are too sparse to rule out a cryptic discontinuity in the apparently stable sympatric route from host-associated polymorphism to host-associated species, but such a hiatus seems unlikely on present evidence. Finally, we discuss applications of an understanding of host races in conservation and in managing adaptation by pests to control strategies, including those involving biological control or transgenic parasite-resistant plants.

876 citations


Journal ArticleDOI
TL;DR: The lateral geniculate nucleus is the best understood thalamic relay and serves as a model for all thAlamic relays, and may involve these corticothalamocortical 're-entry' routes to a far greater extent than previously appreciated.
Abstract: The lateral geniculate nucleus is the best understood thalamic relay and serves as a model for all thalamic relays. Only 5-10% of the input to geniculate relay cells derives from the retina, which is the driving input. The rest is modulatory and derives from local inhibitory inputs, descending inputs from layer 6 of the visual cortex, and ascending inputs from the brainstem. These modulatory inputs control many features of retinogeniculate transmission. One such feature is the response mode, burst or tonic, of relay cells, which relates to the attentional demands at the moment. This response mode depends on membrane potential, which is controlled effectively by the modulator inputs. The lateral geniculate nucleus is a first-order relay, because it relays subcortical (i.e. retinal) information to the cortex for the first time. By contrast, the other main thalamic relay of visual information, the pulvinar region, is largely a higher-order relay, since much of it relays information from layer 5 of one cortical area to another. All thalamic relays receive a layer-6 modulatory input from cortex, but higher-order relays in addition receive a layer-5 driver input. Corticocortical processing may involve these corticothalamocortical 're-entry' routes to a far greater extent than previously appreciated. If so, the thalamus sits at an indispensable position for the modulation of messages involved in corticocortical processing.

813 citations


Journal ArticleDOI
TL;DR: It is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology.
Abstract: The term 'elastic protein' applies to many structural proteins with diverse functions and mechanical properties so there is room for confusion about its meaning. Elastic implies the property of elasticity, or the ability to deform reversibly without loss of energy; so elastic proteins should have high resilience. Another meaning for elastic is 'stretchy', or the ability to be deformed to large strains with little force. Thus, elastic proteins should have low stiffness. The combination of high resilience, large strains and low stiffness is characteristic of rubber-like proteins (e.g. resilin and elastin) that function in the storage of elastic-strain energy. Other elastic proteins play very different roles and have very different properties. Collagen fibres provide exceptional energy storage capacity but are not very stretchy. Mussel byssus threads and spider dragline silks are also elastic proteins because, in spite of their considerable strength and stiffness, they are remarkably stretchy. The combination of strength and extensibility, together with low resilience, gives these materials an impressive resistance to fracture (i.e. toughness), a property that allows mussels to survive crashing waves and spiders to build exquisite aerial filters. Given this range of properties and functions, it is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology.

778 citations


Journal ArticleDOI
TL;DR: The total number of environmental refugees could well double by the year 2010, and increase steadily for a good while thereafter as growing numbers of impoverished people press ever harder on overloaded environments.
Abstract: There is a new phenomenon in the global arena: environmental refugees. These are people who can no longer gain a secure livelihood in their homelands because of drought, soil erosion, desertification, deforestation and other environmental problems, together with the associated problems of population pressures and profound poverty. In their desperation, these people feel they have no alternative but to seek sanctuary elsewhere, however hazardous the attempt. Not all of them have fled their countries, many being internally displaced. But all have abandoned their homelands on a semi-permanent if not permanent basis, with little hope of a foreseeable return. In 1995, environmental refugees totalled at least 25 million people, compared with 27 million traditional refugees (people fleeing political oppression, religious persecution and ethnic troubles). The total number of environmental refugees could well double by the year 2010, and increase steadily for a good while thereafter as growing numbers of impoverished people press ever harder on overloaded environments. When global warming takes hold, there could be as many as 200 million people overtaken by sea-level rise and coastal flooding, by disruptions of monsoon systems and other rainfall regimes, and by droughts of unprecedented severity and duration.

