scispace - formally typeset
Search or ask a question
JournalISSN: 1474-905X

Photochemical and Photobiological Sciences 

Springer Science+Business Media
About: Photochemical and Photobiological Sciences is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Medicine & Excited state. It has an ISSN identifier of 1474-905X. Over the lifetime, 4016 publications have been published receiving 111586 citations. The journal is also known as: Photochemical & Photobiological Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naive strains, and that bacteria will not readily develop resistance to PDT.
Abstract: Photodynamic therapy (PDT) employs a non-toxic dye, termed a photosensitizer (PS), and low intensity visible light which, in the presence of oxygen, combine to produce cytotoxic species. PDT has the advantage of dual selectivity, in that the PS can be targeted to its destination cell or tissue and, in addition, the illumination can be spatially directed to the lesion. PDT has previously been used to kill pathogenic microorganisms in vitro, but its use to treat infections in animal models or patients has not, as yet, been much developed. It is known that Gram-(−) bacteria are resistant to PDT with many commonly used PS that will readily lead to phototoxicity in Gram-(+) species, and that PS bearing a cationic charge or the use of agents that increase the permeability of the outer membrane will increase the efficacy of killing Gram-(−) organisms. All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naive strains, and that bacteria will not readily develop resistance to PDT. Treatment of localized infections with PDT requires selectivity of the PS for microbes over host cells, delivery of the PS into the infected area and the ability to effectively illuminate the lesion. Recently, there have been reports of PDT used to treat infections in selected animal models and some clinical trials: mainly for viral lesions, but also for acne, gastric infection by Helicobacter pylori and brain abcesses. Possible future clinical applications include infections in wounds and burns, rapidly spreading and intractable soft-tissue infections and abscesses, infections in body cavities such as the mouth, ear, nasal sinus, bladder and stomach, and surface infections of the cornea and skin.

1,728 citations

Journal ArticleDOI
TL;DR: This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detectingDNA damage and its future perspectives.
Abstract: Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane–pyrimidine dimers (CPDs) and 6–4 photoproducts (6–4PPs) and their Dewar valence isomers. However, cells have developed a number of repair or tolerance mechanisms to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

1,655 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to critically evaluate all of the recently published research on PDT-induced apoptosis, with a focus on studies providing mechanistic insights.
Abstract: Photodynamic therapy (PDT), a treatment for cancer and for certain benign conditions, utilizes a photosensitizer and light to produce reactive oxygen in cells. PDT is primarily employed to kill tumor and other abnormal cells, so it is important to ask how this occurs. Many of the photosensitizers currently in clinical or pre-clinical studies of PDT localize in or have a major influence on mitochondria, and PDT is a strong inducer of apoptosis in many situations. The purpose of this review is to critically evaluate all of the recently published research on PDT-induced apoptosis, with a focus on studies providing mechanistic insights. Components of the mechanism whereby PDT causes cells to undergo apoptosis are becoming understood, as are the influences of several signal transduction pathways on the response. Future research should be directed to elucidating the role(s) of the multiple steps in apoptosis in directing damaged cells to an apoptotic vs. necrotic pathway and for producing tumor ablation in conjunction with tissue-level mechanisms operating in vivo.

1,131 citations

Journal ArticleDOI
TL;DR: There remains the question as to whether a decrease in population size of the more sensitive primary producers would be compensated for by an increase in the population sizes of more tolerant species, and therefore whether there would be a net negative impact on the absorption of atmospheric carbon dioxide by these ecosystems.
Abstract: Recent results continue to show the general consensus that ozone-related increases in UV-B radiation can negatively influence many aquatic species and aquatic ecosystems (e.g., lakes, rivers, marshes, oceans). Solar UV radiation penetrates to ecological significant depths in aquatic systems and can affect both marine and freshwater systems from major biomass producers (phytoplankton) to consumers (e.g., zooplankton, fish, etc.) higher in the food web. Many factors influence the depth of penetration of radiation into natural waters including dissolved organic compounds whose concentration and chemical composition are likely to be influenced by future climate and UV radiation variability. There is also considerable evidence that aquatic species utilize many mechanisms for photoprotection against excessive radiation. Often, these protective mechanisms pose conflicting selection pressures on species making UV radiation an additional stressor on the organism. It is at the ecosystem level where assessments of anthropogenic climate change and UV-related effects are interrelated and where much recent research has been directed. Several studies suggest that the influence of UV-B at the ecosystem level may be more pronounced on community and trophic level structure, and hence on subsequent biogeochemical cycles, than on biomass levels per se.

729 citations

Journal ArticleDOI
TL;DR: Progress will depend on the development of photoremovable protecting groups that satisfy the diverse requirements of new applications--a challenging task for photochemists.
Abstract: Photolabile protecting groups enable biochemists to control the release of bioactive compounds in living tissue. ‘Caged compounds’ (photoactivatable bioagents) have become an important tool to study the events that follow chemical signalling in, e.g., cell biology and the neurosciences. The possibilities are by no means exhausted. Progress will depend on the development of photoremovable protecting groups that satisfy the diverse requirements of new applications—a challenging task for photochemists.

620 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202397
2022253
2021136
2020162
2019267
2018176