scispace - formally typeset
Search or ask a question
JournalISSN: 1463-9076

Physical Chemistry Chemical Physics 

Royal Society of Chemistry
About: Physical Chemistry Chemical Physics is an academic journal published by Royal Society of Chemistry. The journal publishes majorly in the area(s): Medicine & Density functional theory. It has an ISSN identifier of 1463-9076. Over the lifetime, 45393 publications have been published receiving 1328811 citations. The journal is also known as: PCCP.


Papers
More filters
Journal ArticleDOI
TL;DR: A large set of more than 300 molecules representing all elements-except lanthanides-in their common oxidation states was used to assess the quality of the bases all across the periodic table, and recommendations are given which type of basis set is used best for a certain level of theory and a desired quality of results.
Abstract: Gaussian basis sets of quadruple zeta valence quality for Rb-Rn are presented, as well as bases of split valence and triple zeta valence quality for H-Rn. The latter were obtained by (partly) modifying bases developed previously. A large set of more than 300 molecules representing (nearly) all elements-except lanthanides-in their common oxidation states was used to assess the quality of the bases all across the periodic table. Quantities investigated were atomization energies, dipole moments and structure parameters for Hartree-Fock, density functional theory and correlated methods, for which we had chosen Moller-Plesset perturbation theory as an example. Finally recommendations are given which type of basis set is used best for a certain level of theory and a desired quality of results.

17,964 citations

Journal ArticleDOI
TL;DR: The re-optimization of a recently proposed long-range corrected hybrid density functional, omegaB97X-D, to include empirical atom-atom dispersion corrections yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions.
Abstract: We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functional [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106] to include empirical atom–atom dispersion corrections. The resulting functional, ωB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, ωB97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics it performs noticeably better. Relative to our previous functionals, such as ωB97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

9,184 citations

Journal ArticleDOI
TL;DR: A series of auxiliary basis sets to fit Coulomb potentials for the elements H to Rn (except lanthanides) is presented and computation times for the Coulomb part are reduced by a factor of ca.15 kJ mol(-1) per atom.
Abstract: A series of auxiliary basis sets to fit Coulomb potentials for the elements H to Rn (except lanthanides) is presented. For each element only one auxiliary basis set is needed to approximate Coulomb energies in conjunction with orbital basis sets of split valence, triple zeta valence and quadruple zeta valence quality with errors of typically below ca. 0.15 kJ mol−1 per atom; this was demonstrated in conjunction with the recently developed orbital basis sets of types def2-SV(P), def2-TZVP and def2-QZVPP for a large set of small molecules representing (nearly) each element in all of its common oxidation states. These auxiliary bases are slightly more than three times larger than orbital bases of split valence quality. Compared to non-approximated treatments, computation times for the Coulomb part are reduced by a factor of ca. 8 for def2-SV(P) orbital bases, ca. 25 for def2-TZVP and ca. 100 for def2-QZVPP orbital bases.

4,876 citations

Journal ArticleDOI
TL;DR: In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed.
Abstract: Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes The disorder-induced D and D′ Raman features, as well as the G′-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects In this review, experimental results for the D, D′ and G′ bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers Once established, this knowledge provides a powerful machinery to understand newer forms of sp2 carbon materials, such as the recently developed pitch-based graphitic foams Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (Elaser) and the in-plane size (La) of nano-graphites are presented and compared with experimental results The status of this research area is assessed, and opportunities for future work are identified

3,601 citations

Journal ArticleDOI
TL;DR: Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.
Abstract: Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.

2,527 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20231,986
20223,245
20212,532
20202,740
20192,634
20183,032