703 citations


Journal ArticleDOI
TL;DR: Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment.
Abstract: The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment.

700 citations


Journal ArticleDOI
TL;DR: It is predicted that when erroneous cascades are costly, individuals should pay attention only to socially generated cues and not behavioural decisions, and suggest three scenarios that might be examples of informational cascades in nature.
Abstract: The acquisition and use of socially acquired information is commonly assumed to be profitable. We challenge this assumption by exploring hypothetical scenarios where the use of such information either provides no benefit or can actually be costly. First, we show that the level of incompatibility between the acquisition of personal and socially acquired information will directly affect the extent to which the use of socially acquired information can be profitable. When these two sources of information cannot be acquired simultaneously, there may be no benefit to socially acquired information. Second, we assume that a solitary individual's behavioural decisions will be based on cues revealed by its own interactions with the environment. However, in many cases, for social animals the only socially acquired information available to individuals is the behavioural actions of others that expose their decisions, rather than the cues on which these decisions were based. We argue that in such a situation the use of socially acquired information can lead to informational cascades that sometimes result in sub-optimal behaviour. From this theory of informational cascades, we predict that when erroneous cascades are costly, individuals should pay attention only to socially generated cues and not behavioural decisions. We suggest three scenarios that might be examples of informational cascades in nature.

538 citations


Journal ArticleDOI
TL;DR: It is argued that song learning may initially constrain reproductive divergence, while in the later stages of population divergence it may promote speciation, and primarily on species with learned song.
Abstract: The study of bird song dialects was once considered the most promising approach for investigating the role of behaviour in reproductive divergence and speciation. However, after a series of studies yielding conflicting results, research in the field slowed significantly. Recent findings, on how ecological factors may lead to divergence in both song and morphology, necessitate a re-examination. We focus primarily on species with learned song, examine conflicting results in the literature and propose some potential new directions for future studies. We believe an integrative approach, including an examination of the role of ecology in divergent selection, is essential for gaining insight into the role of song in the evolution of assortative mating. Habitat-dependent selection on both song and fitness-related characteristics can lead to parallel divergence in these traits. Song may, therefore, provide females with acoustic cues to find males that are most fit for a particular habitat. In analysing the role of song learning in reproductive divergence, we focus on post-dispersal plasticity in a conceptual framework. We argue that song learning may initially constrain reproductive divergence, while in the later stages of population divergence it may promote speciation.

503 citations


Journal ArticleDOI
TL;DR: It is concluded that a recent African origin can be supported for H. sapiens, morphologically, behaviourally and genetically, but that more evidence will be needed, both from Africa and elsewhere, before an absolute African origin for the authors' species and its behavioural characteristics can be established and explained.
Abstract: The question of the mode of origin of modern humans (Homo sapiens) has dominated palaeoanthropological debate over the last decade. This review discusses the main models proposed to explain modern human origins, and examines relevant fossil evidence from Eurasia, Africa and Australasia. Archaeological and genetic data are also discussed, as well as problems with the concept of 'modernity' itself. It is concluded that a recent African origin can be supported for H. sapiens, morphologically, behaviourally and genetically, but that more evidence will be needed, both from Africa and elsewhere, before an absolute African origin for our species and its behavioural characteristics can be established and explained.

502 citations


Journal ArticleDOI
TL;DR: The wheat gluten proteins correspond to the major storage proteins that are deposited in the starchy endosperm cells of the developing grain and are brought together to form a continuous viscoelastic network when flour is mixed with water to form dough.
Abstract: The wheat gluten proteins correspond to the major storage proteins that are deposited in the starchy endosperm cells of the developing grain. These form a continuous proteinaceous matrix in the cells of the mature dry grain and are brought together to form a continuous viscoelastic network when flour is mixed with water to form dough. These viscoelastic properties underpin the utilization of wheat to give bread and other processed foods. One group of gluten proteins, the HMM subunits of glutenin, is particularly important in conferring high levels of elasticity (i.e. dough strength). These proteins are present in HMM polymers that are stabilized by disulphide bonds and are considered to form the ‘elastic backbone’ of gluten. However, the glutamine–rich repetitive sequences that comprise the central parts of the HMM subunits also form extensive arrays of interchain hydrogen bonds that may contribute to the elastic properties via a ‘loop and train’ mechanism. Genetic engineering can be used to manipulate the amount and composition of the HMM subunits, leading to either increased dough strength or to more drastic changes in gluten structure and properties.

480 citations


Journal ArticleDOI
TL;DR: It is concluded that population regulation, density dependence, resource and interference competition, the effects of environmental stress and the form of the ecological niche, are all best defined and analysed in terms of population growth rate.
Abstract: We argue that population growth rate is the key unifying variable linking the various facets of population ecology. The importance of population growth rate lies partly in its central role in forecasting future population trends; indeed if the form of density dependence were constant and known, then the future population dynamics could to some degree be predicted. We argue that population growth rate is also central to our understanding of environmental stress: environmental stressors should be defined as factors which when first applied to a population reduce population growth rate. The joint action of such stressors determines an organism's ecological niche, which should be defined as the set of environmental conditions where population growth rate is greater than zero (where population growth rate = r = log(e)(N(t+1)/N(t))). While environmental stressors have negative effects on population growth rate, the same is true of population density, the case of negative linear effects corresponding to the well-known logistic equation. Following Sinclair, we recognize population regulation as occurring when population growth rate is negatively density dependent. Surprisingly, given its fundamental importance in population ecology, only 25 studies were discovered in the literature in which population growth rate has been plotted against population density. In 12 of these the effects of density were linear; in all but two of the remainder the relationship was concave viewed from above. Alternative approaches to establishing the determinants of population growth rate are reviewed, paying special attention to the demographic and mechanistic approaches. The effects of population density on population growth rate may act through their effects on food availability and associated effects on somatic growth, fecundity and survival, according to a 'numerical response', the evidence for which is briefly reviewed. Alternatively, there may be effects on population growth rate of population density in addition to those that arise through the partitioning of food between competitors; this is 'interference competition'. The distinction is illustrated using a replicated laboratory experiment on a marine copepod, Tisbe battagliae. Application of these approaches in conservation biology, ecotoxicology and human demography is briefly considered. We conclude that population regulation, density dependence, resource and interference competition, the effects of environmental stress and the form of the ecological niche, are all best defined and analysed in terms of population growth rate.

Journal ArticleDOI
TL;DR: In this paper, a simple structural model was proposed to describe the tendon at a hierarchical level, where fibrils and interfibrillar matrix act as coupled viscoelastic systems, and all qualitative features of the strain-rate dependence of both normal and crosslink-deficient collagen can be reproduced within this model.
Abstract: Collagen type I is the most abundant structural protein in tendon, skin and bone, and largely determines the mechanical behaviour of these connective tissues. To obtain a better understanding of the relationship between structure and mechanical properties, tensile tests and synchrotron X-ray scattering have been carried out simultaneously, correlating the mechanical behaviour with changes in the microstructure. Because intermolecular cross-links are thought to have a great influence on the mechanical behaviour of collagen, we also carried out experiments using cross-link-deficient tail-tendon collagen from rats fed with beta-APN, in addition to normal controls. The load-elongation curve of tendon collagen has a characteristic shape with, initially, an increasing slope, corresponding to an increasing stiffness, followed by yielding and then fracture. Cross-link-deficient collagen produces a quite different curve with a marked plateau appearing in some cases, where the length of the tendon increases at constant stress. With the use of in situ X-ray diffraction, it was possible to measure simultaneously the elongation of the collagen fibrils inside the tendon and of the tendon as a whole. The overall strain of the tendon was always larger than the strain in the individual fibrils, which demonstrates that some deformation is taking place in the matrix between fibrils. Moreover, the ratio of fibril strain to tendon strain was dependent on the applied strain rate. When the speed of deformation was increased, this ratio increased in normal collagen but generally decreased in cross-link-deficient collagen, correlating to the appearance of a plateau in the force-elongation curve indicating creep. We proposed a simple structural model, which describes the tendon at a hierarchical level, where fibrils and interfibrillar matrix act as coupled viscoelastic systems. All qualitative features of the strain-rate dependence of both normal and cross-link-deficient collagen can be reproduced within this model. This complements earlier models that considered the next smallest level of hierarchy, describing the deformation of collagen fibrils in terms of changes in their molecular packing.

Journal ArticleDOI
TL;DR: The recent discovery of rapid cold-hardening, ice-interface desiccation and the daily resetting of critical thermal thresholds affecting mortality and mobility have emphasized the role of temperature as the most important abiotic factor, acting through physiological processes to determine ecological outcomes.
Abstract: Insects are the most diverse fauna on earth, with different species occupying a range of terrestrial and aquatic habitats from the tropics to the poles. Species inhabiting extreme low-temperature environments must either tolerate or avoid freezing to survive. While much is now known about the synthesis, biochemistry and function of the main groups of cryoprotectants involved in the seasonal processes of acclimatization and winter cold hardiness (ice-nucleating agents, polyols and antifreeze proteins), studies on the structural biology of these compounds have been more limited. The recent discovery of rapid cold-hardening, ice-interface desiccation and the daily resetting of critical thermal thresholds affecting mortality and mobility have emphasized the role of temperature as the most important abiotic factor, acting through physiological processes to determine ecological outcomes. These relationships are seen in key areas such as species responses to climate warming, forecasting systems for pest outbreaks and the establishment potential of alien species in new environments.

Journal ArticleDOI
TL;DR: It is proposed that the use of public information about the quality of environmental resources, obtained by monitoring the sampling behaviour of others, may be a widespread social phenomenon allowing individuals to make faster, more accurate assessments of their environment.
Abstract: We propose that the use of public information about the quality of environmental resources, obtained by monitoring the sampling behaviour of others, may be a widespread social phenomenon allowing individuals to make faster, more accurate assessments of their environment. To demonstrate this (i) we define public information and distinguish it from other kinds of social information; (ii) we review empirical work demonstrating the benefits and costs of using public information to estimate food patch quality; (iii) we examine recent work showing that individuals may also be using public information to improve their estimates of the quality of such disparate environmental parameters as breeding patches, opponents and mates; and finally (iv) we suggest avenues of future work to better understand the nature of public information use and when it might be used or ignored. Such work should lead to a more complete understanding of the behaviour of individuals in social aggregations.

Journal ArticleDOI
TL;DR: The prefrontal cortex seems to underlie the authors' internal representations of the 'rules of the game', which may provide the necessary foundation for the complex behaviour of primates, in whom this structure is most elaborate.
Abstract: The ability to generalize behaviour-guiding principles and concepts from experience is key to intelligent, goal-directed behaviour. It allows us to deal efficiently with a complex world and to adapt readily to novel situations. We review evidence that the prefrontal cortex-the cortical area that reaches its greatest elaboration in primates-plays a central part in acquiring and representing this information. The prefrontal cortex receives highly processed information from all major forebrain systems, and neurophysiological studies suggest that it synthesizes this into representations of learned task contingencies, concepts and task rules. In short, the prefrontal cortex seems to underlie our internal representations of the 'rules of the game'. This may provide the necessary foundation for the complex behaviour of primates, in whom this structure is most elaborate.

Journal ArticleDOI
TL;DR: Recent progress and future prospects for understanding the mechanisms that generate power laws are described, and for explaining the diversity of species and complexity of ecosystems in terms of fundamental principles of physical and biological science are described.
Abstract: Underlying the diversity of life and the complexity of ecology is order that reflects the operation of fundamental physical and biological processes. Power laws describe empirical scaling relationships that are emergent quantitative features of biodiversity. These features are patterns of structure or dynamics that are self-similar or fractal-like over many orders of magnitude. Power laws allow extrapolation and prediction over a wide range of scales. Some appear to be universal, occurring in virtually all taxa of organisms and types of environments. They offer clues to underlying mechanisms that powerfully constrain biodiversity. We describe recent progress and future prospects for understanding the mechanisms that generate these power laws, and for explaining the diversity of species and complexity of ecosystems in terms of fundamental principles of physical and biological science.

Journal ArticleDOI
TL;DR: It appears that there is no single cortical site or circuit responsible for episodic encoding, and results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex.
Abstract: We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task.

Journal ArticleDOI
TL;DR: Differences in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subunit composition of receptors at synapses formed by branches of the same corticothalamic axon in the RTN and dorsal thalamus are an important element in the capacity of the cortex to synchronize low-frequency oscillations in the network.
Abstract: The corticothalamic system has an important role in synchronizing the activities of thalamic and cortical neurons. Numerically, its synapses dominate the inputs to relay cells and to the γ–amino butyric acid (GABA)ergic cells of the reticular nucleus (RTN). The capacity of relay neurons to operate in different voltage–dependent functional modes determines that the inputs from the cortex have the capacity directly to excite the relay cells, or indirectly to inhibit them via the RTN, serving to synchronize high– or low–frequency oscillatory activity respectively in the thalamocorticothalamic network. Differences in the α–amino–3–hydroxy–5–methyl–4–isoxazolepropionic acid (AMPA) subunit composition of receptors at synapses formed by branches of the same corticothalamic axon in the RTN and dorsal thalamus are an important element in the capacity of the cortex to synchronize low–frequency oscillations in the network. Interactions of focused corticothalamic axons arising from layer VI cortical cells and diffuse corticothalamic axons arising from layer V cortical cells, with the specifically projecting core relay cells and diffusely projecting matrix cells of the dorsal thalamus, form a substrate for synchronization of widespread populations of cortical and thalamic cells during high–frequency oscillations that underlie discrete conscious events.

Journal ArticleDOI
TL;DR: A game-theoretic model of choosiness, signalling and parental care is developed and it is argued that the relative rarity of mutual mate choice is not due to biases in the operational sex ratio, and processes by which sexual strategies tend to diverge.
Abstract: Biases in the operational sex ratio (OSR) are seen as the fundamental reason behind differential competition for mates in the two sexes, and as a strong determinant behind differences in choosiness. This view has been challenged by Kokko and Monaghan, who argue that sex-specific parental investment, mortalities, mate-encounter rates and quality variation determine the mating system in a way that is not reducible to the OSR. We develop a game-theoretic model of choosiness, signalling and parental care, to examine (i) whether the results of Kokko and Monaghan remain robust when its simplifying assumptions are relaxed, (ii) how parental care coevolves with mating strategies and the OSR and (iii) why mutual mate choice is observed relatively rarely even when both sexes vary in quality. We find qualitative agreement with the simpler approach: parental investment is the primary determinant of sex roles instead of the OSR, and factors promoting choosiness are high species-specific mate-encounter rate, high sex-specific mate-encounter rate, high cost of breeding (parental investment), low cost of mate searching and highly variable quality of the opposite sex. The coevolution of parental care and mating strategies hinders mutual mate choice if one parent can compensate for reduced care by the other, but promotes it if offspring survival depends greatly on biparental care. We argue that the relative rarity of mutual mate choice is not due to biases in the OSR. Instead, we describe processes by which sexual strategies tend to diverge. This divergence is prevented, and mutual mate choice maintained, if synergistic benefits of biparental care render parental investment both high and not too different in the two sexes.

Journal ArticleDOI
TL;DR: It is shown that classical mathematical models can illuminate the processes by which colonies are able to achieve decisions that are relatively swift and very well informed in one of the most difficult collective choices that social insects face: namely, house hunting by complete societies.
Abstract: The sharing and collective processing of information by certain insect societies is one of the reasons that they warrant the superlative epithet 'super-organisms' (Franks 1989, Am. Sci. 77, 138-145). We describe a detailed experimental and mathematical analysis of information exchange and decision-making in, arguably, the most difficult collective choices that social insects face: namely, house hunting by complete societies. The key issue is how can a complete colony select the single best nest-site among several alternatives? Individual scouts respond to the diverse information they have personally obtained about the quality of a potential nest-site by producing a recruitment signal. The colony then deliberates over (i.e. integrates) different incoming recruitment signals associated with different potential nest-sites to achieve a well-informed collective decision. We compare this process in honeybees and in the ant Leptothorax albipennis. Notwithstanding many differences - for example, honeybee colonies have 100 times more individuals than L. albipennis colonies - there are certain similarities in the fundamental algorithms these societies appear to employ when they are house hunting. Scout honeybees use the full power of the waggle dance to inform their nest-mates about the distance and direction of a potential nest-site (and they indicate the quality of a nest-site indirectly through the vigour of their dance), and yet individual bees perhaps only rarely make direct comparisons of such sites. By contrast, scouts from L. albipennis colonies often compare nest-sites, but they cannot directly inform one another of their estimation of the quality of a potential site. Instead, they discriminate between sites by initiating recruitment sooner to better ones. Nevertheless, both species do make use of forms of opinion polling. For example, scout bees that have formerly danced for a certain site cease such advertising and monitor the dances of others at random. That is, they act without prejudice. They neither favour nor disdain dancers that advocate the site they had formerly advertised or the alternatives. Thus, in general the bees are less well informed than they would be if they systematically monitored dances for alternative sites rather than spending their time reprocessing information they already have. However, as a result of their lack of prejudice, less time overall will be wasted in endless debate among stubborn and potentially biased bees. Among the ants, the opinions of nest-mates are also pooled effectively when scouts use a threshold population of their nest-mates present in a new nest-site as a cue to switch to more rapid recruitment. Furthermore, the ants' reluctance to begin recruiting to poor nest-sites means that more time is available for the discovery and direct comparison of alternatives. Likewise, the retirement of honeybee scouts from dancing for a given site allows more time for other scouts to find potentially better sites. Thus, both the ants and the bees have time-lags built into their decision-making systems that should facilitate a compromise between thorough surveys for good nest-sites and relatively rapid decisions. We have also been able to show that classical mathematical models can illuminate the processes by which colonies are able to achieve decisions that are relatively swift and very well informed.

Journal ArticleDOI
TL;DR: It is concluded that it will often be impossible to deduce the extent of underlying conflict by establishing the amount of parental investment given relative to the ideal optimum for the parent.
Abstract: We outline and develop current theory on how inherent genetic conflicts of interest between the various family members can affect the flow of parental investment from parents to offspring, and discuss the problems for empirical testing that this generates. The parental investment pattern realized in nature reflects the simultaneous resolution of all the conflicts between the family players. This depends on the genetic mechanism, the mating system and reproductive constraints, on whether extra demand by progeny affects current or future sibs, and particularly on the behavioural mechanisms underlying demand (begging or solicitation) and supply (provision of parental investment by parents). The direction of deviation from the optimal parental investment for the parent(s) depends on the slope of what we term the 'effect of supply on demand', the mechanism that determines how changes in food supply affect begging levels. If increasing food increases begging (positive slope), less parental investment is supplied than the parental optimum and if increasing food decreases begging (negative slope), more parental investment is supplied. The magnitude of deviation depends on both the 'effect of supply on demand' and on the 'effect of demand on supply' (the mechanism determining how changes in begging affect food supply, which always has a positive slope). We conclude that it will often be impossible to deduce the extent of underlying conflict by establishing the amount of parental investment given relative to the ideal optimum for the parent. Some possible directions for future research are discussed.

Journal ArticleDOI
TL;DR: High-resolution three-dimensional structures are now available for four of seven non-homologous fish and insect antifreeze proteins (AFPs) and surface-surface complementarity appears to be the key to tight binding in which the contribution of hydrogen bonding seems to be secondary to van der Waals contacts.
Abstract: High-resolution three-dimensional structures are now available for four of seven non-homologous fish and insect antifreeze proteins (AFPs). For each of these structures, the ice-binding site of the AFP has been defined by site-directed mutagenesis, and ice etching has indicated that the ice surface is bound by the AFP. A comparison of these extremely diverse ice-binding proteins shows that they have the following attributes in common. The binding sites are relatively flat and engage a substantial proportion of the protein's surface area in ice binding. They are also somewhat hydrophobic -- more so than that portion of the protein exposed to the solvent. Surface-surface complementarity appears to be the key to tight binding in which the contribution of hydrogen bonding seems to be secondary to van der Waals contacts.

Journal ArticleDOI
Reuven Dukas1
TL;DR: Current data indicate that limited attention affects diet choice and constrains animals' ability simultaneously to feed and attend to predators, and experiments also suggest thatlimited attention influences social interactions, courtship and mating behaviour.
Abstract: Ecological research in the past few decades has shown that most animals acquire and respond adaptively to information that affects survival and reproduction. At the same time, neurobiological studies have established that the rate of information processing by the brain is much lower than the rate at which information is encountered in the environment, and that attentional mechanisms enable the brain to focus only on the most essential information at any given time. Recent integration of the ecological and neurobiological approaches helps us to understand key behaviours with broad ecological and evolutionary implications. Specifically, current data indicate that limited attention affects diet choice and constrains animals' ability simultaneously to feed and attend to predators. Recent experiments also suggest that limited attention influences social interactions, courtship and mating behaviour.

Journal ArticleDOI
TL;DR: Functional magnetic resonance imaging was used to identify visual field maps and colour responsivity on the ventral surface and found a visual map of the complete contralateral hemifield in a 4 cm(2) region adjacent to ventral V3; the foveal representation of this map is confluent with that of areas V1/2/3.
Abstract: Human colour vision originates in the cone photoreceptors, whose spatial density peaks in the fovea and declines rapidly into the periphery. For this reason, one expects to find a large representation of the cone–rich fovea in those cortical locations that support colour perception. Human occipital cortex contains several distinct foveal representations including at least two that extend onto the ventral surface: a region thought to be critical for colour vision. To learn more about these ventral signals, we used functional magnetic resonance imaging to identify visual field maps and colour responsivity on the ventral surface. We found a visual map of the complete contralateral hemifield in a 4 cm2 region adjacent to ventral V3; the foveal representation of this map is confluent with that of areas V1/2/3. Additionally, a distinct foveal representation is present on the ventral surface situated 3–5 cm anterior from the confluent V1/2/3 foveal representations. This organization is not consistent with the definition of area V8, which assumes the presence of a quarter field representation adjacent to V3v. Comparisons of responses to luminance–matched coloured and achromatic patterns show increased activity to the coloured stimuli beginning in area V1 and extending through the new hemifield representation and further anterior in the ventral occipital lobe.

Journal ArticleDOI
TL;DR: The recent observations of stem-cell plasticity suggest that perhaps current concepts about the operation of cell regulatory pathways are inadequate, and that new approaches for analysing complex regulatory networks will be essential.
Abstract: The recent derivation of human embryonic stem (ES) cell lines, together with results suggesting an unexpected degree of plasticity in later, seemingly more restricted, stem cells (so-called adult stem cells), have combined to focus attention on new opportunities for regenerative medicine, as well as for understanding basic aspects of embryonic development and diseases such as cancer. Many of the ideas that are now discussed have a long history and much has been underpinned by the earlier studies of teratocarcinomas, and their embryonal carcinoma (EC) stem cells, which present a malignant surrogate for the normal stem cells of the early embryo. Nevertheless, although the potential of EC and ES cells to differentiate into a wide range of tissues is now well attested, little is understood of the key regulatory mechanisms that control their differentiation. Apart from the intrinsic biological interest in elucidating these mechanisms, a clear understanding of the molecular process involved will be essential if the clinical potential of these cells is to be realized. The recent observations of stem-cell plasticity suggest that perhaps our current concepts about the operation of cell regulatory pathways are inadequate, and that new approaches for analysing complex regulatory networks will be essential.

Journal ArticleDOI
TL;DR: The existence of distinct neural processes for visual selection and saccade production is necessary to explain the flexibility of visually guided behaviour.
Abstract: Recent research has provided new insights into the neural processes that select the target for and control the production of a shift of gaze. Being a key node in the network that subserves visual processing and saccade production, the frontal eye field (FEF) has been an effective area in which to monitor these processes. Certain neurons in the FEF signal the location of conspicuous or meaningful stimuli that may be the targets for saccades. Other neurons control whether and when the gaze shifts. The existence of distinct neural processes for visual selection and saccade production is necessary to explain the flexibility of visually guided behaviour.

Journal ArticleDOI
TL;DR: The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purifiedElastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension.
Abstract: During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension.

Journal ArticleDOI
TL;DR: The adaptation strategies of psychrophilic organisms and their enzymes are beginning to be understood thanks to recent advances in the elucidation of the molecular characteristics of cold-adapted enzymes derived from X-ray crystallography, protein engineering and biophysical methods.
Abstract: Coldadapted, or psychrophilic, organisms are able to thrive at low temperatures in permanently cold environments, which in fact characterize the greatest proportion of our planet. Psychrophiles inc...

Journal ArticleDOI
TL;DR: It is shown that, when localizing the authors' hand, the central nervous system (CNS) integrates visual and proprioceptive information, each with different noise properties, in a way that minimizes the uncertainty in the overall estimate, showing that it is important to consider effects at the neural level in order to understand performance at the behavioural level.
Abstract: Neural signals are corrupted by noise and this places limits on information processing. We review the processes involved in goal-directed movements and how neural noise and uncertainty determine aspects of our behaviour. First, noise in sensory signals limits perception. We show that, when localizing our hand, the central nervous system (CNS) integrates visual and proprioceptive information, each with different noise properties, in a way that minimizes the uncertainty in the overall estimate. Second, noise in motor commands leads to inaccurate movements. We review an optimal-control framework, known as 'task optimization in the presence of signal-dependent noise', which assumes that movements are planned so as to minimize the deleterious consequences of noise and thereby minimize inaccuracy. Third, during movement, sensory and motor signals have to be integrated to allow estimation of the body's state. Models are presented that show how these signals are optimally combined. Finally, we review how the CNS deals with noise at the neural and network levels. In all of these processes, the CNS carries out the tasks in such a way that the detrimental effects of noise are minimized. This shows that it is important to consider effects at the neural level in order to understand performance at the behavioural level.

Journal ArticleDOI
TL;DR: In the numerous taxa that display live bearing by females, including teleosts, elasmobranchs, squamate reptiles and invertebrates, it is found that live bearing has always evolved from a lack of care.
Abstract: We provide the first review of phylogenetic transitions in parental care and live bearing for a wide variety of vertebrates. This includes new analyses of both numbers of transitions and transition probabilities. These reveal numerous transitions by shorebirds and anurans toward uniparental care by either sex. Whereas most or all of the shorebird transitions were from biparental care, nearly all of the anuran transitions have been from no care, reflecting the prevalence of each form of care in basal lineages in each group. Teleost (bony) fishes are similar to anurans in displaying numerous transitions toward uniparental contributions by each sex. Whereas cichlid fishes have often evolved from biparental care to female care, other teleosts have usually switched from no care to male care. Taxa that have evolved exclusive male care without courtship-role reversal are characterized by male territoriality and low costs of care per brood. Males may therefore benefit from care through female preference of parental ability in these species. Primates show a high frequency of transitions from female care to biparental care, reflecting the prevalence of female care in basal lineages. In the numerous taxa that display live bearing by females, including teleosts, elasmobranchs, squamate reptiles and invertebrates, we find that live bearing has always evolved from a lack of care. Although the transition counts and probabilities will undoubtedly be refined as phylogenetic information and methodologies improve, the overall biases in these taxa should help to place adaptive hypotheses for the evolution of care into a stronger setting for understanding directions of change.